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Abstract

Normal/independent distributions are often used as a challenging family
for statistical procedures of symmetrical data. In this article, we have defined
a skewed version of these distributions in the multivariate setting and we have
derived several of its properties. The main virtue of the members of this fam-
ily of distributions is that they are easy to simulate from and they also lend
themselves to the Monte Carlo EM algorithm for maximum likelihood esti-
mation. For multivariate skewed responses, the EM-type algorithm has been
discussed with emphasis on the skew-t, on the skew-slash, and on the skew-
contaminated normal distributions. Results obtained from simulated and real
data sets are reported illustrating the usefulness of the proposed methodology.

Key Words: MC-EM algorithm; normal/independent distributions; skew-
ness.

1 Introduction

The normal/independent distributions (Lange and Sinsheimer, 1993) provide a group
of thick-tailed distributions that are often used for robust inference of symmetrical
data. The theory and applications generate a great number of data that are skewed
or heavy-tailed, for instance, the data of family income. Thus, we need appropriate
distribution to fit and simulate these skewed or heavy-tailed data. Candidate distri-
butions at our disposal for fitting and simulating these data are not very abundant in
the literature. In this article, we propose a new family of distributions that combine
skewness with heavy tails. Moreover, this distribution is attractive because it has
a stochastic representation that allows easy implementation of the EM-algorithm
and it also facilitates the study of many of its properties . Our proposal generalized
recent results found in Gupta (2003) and Wang and Genton (2006).

A simpler departure which defines the univariate skew-normal distribution has
been proposed by Azzalini (1985). An extension to the multivariate setting was
proposed by Arellano–Valle et al. (2005) (see also Azzalini and Dalla- Valle, 1996),
defining the following probability density function (pdf)

f(y) = 2φp(y|µ,Σ)Φ1(λ
⊤Σ−1/2 (y − µ)) , y ∈ R

p. (1)

where φp(.|µ,Σ) stands for the pdf of the p-variate normal distribution with mean
vector µ and covariate matrix Σ, Φ1(.) represents the cumulative distribution func-
tion (cdf) of the standard normal distribution, and Σ−1/2 satisfies Σ−1/2Σ−1/2 =
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Σ−1. When λ = 0, the skew normal distribution reduces to the normal distribution
(Y ∼ Np(µ,Σ)). A p-dimensional random vector Y with pdf as in (1), will be
denoted by SNp(µ,Σ,λ). Its marginal stochastic representation, which can be used
to derive several of its properties, is given by

Y
d
= µ + Σ1/2(δ|T0| + (Ip − δδ⊤)1/2T1), with δ =

λ√
1 + λ⊤λ

, (2)

where |T0| denotes the absolute value of T0, T0 ∼ N1(0, 1) and T1 ∼ Np(0, Ip)

are independent, and “
d
= ” means “distributed as”. From (2) it follows that the

expectation and variance of Y are given, respectively, by

E[Y] = µ +

√
2

π
Σ1/2δ, (3)

V ar[Y] = Σ1/2(Ip −
2

π
δδ⊤)Σ1/2. (4)

Following the same ideas of Azzalini (1985), it is now natural to construct uni-
variate and multivariate distributions that combine skewness with heavy tails. For
instance, one can define skew-t distributions (Sahu et al., 2003; Gupta, 2003), skew-
Cauchy distributions (Arnold and Beaver, 2000), skew-slash distributions (Wang
and Genton, 2006), skew-slash-t distributions (Tan and Peng, 2006), skew-elliptical
distributions (Azzalini and Capitanio, 1999; Branco and Dey, 2001; Sahu et a., 2003;
Genton and Loperfido, 2005). In this article, we define a new family of asymmetric
distributions and we study its properties and applications. This new family contains
the multivariate skew-normal distribution defined by Arellano-Valle et al. (2005),
the multivariate skew-slash distribution defined by Wang and Genton (2006), the
multivariate skew-t distribution defined by Gupta (2003), and all the distributions
studied by Lange and Sinsheimer (1993) in a symmetric context.

The paper is organized as follows. In Section 2, for the sake of completeness,
we give a brief sketch of normal/independent distributions (NI). In Section 3, the
skew-normal normal/independent distributions (SNI) are defined by extending the
NI models. Properties like moments, linear transformation and stochastic represen-
tation of the proposed distributions are also discussed. In Section 4, an Monte Carlo
EM-type (MC-EM) algorithm which presents advantages over the direct maximiza-
tion approach is presented, especially in terms of robustness with respect to starting
values. Section 5 reports applications to simulated and real data sets, indicating the
usefulness of the proposed methodology. Concluding remarks are given in Section
6.

2 Normal/independent distributions

The symmetrical family of NI distributions has attracted attention in the last few
years, particularly due to the fact that they include distributions such as the Student-
t, the slash, the power exponential, the contaminated normal. All of these distribu-
tions have heavier tails than the normal ones. We say that a p-dimensional vector
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Y has an NI distribution (see for instance, Lange and Sinsheimer, 1993) with loca-
tion parameter µ ∈ R

p and a positive definite scale matrix Σ if its density function
assumes the form

f(y) =

∫
∞

0

φp(y|µ, u−1Σ)dH(u), (5)

where H(u; ν) is a cdf of a unidimensional positive random variable U indexed by
the parameter vector ν. For a random vector with a pdf as in (5), we shall use
the notation Y ∼ NIp(µ,Σ; H). Now, when µ = 0 and Σ = Ip, we shall use the
notation Y ∼ NIp(H). Its stochastic representation is given by

Y = µ + U−1/2Z, (6)

where Z ∼ Np(0,Σ) and U is a positive random variable with cdf H independent
of Z. Examples of NI distributions are described subsequently (see Lange and Sin-
sheimer, 1993). For this family, the distributional properties of the Mahalanobis
distance

d = (y − µ)⊤Σ−1(y − µ),

are described, because they are extremely useful in testing the goodness of fit and
detecting outliers.

2.1 Examples of NI distributions

• The Student-t distribution with ν > 0 degrees of freedom, Y ∼ tp(µ,Σ, ν).
The use of the t-distribution as an alternative to the normal distribution, has
frequently been suggested in the literature, for example, Little (1988) and
Lange et al. (1989) use the Student-t distribution for robust modeling. Y has
a density given by

f(y) =
Γ(p+ν

2
)

Γ(ν
2
)πp/2

ν−p/2|Σ|−1/2(1 +
d

ν
)−( p+ν

2
). (7)

In this case, we have that U ∼ Gamma(ν/2, ν/2), where H(u; ν) has density

h(u; ν) =
(ν/2)ν/2uν/2−1

Γ(ν/2)
exp (−1

2
νu), (8)

with finite reciprocal moments E[U−m] =
(ν/2)mΓ(ν/2 − m)

Γ(ν/2)
, for m < ν/2.

From Lange and Sinsheimer (1993), it also follows that

d = (y − µ)⊤Σ−1(y − µ) ∼ pF (p, ν).

• The slash distribution, Y ∼ SLp(µ,Σ, ν), with a shape parameter ν > 0.
This distribution presents heavier tails than those of the normal distribution
and it includes the normal case when ν ↑ ∞. Its pdf is given by

f(y) = ν

∫ 1

0

uν−1φp(y|µ, u−1Σ)du. (9)
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Here we have that H(u; ν) has density

h(u; ν) = νuν−1
I(0,1), (10)

with reciprocal moments E[U−m] =
ν

ν − m
, for m < ν, and the Mahalanobis

distance has cdf

Pr(d ≤ r) = Pr(χ2
p ≤ r) − 2νΓ(p/2 + ν)

rνΓ(p/2)
Pr(χ2

p+2ν ≤ r).

• The contaminated normal distribution, Y ∼ CNp(µ,Σ, ν, γ), 0 ≤ ν ≤ 1,
0 < γ ≤ 1 (Little, 1988). This distribution may also be applied for modeling
symmetric data with outlying observations. The parameter ν represents the
percentage of outliers, while γ may be interpreted as a scale factor. Its pdf is
given by

f(y) = νφp(y|µ,
Σ

γ
) + (1 − ν)φp(y|µ,Σ). (11)

In this case the probability function H(u; ν) is given by

h(u; ν) = νI(u=γ) + (1 − ν)I(u=1), ν = (ν, γ)⊤, (12)

where the notation I(A) is the indicator function of the set A. Clearly, E[U−m] =
ν/γm + 1 − ν, and

Pr(d ≤ r) = νPr(χ2
p ≤ γr) + (1 − ν)Pr(χ2

p ≤ r).

The power-exponential distribution is of the type NI. However, the scale distribution
H(u; ν) is not computationally attractive and it will not be dealt with in this work.

3 Skew-normal/independent distributions

In this section, we define the multivariate SNI distributions and study some of its
properties. We have also shown that these distributions are invariants under linear
transformations.

Definition 1. A p-dimensional random vector Y follows an SNI distribution with
location parameter µ ∈ R

p, scale matrix Σ (an p × p positive definite matrix) and
skewness parameter λ ∈ R

p, if its pdf is given by

f(y) = 2

∫
∞

0

φp(y|µ, u−1Σ)Φ1(u
1/2λ⊤Σ−1/2(y − µ))dH(u)

= 2

∫
∞

0

up/2

(2π)p/2
|Σ|−1/2e−

u
2
dλΦ1(u

1/2λ⊤Σ−1/2(y − µ))dH(u), (13)

where U is a positive random variable with cdf H(u; ν). For a random vector with
pdf as in (13), we use the notion Y ∼ SNIp(µ,Σ,λ; H). If µ = 0 and Σ = Ip we
refer to it as a standard SNI distribution and we denote it by SNIp(λ; H).

4



Clearly, from (13), when λ = 0 we get the corresponding NI distribution defined
in (5). For a random vector with pdf as in (13), we write the Mahalanobis distance
as

dλ = (y − µ)⊤Σ−1(y − µ).

In definition 1, note that the cdf H(u; ν) is indexed by the parameter vector ν.
Thus, if we suppose that ν∞ is such that ν ↑ ν∞, and H(u; ν) converges weakly to
the distribution function H∞(u) = H(u; ν∞) of the unit point mass at 1, then the
density function in (13) converges to the density function of a random vector having
a skew-normal distribution. The proof of this result is similar to that of Lange and
Sinsheimer (1993) for the NI case.

For an SNI random vector, the stochastic representation given below can be used
to quickly simulate pseudo realizations of Y and also to study many of its properties.

Proposition 1. Let Y ∼ SNIp(µ,Σ,λ; H). Then

Y
d
= µ + U−1/2Z, (14)

where Z ∼ SNp(0,Σ,λ) and U is a positive random variable with cdf H independent
of Z.

Proof. The proof follows from the fact that Y|U = u ∼ SNp(µ, u−1Σ,λ).

Notice that the stochastic representation given in (6) for the NI case is a special
case of (14) when λ = 0. Hence, we have extended the family of NI distributions
for the skewed case. Besides, from (2) it follows that (14) can be written as

Y
d
= µ +

1

U1/2
Σ1/2{δ|X0| + (In − δδT )1/2X1}, (15)

where δ = λ/
√

1 + λ⊤λ, and U , X0 ∼ N1(0, 1) and X1 ∼ Np(0, Ip) are all indepen-
dent. The marginal stochastic representation given in (15) is very important since
it allows to implement the EM-algorithm for a wide variety of linear models similar
to those of Lachos et al. (2007).

Remark 1. If Y ∼ SNIp(µ,Σ,λ; H), then from (15) it follows that

Y
d
= µ + Σ1/2{δ|W0| + (Ip − δδT )1/2W1}, (16)

where W0 ∼ NI1(H) and W1 ∼ NIp(H). In other words, if we know mechanisms
for to generate of a standards NI distribution, then also we know a mechanism to
generate of the related SNI distribution.

In the next proposition, we derive a general expression for the moment generating
function (mgf) of a SNI random vector.

Proposition 2. Let Y ∼ SNIp(µ,Σ,λ; H). Then

My(s) = E[es⊤Y] =

∫
∞

0

2es⊤µ+ 1

2
u−1s⊤ΣsΦ1(u

−1/2δ⊤Σ1/2s)dH(u), s ∈ R
p (17)
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Proof. From Proposition 1, we have that Y|U = u ∼ SNp(µ, u−1Σ,λ). Now,
from the known properties of conditional expectation, it follows that My(s) =

EU [E[es⊤Y|U ]] and the proof concludes of the fact that U is a positive random vari-

able with cdf H and since, if Z ∼ SNp(µ,Σ,λ) then Mz(s) = 2es⊤µ+ 1

2
s⊤ΣsΦ1(δ

⊤Σ1/2).

In the following preposition we derive the mean vector and the covariance matrix
of a random vector SNI, the proof follows of the result in Proposition 1 and of the
fact that U and Z are independent.

Proposition 3. Suppose that Y ∼ SNIp(µ,Σ,λ; H). Then,
a) If E[U−1/2] < ∞, then E[Y] exists and

E[Y] = µ +

√
2

π
Σ1/2δE[U−1/2];

b) If E[U−1] < ∞, then the second moment of Y exists and

V ar[Y] = Σ1/2

(
E[U−1]Ip −

2

π
E2[U−1/2]δδ⊤

)
Σ1/2.

Proposition 4. If Y ∼ SNIp(µ,Σ,λ; H), then for any even function g, the dis-
tribution of g(Y − µ) does not depend on λ and has the same distribution that
g(X−µ), where X ∼ NIp(µ,Σ; H). In a particular case, if A is a p× p symmetric
matrix, then (Y−µ)⊤A(Y−µ) and (X−µ)⊤A(X−µ) are identically distributed.

Proof. The proof follows by using Proposition 2 and a similar procedure to found
in Wang et al. (2004).

As a byproduct of Proposition 4, we have the following interesting result

Corollary 1. Let Y ∼ SNIp(µ,Σ,λ; H). Then the quadratic form

dλ = (Y − µ)⊤Σ−1(Y − µ)

has the same distribution as d = (X − µ)⊤Σ−1(X − µ), where X ∼ NIp(µ,Σ; H).

The result of Corollary 1 is interesting because it allows us to check models in
practice (see Section 5). On the other hand, Corollary 1 together with the result
found in Lange and Sinsheimer (1993, Section 2) allows us to obtain the mth moment
of dλ.

Corollary 2. Let Y ∼ SNIp(µ,Σ,λ; H). Then for any m > 0

E[dm
λ ] =

2mΓ(m + p/2)

Γ(p/2)
E[U−m].

In the next proposition we shall show that an SNI random vector is invariant
under linear transformations, this implies that the marginal distributions of Y ∼
SNIp(µ,Σ,λ; H) are still SNI, with the same cdf H. This result is summarized in
the following proposition:
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Proposition 5. Let Y ∼ SNIp(µ,Σ,λ; H). Then for any fixed vector b ∈ R
m and

matrix A ∈ R
m×p of full row rank matrix,

V = b + AY ∼ SNIp(b + Aµ,AΣA⊤,λ∗; H), (18)

where λ∗ = δ∗/(1 − δ∗⊤δ∗)1/2, with δ∗ = (AΣA⊤)−1/2AΣ1/2δ. Moreover, if m = p
the matrix A is nonsingular, then λ∗ = λ.

Proof. The proof of this result was obtained directly from Proposition 2, since
Mb+AY(s) = es⊤bMY(A⊤s). When A is a nonsingular matrix, it is easy to see
that δ∗ = δ.

By using (18), when b = 0, we have the following additional properties of an
SNI random vector.

Corollary 3. Let Y ∼ SNIp(µ,Σ,λ; H). Then,
a) −Y ∼ SNIp(−µ,Σ,−λ; H);
b) a⊤Y ∼ SNIp(a

⊤µ, a⊤Σa, λ∗; H), for any a ∈ R
p, where λ∗ = α/(1−α2)1/2, with

α = {a⊤Σa(1 + λ⊤λ)}−1/2aΣ1/2λ.

3.1 Examples of SNI distributions

Some examples of SNI distributions, includes

• The skew-t distribution, with ν degree of freedom, STp(µ,Σ,λ, ν). Considering
U ∼ Gamma(ν/2, ν/2), similar procedures to found in Gupta (2003, Section
2) lead to the following density function:

f(y) = 2tp(y|µ,Σ, ν)T1(

√
v + pλ⊤Σ−1/2(y − µ)√

d + p
|0, 1, ν + p), y ∈ R

p, (19)

where as usual, tp(·|µ,Σ, ν) and Tp(·|µ,Σ, ν) denote, respectively, the pdf and
cdf of the Student-t distribution, tp(µ,Σ, ν), defined in (7). A particular case
of the skew-t distribution is the skew-Cauchy distribution, when ν = 1. Also,
when ν ↑ ∞, we get the skew-normal distribution as the limiting case. See
Gupta (2003) for further details. In this case, from the proposition 2 or 3, the
mean and covariance matrix of Y ∼ STp(µ,Σ,λ, ν) are given by

E[Y] = µ +

√
ν

π

Γ(ν−1
2

)

Γ(ν
2
)

Σ1/2δ, ν > 1 and

V ar[Y] = Σ1/2(
ν

ν − 2
Ip −

ν

π
(
Γ(ν−1

2
)

Γ(ν
2
)

)2δδ⊤)Σ1/2, ν > 2.

• The skew-slash distribution, with the shape parameter ν > 0, SSLp(µ,Σ,λ, ν).
With h(u; ν) as in (10), from the Proposition 1, can be easily seen that

f(y) = 2ν

∫ 1

0

uν−1φp(y|µ,
Σ

u
)Φ1(u

1/2λ⊤Σ−1/2(y − µ)), y ∈ R
p, (20)
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The skew-slash distribution reduces to the skew-normal distribution when ν ↑
∞. See Wang and Genton (2006) for further details. In this case from the
propositions 2 or 3

E[Y] = µ +

√
2

π

2ν

2ν − 1
Σ1/2δ, ν > 1/2, and

V ar[Y] = Σ1/2(
ν

ν − 1
Ip −

2

π
(

2ν

2ν − 1
)2δδ⊤)Σ1/2, ν > 1.

• The skew-contaminated normal distribution, SCNp(µ,Σ,λ, ν, γ), 0 ≤ ν ≤ 1,
0 < γ < 1. Taking h(u; ν) as in (12), it follows straightforwardly that

f(y) = 2{νφp(y|µ,
Σ

γ
,λ)Φ1(γ

1/2λ⊤Σ−1/2(y − µ))

+(1 − ν)φp(y|µ,Σ,λ)Φ1(λ
⊤Σ−1/2(y − µ))}, (21)

in this case, the skew-contaminated normal distribution reduces to the skew-
normal distribution when ν = 0. Hence, the mean vector and the covariance
matrix are given, respectively, by

E[Y] = µ +

√
2

π
(

ν

γ1/2
+ 1 − ν)Σ1/2δ, and

V ar[Y] = Σ1/2((
ν

γ
+ 1 − ν)Ip −

2

π
(

ν

γ1/2
+ 1 − ν)2δδ⊤)Σ1/2.

Remark 2. a) The stochastic representation given by equation (6) can be used to ob-
tain the slash student distribution. Let U1 have pdf as in (10), U2 ∼ Gamma(ν/2, ν/2),
ν > 0 and X ∼ Np(0,Σ), all independently distributed. Then

Y
d
= µ + U

−1/2
1 U

−1/2
2 X (22)

has a slash student distribution that was defined in Tang and Peng (2006). The
proof follows from the fact that

T = U
−1/2
2 X ∼ tp(µ,Σ, ν).

b) Now, if X ∼ SNp(0,Σ,λ), then Y in (22) has a skew-slash student distribution
as shown by Tang and Peng (2006). Obviously, many other distributions can be
constructed by choosing appropriate pdfs (h(.; ν)) for U1 and U2.

In Figure 1, we drew the density of the standard distribution SN1(3) together with
the standard densities of the distributions ST1(3, 2), SSL1(3, 1) and SNC1(3, 0.5, 0.5).
They are rescaled so that they have the same value at the origin. Note that the four
densities are positively skewed, and that the skew-slash and the skew-t distributions
have much heavier tails than the skew-normal distribution. Actually, the skew-
slash and the skew-t distributions do not have finite means and variances. Figure 2
depicts some contours of the densities associated with the standard bivariate skew-
normal distribution SN2(λ), the standard bivariate skew-t distribution ST2(λ, 2),
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Figure 1: Densities curves of the univariate skew-normal, skew-t, skew-slash and skew-
contaminated normal distributions.
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the standard bivariate skew-slash distribution SSL2(λ, 1), and the standard bivari-
ate skew-contaminated normal distribution SCN2(λ, 0.5, 0.5), with λ = (1, 1)⊤ for
all the distributions. Note that these contours are not elliptical and they can be
strongly asymmetric depending on the choice of the parameters.

In what follows, we use the EM-algorithm in conjunction with the marginal
stochastic representation given in (15) to obtain the ML estimate of the parameter
vector θ. We note that it is hard to implement this approach without identifying
stochastic representation. The proposed methodology does not exist even in the
literature. Moreover, studies related to local influence for incomplete data (Zhu and
Lee, 2004) can be easily extended from these results.

4 Maximum likelihood via the EM-algorithm

Suppose that we have observations on n independent individuals, Y1, . . . ,Yn, where
Yi ∼ SNIp(µ,Σ,λ; H), i = 1, . . . , n. . The parameter vector is θ = (µ⊤,α⊤,λ⊤)⊤,
where α denotes a minimal set of parameters such that Σ is well defined (e.g. the
upper triangular elements of Σ in the unstructured case).

In what follows, we illustrate implementation of likelihood inference via the EM-
algorithm. The EM-algorithm is a popular iterative algorithm for ML estimation
for models with incomplete data. More specifically, let y denote the observed data
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Figure 2: Contour plot of some elements of the standard bivariate SNI family. (a) SN2(λ)
(b) ST2(λ, 2) (c) SCN2(λ, 0.5, 0.5) (d) SSL2(λ, 1), where λ = (1, 1)⊤.
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and s denote the missing data. The complete data yc = (y, s) is y augmented with
s. We denote by ℓc(θ|yc), θ ∈ Θ, the complete-data log-likelihood function and

by Q(θ|θ̂) = E[ℓc(θ|yc)|y, θ̂], the expected complete-data log-likelihood function.
Each iteration of the EM-algorithm involves two steps; an E-step and an M-step,
defined as:

• E-step: Compute Q(θ|θ(r)) as a function of θ;

• M-step: Find θ(r+1) such that Q(θ(r+1)|θ(r)) = maxθ∈Θ Q(θ|θ(r)).

Notice that, by using (15), the set-up defined above can be written as

Yi|ti, ui,
ind∼ Np(µ + u

−1/2
i tiΣ

1/2δ, u−1
i Σ1/2(Ip − δδ⊤)Σ1/2), (23)

ui
ind∼ h(ui; ν) (24)

ti
iid∼ HN1(0, 1) i = 1, . . . , n, (25)

all independent, where HN1(0, 1) denotes the univariate standard half-normal dis-
tribution (see |X0| in equation (2) or Johnson et al., 1994). We assume that the
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parameter vector ν is known. In applications the optimum value of ν can be choos-
ing by using the profile likelihood and the Schwarz information criterion (see Lange
et al., 1989).

Let y = (y⊤
1 , . . . ,y⊤

n )⊤ u = (u1, . . . , un)⊤ and t = (t1, . . . , tn)⊤. Then, under the
hierarchical representation (23)-(25), with ∆ = Σ1/2δ and Γ = Σ−∆∆⊤, it follows
that the complete log-likelihood function associated with yc = (y⊤,u⊤, t⊤)⊤ is

ℓc(θ|yc) =

c − n

2
log |Γ| − 1

2

n∑

i=1

ui(yi − µ − u
−1/2
i ∆ti)

⊤Γ−1(yi − µ − u
−1/2
i ∆ti)

(26)

where c is a constant that is independent of the parameter vector θ. Letting t̂2i =
E[t2i |θ = θ̂,yi] , ûi = E[Ui|θ = θ̂,yi] t̂ui = E[tiU

1/2
i |θ = θ̂,yi] and using known

properties of conditional expectation we obtain

t̂2i = E[µ̂2
Ti

+ M̂2
Ti

+ WΦ1
(
µ̂Ti

M̂Ti

)M̂Ti
µ̂Ti

], (27)

t̂ui = E[u
1/2
i {µ̂T i + WΦ1

(
µ̂Ti

M̂Ti

)M̂Ti
}|θ = θ̂,yi] (28)

where WΦ1
(u) = φ1(u)/Φ1(u), M̂2

Ti
= 1/(1+∆̂

⊤

Γ̂
−1

∆̂) and µ̂Ti
= u

1/2
i M̂2

Ti
∆̂

⊤

Γ̂
−1

(yi−
µ), i = 1, . . . , n. Since the conditional expectation value defined in (27)-(28) depend
only on ui, we need to know the conditional distribution ui|yi, which for this family
of distributions can be easily derived from the result of the Proposition 6. Never-
theless, Monte-Carlo integration may be employed, which yield a so-called MC-EM
algorithm.

It follows, after some simple algebra and using (27)-(28), that the conditional
expectation of the complete log-likelihood function has the form

Q(θ|θ̂) = E[ℓc(θ|yc)|y, θ̂] = c − n

2
log |Γ| − 1

2

n∑

i=1

ûi(yi − µ)⊤Γ−1(yi − µ)

+
n∑

i=1

t̂ui(yi − µ)⊤Γ−1∆ − 1

2

n∑

i=1

t̂2i∆
⊤Γ−1∆,

We then have the following EM-algorithm:
E-step: Given θ = θ̂, compute t̂2i, t̂ui and ûi, for i = 1, . . . , n using (27)-(28).

M-step: Update θ̂ by maximizing Q(θ|θ̂) over θ, which leads to the following closed
form expressions

µ̂ =
n∑

i=1

(ûiyi − t̂ui∆)/(
n∑

i=1

ûi), (29)

Γ̂ =
1

n

n∑

i=1

[
ûi(yi − µ)(yi − µ)⊤ − 2t̂ui(yi − µ)∆⊤ + t̂2i∆∆⊤

]
,

∆̂ =

∑n
i=1 t̂ui(yi − µ)

∑n
i=1 t̂2i

.
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The skewness parameter vector and the unstructured scale matrix can be esti-

mated by noting that Σ̂ = Γ̂+∆̂∆̂
T

and λ̂ = Σ̂
−1/2

∆̂/(1−∆̂
⊤

Σ̂
−1

∆̂)1/2. It is clear
that when λ = 0 (or ∆ = 0) the M-step equations reduce to the equations obtained
assuming normal/independent distribution. Note also that, this algorithm clearly
generelized results found in Lachos et al. (2007, Section 2) by taken κ(u) = 1. Useful
starting values required to implement this algorithm are those obtained under the
normality assumption, with the starting values for the skewness parameter vector
set equal to 0. However, in order to ensure that the true ML estimate is identified,
we recommend running the MC-EM algorithm using a range of different starting
values.

4.1 Conditional distributions for the MC-EM algorithm

In this section we compute the conditional distribution ui|yi for the distributions
present in Section 3. Before, we give an important result.

Proposition 6. (An invariance result) If Yi ∼ SNIp(µ,Σ,λ; H), i=1,. . . ,n. Then,

f(ui|Yi = yi) ∝ h(ui; ν)φp(yi|µ, u−1
i Σ). (30)

Proof. In fact, from (19)-(21) we have that,

f(yi, ui, ti) = 2φp(yi|µ+u
−1/2
i tiΣ

1/2δ, u−1
i Σ1/2(Ik−δδ⊤)Σ1/2)h(u; ν)φ1(ti|0, 1)I(ti>0).

Hence, from Lemma 2 in Arellano-Valle et al. (2005), it follows that

f(yi, ui, ti) = h(ui; ν)φp(yi|µ, u−1
i Σ)φ1(ti|u−1/2

i λ⊤Σ−1/2(yi − µ), 1)

= f(ui)f(yi|ui)f(ti|ui,yi),

which concludes the proof.

From Proposition 6 it follows that, under the more general SNI distribution
considered here, the conditional distribution ui|yi reduces to considering the corre-
sponding NI model. Hence, for the discussed distributions, we have the following
results:

The skew-t case. If Yi ∼ STp(µ,Σ,λ, ν), i = 1, . . . , n. Then, from (8) joint with
the result of the Proposition (6), we have that

ui|yi ∼ Gamma(
ν + p

2
,
ν + di

2
),

so that the conditional expectation ûi = E[Ui|θ = θ̂,yi] is given by ûi =
ν + p

ν + di

.

Here, di = dλi = (yi − µ)⊤Σ−1(yi − µ).

The skew-slash case. If Yi ∼ SSLp(µ,Σ,λ, ν), i = 1, . . . , n. Then, we obtain

ui|yi ∼ Gamma(ν +
p

2
,
di

2
)1(0,1),
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and ûi =

(
p + 2ν

di

)
P1(p/2 + ν + 1, di/2)

P1(p/2 + ν, di/2)
, where Px(a, b) denotes the cdf of the

Gamma(a, b) distribution evaluated on x.

The skew-contaminated normal case. If Yi ∼ SNCp(µ,Σ,λ, ν, γ), i = 1, . . . , n.
Then, we have that

h(ui|yi) = pi1(ui=γ) + (1 − pi)1(ui=1),

with

pi =
νu

p/2
i exp{−diui

2
}

νγp/2 exp{−diγ
2
} + (1 − ν) exp{−di

2
}

and ûi =
1 − ν + νγp/2+1 exp {(1 − γ)di/2}
1 − ν + νγp/2 exp {(1 − γ)di/2}

.

5 Applications

In this section, we present two applications. The first one illustrates the use of the
distributions SN , ST , SSL and SNC in simulation studies, whereas the other one
involves the statistical analysis of a real data set. The comments given here are a
natural extension of those found in Wang and Genton (2006).

5.1 Simulation study

SNI distributions can be used in simulation studies as a challenging family for sta-
tistical procedure. As a illustration, we perform a small simulation to study the
behavior of two location estimators, the sample mean and the sample median, un-
der four different standard univariate settings. We consider a standard skew-normal
SN1(3) , a skew-t ST1(3, 2), a skew-slash SSL1(3, 1) and a skew-contaminated nor-
mal SSL1(3, 0.9, 0.1). The location mean of all the asymmetric distributions is
adjusted to zero, so that all four distributions are comparable. Thus, this setting
represents four distributions with the same mean, but with different tail behaviors
and skewness. Actually, with ν = 1 the skew-slash and with ν = 2 the skew-t
have infinite variance. We simulate 500 samples of size n = 100 from each of these
four distributions. On each sample, we compute the sample means and the sample
median and report the box-plot for each distribution in Figure 3. In the left panel,
we observe that all boxplots of the estimated means are centered around zero but
have larger variability for the heavy tailed distributions (skew-t and skew-slash). In
the right panel, we see the boxplots of the estimated medians has a slightly larger
variability that the boxplots for the estimated means at the skew-normal and skew-
contaminated normal, but has a much smaller variability at the at the skew-t and
skew-slash distributions. This indicates that the median is a robust estimator of
location at asymmetric light tailed distributions. On the other hand, the median
estimator becomes biased as soon as unexpected skewness and heavy tailed arise in
the underlying distribution.
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Figure 3: Boxplots of the sample mean (left panel) and sample median (right panel) on
500 samples of size n=100 from the four standardized distributions: SN1(3); ST1(3, 2);
SSL1(3, 1), and SNC1(3, 0.9, 0.1). The respective means are adjusted to zero.

SN ST SNC SSL

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

SN ST SNC SSL

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

5.2 Fiber-glass data set

Now, the univariate skew-normal, skew-t, skew-slash and skew-contaminated normal
distributions, are applied to fit the data of the strength of glass fiber, consisting of
63 observations. Jones and Faddy (2003) and Wang and Genton (2006) fit a skew-t
and askew-slash, respectively, to these data. They both note skewness on the left as
well as heavy tail behavior, as depicted in Figure 4. Resulting parameter estimates
for the four models are given in Table 1. As suggested by Lange et al. (1989) for
each model, the Schwarz information criterion (or equivalently the log-likelihood)
was used for choosing among some values of ν and γ. This strategy is illustrated
in Figure 5(d). Figure 4 show the histogram of the fiber data superimposed with
the fitted curves of the densities for the four considered models. We have observed
that the skew-contaminated normal fits the fiber data better than the other three
distributions, especially at the peak part of the histogram. This conclusion is also
supported by the values from the log-likelihoods given in Table 1.

Replacing the ML estimates of θ in the Mahalanobis distance di = (yi − µ)2/σ2,
we present Q-Q plots and envelopes in Figure 5 (lines represent the 5th percentile,
the mean, and the 95th percentile of 100 simulated points for each observation). It
seems to us that the plots in Figure (5) provide even stronger evidence (than the
log-likelihood criteria), that the skew-contaminated normal distribution provides a
better fit to the data set than the skew-t and the skew-normal distribution.
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Figure 4: The histogram of the fiber grass strength superimposed with the fitted densities
curves of the four distributions.
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Table 1: MLE of the four models fitted on the fiber grass strength data set.

distribution µ̂ σ̂2 λ̂ ν γ Log-Likelihood
SN 1.850368 0.2214105 -2.678955 - - -13.95719
ST 1.773221 0.08258476 -1.424273 3.0 - -11.64703
SNC 1.763553 0.03926635 -1.304706 0.45 0.12 -10.25552
SSL 1.805591 0.08938106 -1.870298 1.73 - -12.93673

6 Final Conclusion

In this work we have defined a new family of asymmetric models by extending the
symmetric normal/independet family. Our proposal generalized recent results found
in Gupta (2003) and Wang and Genton (2006). In addition, we have developed a
very general method based on the MC-EM algorithm for estimating the parameters
of the skew-normal/independent distributions. An important characteristic of the
results obtained is that closed form expressions were derived for the iterative estima-
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Figure 5: Fiber grass strength data set. Q-Q plots and simulated envelopes: (a) Skew-
normal model (b) Skew-contaminated normal model (c) skew-t model and (d) profile
likelihood for the skew-t model.
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tion processes. This was a consequence of the fact that the proposed distributions
posses a stochastic representation that can be used to represent them hierarchically.
This stochastic representation also allows us to study many of its properties easily.
We believe that the approaches proposed here can also be used to study other asym-
metric multivariate models like those proposed by Branco and Dey (2001, Section 3).
These models proposed by Branco and Dey (2001) have a stochastic representation
of the form Y = µ+ η(U)Z, and they also have proper elements like the skew-t, the
skew-slash, the skew-contaminated normal, the skew-logistic, the skew-stable and
the skew-exponential power distributions.

The assessment of influence of data and model assumption on the result of the
statistical analysis is a key aspect. Work is in progress addressing specifically local
influence and residual analysis.
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