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Abstract

We show which Lie point symmetries of non-critical semilinear Kohn-Laplace equations
on the Heisenberg group H1 are Noether symmetries and we establish their respectives
conservations laws.
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1 Introduction and Main Results

In this paper we show which Lie point symmetries of the semilinear Kohn - Laplace equations
on the three-dimensional Heisenberg group H1,

∆H1u + f(u) = 0, (1)

are Noether’s symmetries, and we establish their respectives conservation laws.
The Kohn - Laplace operator on H1 is defined by

∆H1 := X2 + Y 2 =
∂2

∂x2
+

∂2

∂y2
+ 4(x2 + y2)

∂2

∂t2
+ 4y

∂2

∂x∂t
− 4x

∂2

∂y∂t
,

where X =
∂

∂x
+ 2y

∂

∂t
and Y =

∂

∂y
− 2x

∂

∂t
. Equation (1) possesses variational structure and

can be derived from the Lagragian

L =
1

2
u2

x +
1

2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut − F (u), with F ′(u) = f(u). (2)

The group structure, the left invariant vector fields on H1 and their Lie algebra are given,
respectively, by φ : R3 × R3 → R3, where:

φ((x, y, t), (x0, y0, t0)) := (x + x0, y + y0, t + t0 + 2(xy0 − yx0)),

X =
d

ds
φ((x, y, t), (s, 0, 0))|s=0 =

∂

∂x
+ 2y

∂

∂t
,

Y =
d

ds
φ((x, y, t), (0, s, 0))|s=0 =

∂

∂y
− 2x

∂

∂t
,

T =
d

ds
φ((x, y, t), (0, 0, s))|s=0 =

∂

∂t
,

(3)

and
[X, T ] = [Y, T ] = 0, [X, Y ] = −4T.

In [2] is proved a complete group classification of equation (1), which can be summarized
as follows.

Let Gf := {T,R, X̃, Ỹ }, where

T =
∂

∂t
, R = y

∂

∂x
− x

∂

∂y
, X̃ =

∂

∂x
− 2y

∂

∂t
, and Ỹ =

∂

∂y
+ 2x

∂

∂t
. (4)

For any function f(u), the group Gf is a (sub)group of symmetries. Its Lie algebra is given by
the Table 1.
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T R X̃ Ỹ
T 0 0 0 0

R 0 0 Ỹ -X̃

X̃ 0 -Ỹ 0 4T

Ỹ 0 X̃ - 4T 0

Table 1: Lie brackets of equation (1) with f(u) arbitrary.

For special choices of function f(u) in (1), the symmetry group can be enlarged. Below we
exhibit these functions and their respective additional symmetries and Lie algebras.

• If f(u) = 0, the additional symmetries are

V1 = (xt− x2y − y3)
∂

∂x
+ (yt + x3 + xy2)

∂

∂y
+ (t2 − (x2 + y2)2)

∂

∂t
− tu

∂

∂u
, (5)

V2 = (t− 4xy)
∂

∂x
+ (3x2 − y2)

∂

∂y
− (2yt + 2x3 + 2xy2)

∂

∂t
+ 2yu

∂

∂u
, (6)

V3 = (x2 − 3y2)
∂

∂x
+ (t + 4xy)

∂

∂y
+ (2xt− 2x2y − 2y3)

∂

∂t
− 2xu

∂

∂u
, (7)

Z = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
, U = u

∂

∂u
, Wβ = β(x, y, t)

∂

∂u
, where ∆H1β = 0. (8)

T R X̃ Ỹ U Wβ V1 V2 V3 Z

T 0 0 0 0 0 WTβ U X̃ Ỹ 2T

R 0 0 Ỹ -X̃ 0 WRβ 0 V3 -V2 0

X̃ 0 -Ỹ 0 4T 0 WX̃β V2 -6R 2Z − 2D3 X̃

Ỹ 0 X̃ 4T 0 0 WỸ β V3 −2Z + 2D3 -6R Ỹ

U 0 0 0 0 0 0 0 0 0 0
Wβ -WTβ -WRβ -WX̃β -WỸ β 0 0 WV1β WV2β WV3β WZβ

V1 -U 0 -V2 0 0 -WV1β 0 0 0 -2V1

V2 -X̃ -V3 6R 0 0 -WV2β 0 0 4V1 -V2

V3 Ỹ -Ỹ -V3 −2Z + 2D3 0 -WV3β 0 -4V1 0 -V3

Z -2T 0 -X̃ -Ỹ 0 -WZβ 2V1 V2 V3 0

Table 2: Lie brackets of equation (1) with f(u) = 0.

• If f(u) = u, the two additional symmetries are

U = u
∂

∂u
, Wβ = β(x, y, t)

∂

∂u
, where ∆H1β + β = 0. (9)
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T R X̃ Ỹ U Wβ

T 0 0 0 0 0 WTβ

R 0 0 Ỹ -X̃ 0 WRβ

X̃ 0 -Ỹ 0 4T 0 WX̃β

Ỹ 0 X̃ 4T 0 0 WỸ β

U 0 0 0 0 0 0
Wβ -WTβ -WRβ -WX̃β -WỸ β 0 0

Table 3: Lie brackets of equation (1) with f(u) = u.

• If f(u) = up, p 6= 0, p 6= 1, p 6= 3, we have the generator of dilations

Dp = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
+

2

1− p
u

∂

∂u
. (10)

T R X̃ Ỹ Dp

T 0 0 0 0 2T

R 0 0 Ỹ -X̃ 0

X̃ 0 -Ỹ 0 4T X̃

Ỹ 0 X̃ - 4T 0 Ỹ

Dp -2T 0 -X̃ -Ỹ 0

Table 4: Lie brackets of equation (1) with f(u) = up, p 6= 0, p 6= 1, p 6= 3.

• If f(u) = eu the additional symmetry is

E = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
− 2

∂

∂u
. (11)

T R X̃ Ỹ E
T 0 0 0 0 2T

R 0 0 Ỹ -X̃ 0

X̃ 0 -Ỹ 0 4T X̃

Ỹ 0 X̃ - 4T 0 Ỹ

E -2T 0 -X̃ -Ỹ 0

Table 5: Lie brackets of equation (1) with f(u) = eu.
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• In the critical case, f(u) = u3, there are four additional generators, namely V1, V2, V3 and D3,
given in (5), (6), (7) and (10) respectively. Their Lie algebra is presented in [4].

In [3] is showed that in the critical case, f(u) = u3, all Lie point symmetries are Noether
symmetries and then, by the Noether Identity (see [?]), in [4] is established the respectives
conservation laws for the symmetries T,R, X̃, Ỹ , V1, V2, V3 and D3.

In this work, we show which Lie point symmetries of the other functions f(u) are Noether
symmetries and then, we establish their respectives conservation laws, concluding the work
started in [3] and [4].

Let R 3 u 7→ f(u) ∈ R be a differentiable function and

F (u) := f ′(u). (12)

Our main results can be formulated as follows:

Theorem 1. The group Gf is a Noether symmetry group for any function f(u) in (1).

Theorem 2. The Noether symmetry group of (1), with f(u) = eu, is the group Gf .

Theorem 3. Gf is the Noether symmetry group of equation (1), with f(u) = u.

Theorem 4. The Noether symmetry group of equation (1) with f(u) = 0 is generated by the
group Gf and by symmetries V1, V2 e V3. If β = β0 = const., then Wβ0 also is a Noether
symmetry.

As a consequence of theorems 1 - 4, we have the following conservation laws.

Theorem 5. The conservations laws for the Noether symmetries of equation (1) for any f(u)
are:

1. For the symmetry T , the conservation law is Div(τ) = 0, where τ = (τ1, τ2, τ3) and

τ1 = −2yu2
t − uxut,

τ2 = 2xu2
t − uyut,

τ3 =
1

2
u2

x +
1

2
u2

y − 2(x2 + y2)u2
t − F (u).

2. For the symmetry R, the conservation law is Div(σ) = 0, where σ = (σ1, σ2, σ3) and

σ1 = −1

2
yu2

x +
1

2
yu2

y + 2y(x2 + y2)u2
t + xuxuy − yF (u),

σ2 = −1

2
xu2

x −
1

2
xu2

y − 2x(x2 + y2)u2
t − yuxuy + xF (u),

σ3 = −2y2u2
x − 2x2u2

y + 4xyuxuy − 4y(x2 + y2)uxut + 4x(x2 + y2)uyut.
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3. For the symmetry X̃, the conservation law is Div(χ) = 0, where χ = (χ1, χ2, χ3) and

χ1 = −1

2
u2

x +
1

2
u2

y + 2(x2 + 3y2)u2
t + 2yuxut − 2xuyut − F (u),

χ2 = −4xyu2
t − uxuy + 2xuxut + 2yuyut,

χ3 = −3yu2
x − yu2

y + 4y(x2 + y2)u2
t + 2xuxuy − 4(x2 + y2)uxut + 2yF (u).

4. For the symmetry Ỹ , the conservation law is Div(υ) = 0, where υ = (υ1, υ2, υ3) and

υ1 = −4xyu2
t − uxuy − 2xuxut − 2yuyut,

υ2 =
1

2
u2

x −
1

2
u2

y + 2(3x2 + y2)u2
t + 2yuxut − 2xuyut − F (u),

υ3 = xu2
x + 3xu2

y − 4x(x2 + y2)u2
t − 2yuxuy − 4(x2 + y2)uyut − 2xF (u).

Theorem 6. If f(u) = 0 in (1), the conservation laws for the Noether symmetries are as
follows.

1. For the symmetries T, R, X̃ and Ỹ , the conservation laws are the same as in the Theorem
5, with f(u) = 0, in (12).

2. For the symmetry V1, the conservation law is Div(A) = 0, where A = (A1, A2, A3) and

A1 = −1

2
(tx− x2y − y3)u2

x +
1

2
(tx− x2y − y3)u2

y + 2t(x3 + xy2 − ty)u2
t

−(x3 + xy2 + ty)uxuy − [t2 − (x2 + y2)2]uxut − 2t(x2 + y2)uyut

−tuux − 2tyuut + yu2,

A2 =
1

2
(x3 + ty + xy2)u2

x −
1

2
(x3 + ty + xy2)u2

y + 2t(x2y + y3 + tx)u2
t

−(tx− x2y − y3)uxuy + 2t(x2 + y2)uxut − [t2 − (x2 + y2)2]uyut

−tuuy + 2txuut − xu2,

A3 = +
1

2
(t2 − x4 − 4txy + 2x2y2 + 3y4)u2

x +
1

2
(t2 + 3x4 + 4txy + 2x2y2 − y4)u2

y

−2(x2 + y2)[t2 − (x2 + y2)2]u2
t + 2[t(x2 − y2)− 2xy(x2 + y2)]uxuy

−4(x2 + y2)(tx− x2y − y3)uxut − 4(x2 + y2)(x3 + ty + xy2)uyut

−2tyuux + 2txuuy − 4t(x2 + y2)uut + 2(x2 + y2)u2.
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3. For the symmetry V2, the conservation law is Div(B) = 0, where B = (B1, B2, B3) and

B1 = −1

2
(t− 4xy)u2

x +
1

2
(t− 4xy)u2

y + [2t(x2 + 3y2)− 4xy(x2 + y2)]u2
t

−(3x2 − y2)uxuy + 2(x3 + ty + xy2)uxut − 2(tx− x2y − y3)uyut

+2yuux + 4y2uut,

B2 =
1

2
(3x2 − y2)u2

x −
1

2
(3x2 − y2)u2

y + 2(x4 − 2txy − y4)u2
t − (t− 4xy)uxuy

+2(tx− x2y − y3)uxut + 2(x3 + ty + xy2)uyut + 2yuuy − 4xyuut − u2,

B3 = (7xy2 − x3 − 3ty)u2
x + (5x3 − 3xy2 − ty)u2

y + 4(x2 + y2)(x3 + ty + xy2)u2
t

+2(tx− 7x2y + y3)uxuy − 4(t− 4xy)(x2 + y2)uxut − 4(3x4 + 2x2y2 − y4)uyut

+2xu2 + 4y2uux − 4xyuuy + 8y(x2 + y2)uut.

4. For the symmetry V3, the conservation law is Div(C) = 0, where C = (C1, C2, C3) and

C1 =
1

2
(x2y − tx + y3)u2

x +
1

2
(tx− x2y − y3)u2

y + 2t(x3 − ty + xy2)u2
t

−(x3 + ty + xy2)uxuy − [t2 − (x2 + y2)2]uxut − 2t(x2 + y2)uyut

−tuux − 2tyuut,

C2 =
1

2
(x3 + ty + xy2)u2

x −
1

2
(x3 + ty + xy2)u2

y + 2t(tx + x2y + y3)u2
t

−(tx− x2y − y3)uxuy + 2t(x2 + y2)uxut − [t2 − (x2 + y2)2]uyut

−u2 − tuuy + 2txuut,

C3 =
1

2
(t2 − x4 − 4txy + 2x2y2 + 3y4)u2

x +
1

2
(t2 + 3x4 + 4txy + 2x2y2 − y4)u2

y

−2(x2 + y2)[t2 − (x2 + y2)2]u2
t + 2[t(x2 − y2)− 2xy(x2 + y2)]uxuy

+4(x2 + y2)(x2y − tx + y3)uxut − 4(x2 + y2)(x3 + ty + xy2)uyut

+2txuuy − 2tyuux − 4t(x2 + y2)uut + 2yu2.
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5. For the symmetry Wβ0, the conservation law is Div(W ) = 0, where W = (W1, W2, W3)
and

W1 = β0(ux + 2yut),

W2 = β0(uy − 2xut),

W3 = β0(−2xuy + 2yux + 4(x2 + y2)ut).

The paper is organized as follows. In section 2 we briefly present some of the main aspects
of Lie point symmetries, Noether symmetries and conservation laws. In section 3 we prove
theorems 1, 2 and 3. Theorem 4 is proved in section 4. Their respective conservation laws are
discussed in section 5.

2 Lie point symmetries, Noether symmetries and con-

servation laws

Let x ∈ M ⊆ Rn and k ∈ N. ∂ku denotes the set of coordinates correspondig to all kth
partial derivatives of u with respect to x. A Lie point symmetry of a partial differential equation
(PDE) of order k, F (x, u, ∂u, · · · , ∂ku) = 0, is a vector field

S = ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u

on M × R such that SkF = 0 when F = 0 and

Sk = S + η
(1)
i (x, u, ∂u)

∂

∂ui

+ · · ·+ η
(k)
i1···ik(x, u, ∂u, · · · , ∂ku)

∂

∂ui1···ik

is the extended symmetry on the jet space (x, u, ∂u, · · · , ∂ku).
The functions η(j)(x, u, ∂u, · · · , ∂ju), 1 ≤ j ≤ k are given by

η
(1)
i = Diη − (Diξ

j)uj,

η
(j)
i1···ij = Dijη

(j−1)
i1···ij−1

− (Dijξ
l)ui1···ij−1l, 2 ≤ j ≤ k.

We are using the Einstein sum convention.
If the PDE F = 0 can be obtained by a Lagrangian L = L(x, u, ∂u, · · · , ∂lu) and if there

exists some symmetry S of F and a vector ϕ = (ϕ1, · · · , ϕn) such that

SlL+ LDiξ
i = Diϕ

i, (13)

where

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj

+ · · ·+ uii1···im
∂

∂ui1···im
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is the total derivative operator of u,

ui :=
∂u

∂xi
, uij :=

∂2u

∂xi∂xj
, · · · , uii1···im :=

∂u

∂xi∂xi1 · · · ∂xim

,

the symmetry S is said to be a Noether symmetry. Then, the Noether’s Theorem asserts that
the following conservation law holds

Di(ξ
iL+ W i[u, η − ξjuj]− ϕi) = 0. (14)

3 Proofs of theorems 1, 2 and 3

Lemma 1. Let u = u(x, y, t) be a smooth function. If a vector field V = (A, B, C) is a
vector function of x, y, t, u, ux, uy, ut, its divergence necessarily depends on the second order
derivatives of u with respect to x, y e t.

Proof. Taking the divergence of vector field V , we obtain

Div(V ) = Ax + By + Ct + uxAu + uxxAux + uxyAuy + uxtAut

+uyBu + uxyBux + uyyBuy + uytBut

+utCu + uxtCux + uytCuy + uttCut .

Corollary 1. If the divergence of a vector field does not depend on the second order derivatives,
then it does not depend on ux, uy and ut.

Lemma 2. The symmetry

E = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t
− 2

∂

∂u

is not a Noether symmetry.

Proof. In this case, (ξ, φ, τ, η) = (x, y, 2t,−2). Then, Dxξ + Dyφ + Dtτ = 4 and

(η(1)
x , η(1)

y , η
(1)
t ) = (−ux,−uy,−2ut),

which yields the following first order extension:

E(1) = E − ux
∂

∂ux

− uy
∂

∂uy

− 2ut
∂

∂ut

.

Therefore,

E(1)L+ (Dxξ + Dyφ + Dtτ)L = u2
x + u2

y + 4(x2 + y2)u2
t + 2yuxut

−2xuyut − 6eu,
(15)
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where

L =
1

2
u2

x +
1

2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut − eu.

From Lemma 1 and equation 15, we conclude that there are not a potential φ which satisfies

E(1)L+ (Dxξ + Dyφ + Dtτ)L = Div(φ).

Thus, E cannot be a Noether symmetry.

Lemma 3. The symmetry U is not a variational symmetry.

Proof. First one, note that η = u, ξ = φ = τ = 0. Then,

U (1) = u
∂

∂u
+ ux

∂

∂ux

+ uy
∂

∂ut

+ ut
∂

∂ut

(16)

Aplying the operator obtained in (16) to the Lagrangian

Lk =
1

2
u2

x +
1

2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut −

k

2
u2, (17)

where k = 0 if f(u) = 0 or k = 1 if f(u) = u, we find

U (1)Lk = −u2 + u2
x + u2

y + 4(x2 + y2)u2
t + 4yuxut − 4xuyut − ku2 = 2Lk.

From Theorem 1 and Corollary 1, we conclude that there is not a vector field such that
equation (13) is true with S = U .

Lemma 4. The symmetry Wβ is a Noether symmetry if and only if β = 0 or β = const and
k = 0 in 17.

Proof. The first order extension W
(1)
β of Wβ is

W
(1)
β = β

∂

∂u
+ βx

∂

∂ux

+ βy
∂

∂uy

+ βt
∂

∂ut

. (18)

From (18) and (17), we have

W
(1)
β Lk + Lk(Dxξ + Dyφ + Dtτ) = −βku + (ux + 2yut)βx

+(uy − 2xut)βy + (4(x2 + y2)ut + 2yux − 2xuy)βt.

If k = 0, then Wβ is a Noether symmetry if and only if β = β0 = const. If k = 1, Wβ is a
Noether symmetry if and only if β = 0.

Lemma 5. The symmetry

Z = x
∂

∂x
+ y

∂

∂y
+ 2t

∂

∂t

is not a Noether symmetry.
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Proof. Since Dxξ + Dyφ + Dtτ = 4,

L =
1

2
u2

x +
1

2
u2

y + 2(x2 + y2)u2
t + 2yuxut − 2xuyut (19)

and

Z(1) = Z + ux
∂

∂x
+ uy

∂

∂y
+ 2ut

∂

∂t
(20)

is a consequence of (20) and (19) that

Z(1)L+ L(Dxξ + Dyφ + Dtτ) = 3u2
x + 3u2

y + 20(x2 + y2)u2
t + 16yuxut − 16xuyut. (21)

By Theorem 1, there is not a vector field such that the right hand of (21) be its divergence.

Proof of Theorem 1: We will do four steps to prove this theorem. First, we obtain the
first order extension of symmetries T, R, X̃, Ỹ . Next, we proof the theorem for each one of
them.

1. Extensions:

(a) Symmetry T

The coefficients of T are ξ = φ = η = 0 and φ = 1. Then

T (1) = T.

(b) Symmetry R

The coefficients of symmetry R are (ξ, φ, τ, η) = (y,−x, 0, 0). Then, we conclude
that

R(1) = R + uy
∂

∂ux

− ux
∂

∂uy

.

(c) Symmetry X̃

In this case, (ξ, φ, τ, η) = (1, 0,−2y, 0, ). Then

η
(1)
x = 0, η

(1)
y = 2ut, η

(1)
t = 0

and

X̃(1) = X̃ + 2ut
∂

∂uy

.

(d) Symmetry Ỹ

This case is analogous to case c and we present only its extension

Ỹ (1) = Ỹ − 2ut
∂

∂ux

.
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Corollary 2. The divergence of any symmetry S ∈ Gf is zero.

2. (a) Proof of theorem for the symmetry T .

Since Div(T ) = 0,
∂

∂t
(Xu) =

∂

∂t
(Y u) = 0

and

T (1)L =
∂

∂t

[
1

2
(Xu)2 +

1

2
(Y u)2 −

∫ u

0

f(s)ds

]

= (Xu)
∂

∂t
(Xu) + Y u

∂

∂t
(Y u) = 0,

it is immediate that

T (1)L+ LDiv(T ) = 0.

(b) Proof of theorem for the symmetry R.

Since
∂

∂xi
Xu =

∂

∂xi
Y u = 0, i = 1, 2 , (x1, x2) = (x, y)

and because
∂

∂x
L = Xu,

∂

∂y
L = Y u, (22)

we have

R(1)L = XuY u−XuY u = 0.

Then, from Corollary 2,

R(1)L+ LDiv(R) = 0.

(c) Proof of theorem for the symmetries X̃ and Ỹ .

By equation (22):

X̃(1)L = Xu · 0 + Y u · (−2ut + 2ut) = 0.

Again, by Corollary 2, we obtain

X̃(1)L+ LDiv(X̃) = 0.

For Ỹ , we have

Ỹ (1)L = Xu · (2ut − 2ut) + Y u · 0 = 0.

In the same way, we conclude that

Ỹ (1)L+ LDiv(Ỹ ) = 0.

12



Proof of Theorem 2: It is a consequence of Lemma 2 and Theorem 1.
Proof of Theorem 3: From lemmas 3 and 4, U and Wβ, with β 6= 0 are not variational

symmetries. Then, by Theorem 1, Gf is a Noether symmetry group.

Proof of Theorem 4: By lemmas 3, 4 and 5, the symmetries Z, U, Wβ, with β non-
constant function, are not Noether symmetries. The proof that the symmetries V1, V2 and V3

are Noether symmetries is obtained in same way that Bozhkov and Freire showed that V1, V2

and V3 are Noether symmetries of 1 when f(u) = u3, and can be found in [3]. Then, by Theorem
1, we conclude the proof.

4 Conservation Laws

The proof is by a straightforward calculation, which we shall not present here. However, a
computer assisted proof can be obtained by means of the software Mathematica. It calculates
the components of the conservation laws, which appear in the equation (14). The Mathematica
notebook used for this purpose can be obtained form the author upon request.
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