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Abstract

This paper deals with a numerical scheme to approximate the mth moment of
the solution of the one-dimensional random linear transport equation. The ini-
tial condition is assumed to be a random function and the transport velocity is
a random variable. The scheme is based on local Riemann problem solutions and
Godunov’s method. We show that the scheme is stable and consistent with an
advective-diffusive equation. Numerical examples are added to illustrate our ap-
proach.
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1 Introduction

Partial differential equations have been important models during the last cen-
turies, mainly because they have the fundamental support of differential calcu-
lus, numerical methods, and computers. However, the formulation of a physical
process as a partial differential equation demands experiments to measure the
data, for example, the diffusion coefficient, permeability of a porous media,
initial conditions, boundary conditions and so on. This means that the inter-
pretation of the data as random variables is more realistic in some practical
situations. Differential equations with random parameters are called Random
Differential Equations; new mathematical methods have been developed to
deal with this kind of problems (see [6,9,13,16], for example).
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We are interested in the solution of the random linear transport equation





Qt(x, t) + AQx(x, t) = 0, t > 0, x ∈ R,

Q(x, 0) = Q0(x),
(1)

where A is a random variable and Q0(x) is a random function.

According to [1], the solution for the random Riemann problem (1) with

Q0(x) =





QL, if x < 0,

QR, if x > 0,
(2)

where QL and QR are random variables, is given by

Q(x, t) = QL + X
(

x

t

)
(QR −QL) . (3)

In (3) X is the Bernoulli random variable with P {X(ξ) = 1} = FA(ξ) where
FA is the cumulative probability function of A. Furthermore, in case of in-
dependence between A and both QL and QR, the mth moment of Q(x, t),
〈Qm(x, t)〉, m ∈ N, m ≥ 1, is given by

〈Qm(x, t)〉 = 〈Qm
L 〉+ FA

(
x

t

)
[〈Qm

R 〉 − 〈Qm
L 〉] . (4)

The closed solution (3) and Godunov’s ideas [7,10,11] are used in [2] and
[4] to design numerical methods to compute the mean and the variance of
the solution to (1). These methods are explicit and neither demand genera-
tion of random numbers (as does the Monte Carlo method [5,12,15,18]), nor
require differential equations governing the statistical moments (as in the ef-
fective equations methodology [6,18]). Moreover, the schemes are stable and
consistent with an advective-diffusive equation which agrees with the effective
equation to the expectation presented in the literature (see [6], for example).
In [3] we use the idea of collecting deterministic realizations through their
probability functions to solve the nonlinear random Riemann-Burgers equa-
tion.

In this paper, we deal with the general moments of the solution to (1). The
outline of this paper is as follows. In Section 2 we use (3) and (4) to de-
sign a numerical method to the mth statistical moment of the solution to the
general problem (1). We present the CFL condition under which the local
solutions do not interact between themselves. In Section 3 we show the sta-
bility of the numerical scheme and its consistency with an advective-diffusive
equation. We show that the diffusion coefficient is related with the probability
density function of the velocity by Eq. (18), which has a simple solution in the
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normal velocity case. Furthermore, we present a decoupled system of partial
differential equations to be satisfied by the central moments of the random
solution. All the partial differential equations in this paper are linear. In fact,
denoting by L(u) = ut + 〈A〉ux − νuxx, the equations are: L(u) = 0, for the
moments, and L(u) = f , for the central moments. Computational experiments
and comparisons with the Monte Carlo method are presented in Section 5.

2 The numerical scheme

In this section, we present the numerical method for the mth statistical mo-
ment of the solution to (1). The method is based on the juxtaposition of
Riemann problems whose solutions are given by (3). We discretize both space
and time assuming a uniform mesh spacing: xj = j∆x, xj±1/2 = xj ± (∆x/2),
tn = n∆t, tn±1/2 = tn ± (∆t/2), for ∆x, ∆t > 0. In Figure 1 we present a
schematic diagram of the algorithm. Let us assume that the random variables
Qn

j and the mth moments 〈Qm,n
j 〉 = 〈Qm(xj, tn)〉 are known at t = tn.

xj+3/2

Qn
j−1 Qn

j Qn
j+1

Q
n+1/2
j−1/2 Q

n+1/2
j+1/2

Qn+1

j

xj−3/2 xj−1 xj−1/2 xj xj+1/2 xj+1

tn

tn+1/2

tn+1

Fig. 1. Schematic diagram of the algorithm.

In the following we use the ideas of REA, Reconstruct-Evolve-Average, algo-
rithm [7,11] to approximate 〈Qm,n+1

j 〉 = 〈Qm(xj, tn+1)〉.

Step 1. We reconstruct the piecewise random constant function Q̃(x, tn)
from Qn

j , i.e, Q̃(x, tn) = Qn
j for x ∈ [xj−1/2, xj+1/2].

The piecewise constant random function Q̃(x, tn) defines a set of local random
Riemann problems, each one centered at x = xj−1/2,
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Qt(x, t) + AQx(x, t) = 0, t > tn, x ∈ R,

Q(x, tn) =





Qn
j−1, if x < xj−1/2,

Qn
j , if x > xj−1/2.

(5)

Step 2. From (3) and (4), the local solutions of (5) and the respective
statistical moments are given by

Gj−1/2(x, tn+1/2) = Qn
j−1 + X

(
x− xj−1/2

∆t/2

) [
Qn

j −Qn
j−1

]
(6)

and

〈Gm
j−1/2(x, tn+1/2)〉 = 〈Qm,n

j−1〉+ FA

(
x− xj−1/2

∆t/2

) [
〈Qm,n

j 〉 − 〈Qm,n
j−1〉

]
. (7)

The global solution at t = tn+1/2, Q̃(x, tn+1/2), can be constructed by piec-
ing together the local random Riemann solutions (6), provided that ∆t/2 is
sufficiently small such that adjacent local random Riemann solutions do not
interact. Therefore, taking into account the similarity property of the random
Riemann solutions, ∆x and ∆t must be chosen such that

Gj−1/2(x, tn+1/2)
∣∣∣
x=xj−1

≈ Qn
j−1 and Gj−1/2(x, tn+1/2)

∣∣∣
x=xj

≈ Qn
j ,

where the symbol “ ≈ ” means “sufficiently near to”. By substituting these
conditions in (6) we must have

FA

(
−∆x

∆t

)
≈ 0 and FA

(
∆x

∆t

)
≈ 1. (8)

Remark 1 We may regard (8) as the CFL condition for the method: the
interval [−∆x/∆t, ∆x/∆t] must contain an effective support of the density
probability function of A. This means that the probability of A outside of
the interval [−∆x/∆t, ∆x/∆t] is sufficiently near to zero, and then may be
disregarded. The existence of an effective support is ensured by Chebyshev’s
inequality: P{|A − 〈A〉| ≥ kσA} ≤ 1/k2, for all k > 0, where σA is the
standard variation of A. If we take 1/k2 sufficiently close to zero, to escape
from the interaction between solutions of Riemann problems we must take
(|〈A〉|+ kσA) ∆t/∆x ≤ 1.

Under condition (8) we conclude Step 2 by taking

Q̃(x, tn+1/2) =
∑

j−1/2

Gj−1/2(x, tn+1/2) 1[xj−1,xj ]

4



where 1[a,b] denotes the characteristic function of the interval [a, b]. From (7)
it follows that

〈Q̃m(x, tn+1/2)〉 =
∑

j−1/2

〈Gm
j−1/2(x, tn+1/2)〉 1[xj−1,xj ]. (9)

In a similar way, using the values at t = tn+1/2, we obtain

〈Q̂m(x, tn+1)〉 =
∑

j

〈Gm
j (x, tn+1)〉 1[xj−1/2,xj+1/2]. (10)

Step 3. We use (10) to approximate 〈Qm,n+1
j 〉 as the average value of

〈Q̂m(x, tn+1)〉 over the interval [xj−1/2, xj+1/2]:

〈Qm,n+1
j 〉 ' 1

∆x

∫ xj+1/2

xj−1/2

〈Q̂m(x, tn+1)〉dx =
1

∆x

∫ xj+1/2

xj−1/2

〈Gm
j (x, tn+1)〉dx

=
1

∆x

∫ xj+1/2

xj−1/2

{
〈Qm,n+1/2

j−1/2 〉+ FA

(
x− xj

∆t/2

) [
〈Qm,n+1/2

j+1/2 〉 − 〈Qm,n+1/2
j−1/2 〉

]}
dx

= 〈Qm,n+1/2
j−1/2 〉+

∆t

2∆x

{∫ ∆x
∆t

−∆x
∆t

FA(x)dx

} [
〈Qm,n+1/2

j+1/2 〉 − 〈Qm,n+1/2
j−1/2 〉

]
. (11)

Likewise, we use (9) to approximate 〈Qm,n+1/2
j−1/2 〉:

〈Qm,n+1/2
j−1/2 〉 ' 1

∆x

∫ xj

xj−1

〈Q̃m(x, tn+1/2)〉dx =
1

∆x

∫ xj

xj−1

〈Gm
j−1/2(x, tn+1/2)〉dx

=
1

∆x

∫ xj

xj−1

{
〈Qm,n

j−1〉+ FA

(
x− xj−1/2

∆t/2

) [
〈Qm,n

j 〉 − 〈Qm,n
j−1〉

]}
dx

= 〈Qm,n
j−1〉+

∆t

2∆x

{∫ ∆x
∆t

−∆x
∆t

FA(x)dx

} [
〈Qm,n

j 〉 − 〈Qm,n
j−1〉

]
. (12)

The following result is proved in [4]:

Lemma 2 Let Y be a random variable and [−ξ, ξ] an effective support of the
density probability function of Y , i.e., FY (−ξ) ≈ 0 and FY (ξ) ≈ 1. Then

∫ ξ

−ξ
FY (x)dx ≈ ξ − 〈Y 〉. (13)

Inserting (13) in (11) and (12), and denoting λ = ∆t〈A〉/∆x, gives

〈Qm,n+1
j 〉 =

1

2

[
〈Qm,n+1/2

j−1/2 〉+ 〈Qm,n+1/2
j+1/2 〉

]
− λ

2

[
〈Qm,n+1/2

j+1/2 〉 − 〈Qm,n+1/2
j−1/2 〉

]
(14)
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and

〈Qm,n+1/2
j−1/2 〉 =

1

2

[
〈Qm,n

j−1〉+ 〈Qm,n
j 〉

]
− λ

2

[
〈Qm,n

j 〉 − 〈Qm,n
j−1〉

]
. (15)

Grouping these expressions we summarize the two-step scheme (14)–(15) in
the one-step explicit method:

〈Qm,n+1
j 〉= 〈Qm,n

j 〉 − λ

2

[
〈Qm,n

j+1〉 − 〈Qm,n
j−1〉

]
+

+
1

4

(
1 + λ2

) [
〈Qm,n

j+1〉 − 2〈Qm,n
j 〉+ 〈Qm,n

j−1〉
]
. (16)

Remark 3 The numerical scheme (16) is conservative, i.e., it can be rewrit-
ten as

〈Qm,n+1
j 〉 = 〈Qm,n

j 〉 − ∆t

∆x

[
Fm,n

j+1/2 − Fm,n
j−1/2

]
,

where Fm,n
j−1/2 = (1/2)〈A〉[〈Qm,n

j−1〉+〈Qm,n
j 〉]−(1/4)〈A〉 (1/λ + λ) [〈Qm,n

j 〉−〈Qm,n
j−1〉]

is an approximation to the average flux at x = xj−1/2.

3 Numerical analysis of the scheme

The scheme (16) is a generalization of a previously studied scheme to the mean
(m = 1) of the solution to (1). Therefore, we can use the same arguments used
in [4] to show

• consistency: if ν = ∆x2/(4∆t) is fixed then the numerical scheme (16) yields
anO(∆x2) approximation for the solution of the partial differential equation

ut + 〈A〉ux = ν uxx,

u(x, 0) = 〈Q0(x)m〉.
(17)

• stability: the numerical method (16) is stable under the CFL condition (8).

As a linear problem, the convergence of (16) to the differential equation (17)
is a consequence of the Lax Equivalence Theorem, no matter what ν =
∆x2/(4∆t) is. The following proposition gives additional information about
the diffusion associated with the random velocity, A.

Proposition 4 The diffusion coefficient in (17) must satisfy

−f
′
A

(
x

t

)
ν(x, t) = fA

(
x

t

)
(x− 〈A〉t) , (18)

where fA(ξ) = d[FA(ξ)]/dξ is the density probability function of A.
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PROOF. As a general differential equation, (17) must be satisfied by every
particular solution. The random Riemann problem (1)–(2) is a particular case
of (1) with known moments given by (4):

〈Qm(x, t)〉 = 〈Qm
L 〉+ FA

(
x

t

)
[〈Qm

R 〉 − 〈Qm
L 〉] .

Direct derivations and substitution of this solution in (17) gives (18), a nec-
essary condition to ν(x, t).

2

3.1 The Normal case

Let A ∼ N(〈A〉, σA). Using the normal probability density function in (18) we
obtain ν = σ2

At. In this case, the differential equation (17) turns to be

ut + 〈A〉ux = (σ2
At)uxx, t > 0,

u(x, 0) = 〈Q0(x)m〉.
(19)

which agrees with the effective equation for the statistical mean presented
by some authors (see [6], for example). We emphasize that our convergence
results show that the differential equation which describes the evolution of all
the moments is the same. Using (18) we may also show that if ν(x, t) depends
only on t then A is normally distributed.

Now we use the consistency condition to define proper mesh spacing. Let t = tf
be fixed, and select ∆t and ∆x such that

∆x2

4∆t
= ν =

1

2
(σ2

Atf ). (20)

The convergence results show that our method converges to the solution of
the differential equation

ut + 〈A〉ux = 1
2
(σ2

Atf )uxx.

u(x, 0) = 〈Q0(x)m〉.
(21)

The solutions of (19) and (21), u1(x, t) and u2(x, t), respectively, are equal at
t = tf . Indeed, according to [14] we have

u1(x, tf ) =
1√

πξ1(tf )

∫ +∞

−∞
exp


−

(
x− 〈A〉tf − ω

ξ1(tf )

)2

〈Q0(ω)m〉 dω, (22)
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where

ξ1(tf ) = 2
[∫ tf

0
(σ2

As) ds
]1/2

=
√

2σAtf .

On the other hand, the solution to (21) is also given by (22) with

ξ2(tf ) = 2
[∫ tf

0
[(σ2

Atf )/2] ds
]1/2

instead of ξ1(tf ). Since ξ1(tf ) = ξ2(tf ) then u1(x, tf ) = u2(x, tf ).

Therefore, (20) is more than a consistency condition: it guarantees the con-
vergence of the method to the solution at t = tf .

For this particular example (normal velocity), we have shown that each mo-
ment of the solution to (1), 〈Q(x, t)m〉, satisfies the advection-diffusion equa-
tion (17) with ν = ν(t). As a consequence, the probability density function for
the random solution Q(x, t), fQ(q; x, t), also satisfies the advection-diffusion
equation

(fQ)t + 〈A〉(fQ)x = ν(t) (fQ)xx,

fQ(q; x, 0) = fQ0(q; x).
(23)

Indeed, the Fourier transform of fQ(q; x, t), under the assumption that the
probability density function is uniquely determined by its moments (see, e.g.,
[8] for conditions for uniqueness in the problems of moments), is

f̂Q(ω; x, t) =
∞∑

j=0

(iω)j

j!
〈Qm(x, t)〉, (24)

where 〈Qm(x, t)〉t + 〈A〉〈Qm(x, t)〉x = ν(t) 〈Qm(x, t)〉xx. Taking the derivative
with respect to t and x in (24), we arrive at

(f̂Q)t + 〈A〉(f̂Q)x = ν(t) (f̂Q)xx. (25)

Since the variable ω does not appear in the derivatives, we can go back to
the variable u and find (23). The respective initial condition follows from the
probability density function of Q0(x).

4 The system of partial differential equations for the central mo-
ments

The central moments of a given random function Q(x, t) are deterministic
functions defined by µm = 〈(Q − 〈Q〉)m〉, m ∈ N, m ≥ 2. The most used
central moment is the variance, m = 2, which was introduced by K. F. Gauss
(1777-1855) as a measure of dispersion of the distribution of Q(x, t). But high
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order central moments are also useful information concerning random variables
[13,16]. In the following we show that the central moment µm(x, t), if suffi-
ciently smooth, satisfies an advective-diffusive equation with the source term
defined by the expectation and the central moments µm−1(x, t) and µm−2(x, t).
Here, we extend the definition of central moments for m ≥ 0 since µ0 = 1 and
µ1 = 0.

We may use algebraic manipulations to show that

(i) If k ≤ m− 2 then

(
m

k + 2

)
(k + 1)(k + 2) =

(
m

k

)
(m− k)(m− k − 1). (26)

(ii) If k ≤ m− 1 then

(
m

k + 1

)
(k + 1) =

(
m

k

)
(m− k). (27)

(iii)

µm = 〈Qm〉 −
m−1∑

k=2

(
m

k

)
µk〈Q〉m−k − 〈Q〉m. (28)

Proposition 5 Let Z(x,t) be a random function whose statistical moments
satisfy (17), i.e., the advective-diffusive equations:

〈Zm〉t + 〈A〉〈Zm〉x = ν〈Zm〉xx, (29)

m ∈ N, m ≥ 1. Then the central moments, µm(x, t) = 〈[Z − 〈Z〉]m〉, m ∈ N,
m ≥ 2, satisfy the advective-diffusive equations with source term:

µm,t + 〈A〉µm,x − νµm,xx = 2mνµm−1,x 〈Z〉x + m(m− 1)νµm−2〈Z〉2x, (30)

where µ0 = 1 and µ1 = 0.

PROOF. The proof is based on the induction principle. Since µ2(x, t) =
〈Z2(x, t)〉 − 〈Z(x, t)〉2, µ1(x, t) = 0 and µ0(x, t) = 1, direct substitution and
derivations show (30) for k = 2. As the induction hypothesis we assume that
(30) is true for k = 3 : (m− 1), and our task is to prove that (30) is true for
k = m.

From (28) we have

µm(x, t) = 〈Zm〉 −
m−1∑

k=2

(
m

k

)
µk〈Z〉m−k − 〈Z〉m.
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By differentiating this expression with respect to t and x, grouping conve-
niently the terms, and using (29) we arrive at

µm,t + 〈A〉µm,x − νµm,xx =

−
m−1∑

k=2

(
m

k

)
〈Z〉m−k {µk,t + 〈A〉µk,x − νµk,xx}+

+ 2 ν
m−1∑

k=2

(
m

k

)
(m− k) µk,x 〈Z〉m−k−1 〈Z〉x+

+ ν
m−2∑

k=2

(
m

k

)
(m− k) (m− k − 1) µk 〈Z〉m−k−2 (〈Z〉x)2+

+ ν m (m− 1) 〈Z〉m−2〈Z〉2x. (31)

Using the induction hypothesis in the first sum in (31), and separating the
last term of the second and third sums, we obtain

µm,t + 〈A〉µm,x − νµm,xx =

−
m−1∑

k=2

(
m

k

)
〈Z〉m−k

{
2kνµk−1,x〈Z〉x + k(k − 1)νµk−2(〈Z〉x)2

}
+

+ 2 ν
m−2∑

k=2

(
m

k

)
(m− k) µk,x 〈Z〉m−k−1 〈Z〉x+

+ ν
m−3∑

k=2

(
m

k

)
(m− k) (m− k − 1) µk 〈Z〉m−k−2 〈Z〉2x+

+ 2 m ν µm−1,x 〈Z〉x + m (m− 1) ν µm−2 〈Z〉2x+
+ ν m (m− 1) 〈Z〉m−2〈Z〉2x︸ ︷︷ ︸

equal the first sum with k=2.

,

or, equivalently,

µm,t + 〈A〉µm,x − νµm,xx = 2mνµm−1,x〈Z〉x + m(m− 1)νµm−2〈Z〉2x−

− ν
m−1∑

k=3

(
m

k

)
〈Z〉m−k

{
2kµk−1,x〈Z〉x + k(k − 1)µk−2〈Z〉2x

}
+

+ ν
m−2∑

k=2

(
m

k

)
(m− k) 2 µk,x 〈Z〉m−k−1 〈Z〉x+

+ ν
m−3∑

k=2

(
m

k

)
(m− k) (m− k − 1) µk 〈Z〉m−k−2 〈Z〉2x. (32)

To show that the three sums on the right side of (32) are zero, we open the
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first one of them:

m−1∑

k=3

(
m

k

)
〈Z〉m−k

{
2 k µk−1,x〈Z〉x + k(k − 1)µk−2〈Z〉2x

}
=︸︷︷︸

µ1=0

=
m−1∑

k=3

(
m

k

)
〈Z〉m−k 2kµk−1,x〈Z〉x +

m−1∑

k=4

(
m

k

)
〈Z〉m−k k(k − 1)µk−2〈Z〉2x =

= 2
m−2∑

k=2

(
m

k + 1

)
(k + 1)〈Z〉m−k−1µk,x〈Z〉x+

+
m−3∑

k=2

(
m

k + 2

)
(k + 1)(k + 2)〈Z〉m−k−2µk〈Z〉2x =︸︷︷︸

using (26) and (27)

= 2
m−2∑

k=2

(
m

k

)
(m− k)µk,x〈Z〉m−k−1〈Z〉x+

+
m−3∑

k=2

(
m

k

)
(m− k)(m− k − 1)µk〈Z〉m−k−2〈Z〉2x.

Therefore, from (32) we arrive at (30).

2

Remark 6 In Section 3 we have shown that the numerical method (16), for
the moments, is stable and consistent with (17). Since we have used the same
method (16) to compute the central moments, we conclude that the method for
the central moments is stable and consistent with (30).

5 Computational tests

In this section, we present some examples to assess our approach. In Examples
1 and 2 the initial condition allows exact statistical moments of the solution.
We use Riemann initial conditions defined by bivariate normal distributions;
in this case the solutions for the moments are given by (4). In order to inves-
tigate the influence of the randomness we use two models: in Example 1 the
velocity, A, is normally distributed, and in Example 2 the velocity is lognor-
mally distributed. In both cases we compare the exact solutions, given by (4),
with the solutions yielded by the numerical scheme (16) for some statistical
moments. In Example 3 we apply our method in the problem (1) where the
initial condition is a normal random function and the transport velocity is a
normal random variable. The numerical experiments presented in this section
were done in double precision with some MATLAB codes on a 3.0Ghz Pentium
4 with 512Mb of memory.
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Example 1. Let us consider the random Riemann problem (1)–(2) where the
random velocity is normally distributed, A ∼ N(1.0, 0.8), and the random
variables QL and QR have a bivariate normal distribution defined by: 〈QL〉 =
1.0 (mean of QL); 〈QR〉 = 0.0 (mean of QR); σL = 0.4 (standard deviation of
QL); σR = 0.5 (standard deviation of QR); and ρ = 0.4 (correlation coefficient
between QL and QR). In Figure 2 we compare the exact values for the mean,
variance, 3rd central moment, and 4th central moment with the computations
using (16) at tf = 0.4, and ∆t and ∆x satisfying (20).
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Fig. 2. A ∼ N(1.0, 0.8), ∆x = 0.01, ∆t = 0.000195, and tf = 0.4.

Example 2. To check the influence of the velocity distribution we consider the
random Riemann problem (1)–(2) in which the random velocity is lognormally
distributed, A = exp(ξ), ξ ∼ N(0.5, 0.35). The initial condition (QL, QR) has a
bivariate normal distribution defined by: 〈QL〉 = 1.0; 〈QR〉 = 0.15; σL = 0.36;
σR = 0.25; and ρ = 0.4 . Taking the lognormal distribution, A = exp(ξ),
ξ ∼ N(µξ, σξ), in (18) we obtain

ν(x, t) =
σ2

ξ

(
x
t

) (
x
t
− 〈A〉t

)

(σ2
ξ − µξ) + ln

(
x
t

) . (33)

This mean that it is not possible to find constants ∆x and ∆t such that
(∆x2)/(4∆t) = ν, the consistency condition. Moreover, the diffusion coefficient
(33) may assume negative values loosing the physical meaning. Thus, although
these arguments are not conclusive, they suggest that an advective-diffusive
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equation is not a good model to the moments of the solution to (1) with a
lognormal velocity. If we use (20) as in the previous example the results loose
quality as shown in Figure 3.
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Fig. 3. A = exp(ξ), ξ ∼ N(0.5, 0.35), ∆x = 0.01, ∆t = 0.000312, and tf = 0.4.

Example 3. In this example we test our method for the random partial
differential equation (1) in which A is normal, A ∼ N(−0.5, 0.6), and Q0(x)
is a normal random function with mean

〈Q0(x)〉 =





1, x ∈ (1.4, 2.2),

e−20(x−0.25)2 , otherwise,
(34)

and covariance Cov(x, x̃) = σ2 exp (−β|x− x̃|), where Var[Q0(x)] = σ2 is
constant and β > 0 governs the decay rate of the spatial correlation. We
use β = 0.3 and σ2 = 0.16. The numerical results are compared with the
Monte Carlo method using suites of realizations of A and Q0(x), where A and
Q0(x) are statistically independents. Observe that each realization A(ω) and
Q0(x, ω) yields analytical solution given by Q(x, t, ω) = Q0(x−A(ω)t, ω). To
generate the realizations required by Monte Carlo simulations we use random
numbers generator of MATLAB. Comparisons with the Monte Carlo method,
with 30 000 realizations, are plotted in Figure 4.
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Fig. 4. A ∼ N(−0.5, 0.6), ∆x = 0.02, ∆t = 0.000138, and tf = 0.4.

6 Conclusions

In this paper, we have used the Godunov ideas to obtain a numerical scheme
for the statistical moments of the solution of the one-dimensional random
linear transport equation. We consider the velocity as a random variable and
the initial condition as a random function. We have used an explicit solution
of the random Riemann problem to evolve in the REA algorithm. Moreover,
we have shown that the scheme is stable and consistent with an advective-
diffusive equation. A particular Riemann problem solution is used to find the
diffusion coefficient of the differential equations for the statistical moments.
Also, we have obtained the differential equations for the central moments of
the solution. Computational tests have illustrated our theoretical results.
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