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Abstract

In this article, we introduce a skewed version of the non-central sinh-normal distribution and discuss some of
its properties. In addition, the associated Birnbaum-Saunders distribution is characterized from a probabilistic
viewpoint along with a reliability analysis. Finally, the proposed model is fitted to a lifetime data in order to
illustrate its usefulness.
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1. Introduction

Although the normal distribution is the most popular probability model used in statistics, there exist
several phenomena can not be described by either the normal or symmetrical distributions. Applications
of asymmetrical distributions are found commonly in many different fields; see Johnson et al. (1994,
1995) and Seshadri (1999). In this respect, more flexible probability models are necessary.

Johnson (1949) mentioned that it is natural and also convenient to build non-normal distributions by
transforming a random variable (r.v.) that follows a normal distribution. He used the translation method
to generate models of probability which could assume a wide varieties of shapes by transformations as

Z = ν + δg(Y ; γ, σ), (1)

where the variate Z ∼ N(0, 1) and g(Y ; γ, σ) is a monotone function. Rieck (1989) assumed δ = 2
α

and g(Y ; γ, σ) = sinh(Y−γ
σ ) in (1) for establishing a r.v. Y following a non-central sinh-normal (SHN)

distribution with shape parameter α > 0, location parameter γ ∈ R, scale parameter σ > 0, and non-
centrality parameter ν, which is denoted by Y ∼ SHN(α, γ, σ, ν). Rieck and Nedelman (1991) considered
the case when ν = 0 to define the central SHN distribution, which is denoted by Y ∼ SHN(α, γ, σ). If
Y = γ + σ arcsinh(αZ/2) ∼ SHN(α, γ, σ), then the following results hold:

(A1) Z = 2
α sinh(Y−γ

σ ) ∼ N(0, 1), then U = 4
α2 {sinh(Y−γ

σ )}2 ∼ χ2(1), that is, Z2 has a chi-square
distribution with 1 degree of freedom;

(A2) The probability density function (pdf) of Y is

fY (y) = φ
{

2
α sinh

(
y−γ

σ

)}
2

ασ cosh
(

y−γ
σ

)
, y ∈ R, α > 0, γ ∈ R, σ > 0,

where φ(·) denotes the pdf standard normal distribution;

(A3) The cumulative distribution function (cdf) of Y is: FY (y) = Φ{ 2
α sinh(y−γ

σ )}, with y ∈ R, where
Φ(·) denotes the cdf of the standard normal distribution;
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(A4) The pdf of Y is symmetric about γ, strongly unimodal for α < 2, bimodal for α > 2, and platy-
kurtic for α = 2. In general, if α increases, then the kurtosis also increases. In particular, if α ≤ 2,
then there is unimodality and the kurtosis is less than that of normal. If α > 2, when α increa-
ses, the pdf begins to show bimodality and has more separated modes, and the kurtosis is greater
than that of normal; for more details about the SHN, see Galea et al. (2004) and Leiva et al. (2007);

(A5) If Y ∼ SHN(α, γ, σ = 2), then T = exp(Y ) follows a Birnbaum-Saunders (BS) distribution with
parameters α and β = exp(γ), which is denoted by T ∼ BS(α, β); see Johnson et al. (1995, p.660).
For this reason, the SHN model is also called the log-Birnbaum-Saunders model.

There are several reasons that justify the relationship between the SHN and BS distributions. Firstly,
in a Birnbaum-Saunders log-linear model, the log-response follows the SHN distribution. Secondly, the
estimates of α and β and generation of random numbers from the BS distribution are more efficiently
based on the SHN distribution; see Rieck and Nedelman (1991) and Rieck (1995, 2003).

The BS distribution is based on a physical principle showing that failure is due to the development
and growth of a dominant crack. A more general derivation of the BS distribution is based on a biolo-
gical model. The BS distribution is defined in terms of the normal model through the random variable
T = β[αZ/2 +

√
(αZ/2)2 + 1]2, where Z ∼ N(0, 1), α > 0 is the shape parameter, and β > 0 is both the

scale parameter and the median of the distribution; for more details about the BS model, see Johnson et
al. (1995, pp.651-660). If T ∼ BS(α, β), then the following results hold:
(B1) Z = 1

α (
√

T/β −
√

β/T ) ∼ N(0, 1), then U = 1
α2 (T

β + β
T − 2) ∼ χ2(1);

(B2) The pdf of T is:

fT (t) = φ

{
− 1

α

(√
t
β −

√
β
t

)}
t−

3
2 (t+β)

2α
√

β
, t > 0, α > 0, β > 0;

(B3) cT ∼ BS(α, cβ), with c > 0, and T−1 ∼ BS
(
α, β−1

)
;

(B4) The cdf of T is: FT (t) = Φ{ 1
α (

√
t/β −

√
β/t)}, with t > 0;

Azzalini (1985) proposed a class of skewed distributions which includes the normal model as a parti-
cular case. This class presents several degrees of asymmetry and skewness related to the normal distri-
bution. This model is referred in the literature as the skew-normal (SN) distribution and the notation
X ∼ SN(µ, σ2, λ) is used in this case, where µ ∈ R, σ > 0, and λ ∈ R are the location, scale, and skewness
parameters, respectively. Thus, if Z ∼ SN(0, 1, λ), then the following results hold:
(C1) The pdf of Z is: fZ(z) = 2φ(z)Φ(λz), z ∈ R, λ ∈ R;

(C2) The cdf of Z is: FZ(z) = Φλ(z) = 2
∫ z

−∞ φ(u)Φ(λu)du, with z ∈ R, which needs to be calculated
by using numerical integration methods;

(C3) If λ = 0, then the SN distribution coincides with the standard normal distribution; if λ > 0, then
the SN distribution is positively skewed, and if λ < 0, the SN distribution is negatively skewed;

(C4) For λ = 1, the cdf of T is: Φλ(z) = [Φ(z)]2, with z ∈ R;
(C5) Z2 ∼ χ2(1).

In this article, we develop an extension of the non-central SHN distribution. This extension incorpora-
tes the skewness parameter through the SN model, thus widening the shape and form of the SHN model.
The skewness, scale, and non-centrality parameters present in the SHN distribution are also transferred
to the associated BS distribution. The main motivation for this extension is based on the following two
points. First, the SHN distribution derived from the normal model is a particular case of the proposed
model, and therefore many of the properties of the SHN distribution can be extended to the case of
the non-central sinh-skew-normal (SSN) distribution. Second, this generalization provides more flexible
models, which result in a better fit for different log-lifetime data.

The rest of this article is organized as follows. In Section 2, we present the new model and its pdf and
cdf. In addition, we find the associated BS distribution and its pdf, cdf, reliability or survival function
(r.f.), and hazard function (h.f). Some graphical plots are also provided. In Section 3, an application
to practical data is presented as illustration. We use the maximum likelihood estimation method and
the probability-probability (PP) plot to show that the new model fits the data better than the classical
model.
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2. The new model

In this section, we present a new model for log-lifetime, which is an extension of the SHN distribution.
Also, we present the life distribution associated with this new model, which will be referred here as the
extended Birnbaum-Saunders (EBS) distribution. In addition, a reliability analysis is produced.

We now consider that

Z = ν +
2
α

sinh
(

Y − γ

σ

)
∼ SN(0, 1, λ),

where the pdf of Z is as given in (C1). Thus, the r.v. Y = γ+σ arcsinh(α(Z−ν)
2 ) follows a non-central SSN

distribution with shape parameter α > 0, location parameter γ ∈ R, scale parameter σ > 0, non-centrality
parameter ν ∈ R, and skewness parameter λ ∈ R, which is denoted in this case by Y ∼ SSN(α, γ, σ, ν, λ).

2.1 Density and distribution functions

Here, we present the pdf and cdf of a r.v. following the non-central SSN distribution, discuss some
properties, and carry out a brief shape analysis for this variate.

Theorem 1. Let Y ∼ SSN(α, γ, σ, ν, λ). Then, the pdf of Y is

fY (y) = φ

{
ν +

2
α

sinh
(

y − γ

σ

)}
Φ

[
λ

{
ν +

2
α

sinh
(

y − γ

σ

)}]
4

ασ
cosh

(
y − γ

σ

)
, y ∈ R. (2)

Proof. It can be readily seen by change of variables.

Corollary 1. Let Y ∼ SSN(α, γ, σ, ν, λ). Then, the cdf of Y can be expressed as

(i) FY (y) = Φλ

{
ν + 2

α sinh
(

y−γ
σ

)}
, where Φλ(·) is as given in (C2).

(ii) In addition, if λ = 1, then FY (y) = [Φ
{
ν + 2

α sinh
(

y−γ
σ

)}
]2.

Next, we present some plots of the density from which we observe how the skewness and non-centrality
parameters influence the non-central SSN model. This distribution is very flexible for modeling unimodal
or bimodal shapes. In Figure 1, plots of the pdf are shown for different choices of α and ν. Figure 1 shows
that ν behaves as a shape parameter where, as discussed by Johnson (1949), ν mainly affects skewness,
and α mainly affects the kurtosis. For negative values of the skewness parameter λ, the densities would
become mirror images, about γ.
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Figure 1: plots of the pdf of the non-central SSN distribution.

2.2 Associated Birnbaum-Saunders distribution

Next, we present the pdf and cdf of a r.v. following the EBS distribution, discuss some properties, and
carry out a brief shape analysis for this variate.
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Theorem 2. Let Y ∼ SSN(α, γ, σ, ν, λ). Then, the pdf of T = exp(Y ) is

fT (t) = 2φ(at)Φ(λat)At, t > 0, (3)

where at = at(α, β, σ, ν) = ν + 1
α{(t/β)

1
σ − (β/t)

1
σ } and At = At(α, β, σ) = d

dtat = t−( 1
σ

+1)

σαβ
1
σ

(t
2
σ + β

2
σ ).

Proof. It follows readily from (2).

Remark 1. If T has pdf as in (3), then the notation T ∼ EBS(α, β, σ, ν, λ) will be used.

Corollary 2. Let T ∼ EBS(α, β, σ, ν, λ). Then,

(i) The cdf of T can be expressed as FT (t) = Φλ(at), where Φλ(·) is as given in (C2). In addition, if
λ = 1, then FT (t) = [Φ(at)]2.

(ii) The pth percentile of T is: tp = F−1
T (p) = β

2σ{α(zp − ν) +
√

α2(zp − ν)2 + 4}σ, where zp is the pth
percentile of the SN distribution.

Remark 2. (i) If T ∼ EBS(α, β, σ, ν, λ), then Z = ν + 1
α{(T/β)

1
σ − (β/T )

1
σ } ∼ SN(0, 1, λ).

(ii) We note that if T ∼ EBS(α, β, σ = 2, ν = 0, λ = 0), then T ∼ BS(α, β).

(iii) From Corollary 2(ii), for σ = 2, ν = 0, and λ = 0, that is, when the r.v. Z ∼ N(0, 1), we have
tp = β

4 (αzp +
√

α2(zp)2 + 4)2, so that if p = 0.5, then t0.5 = β, the median of the distribution.

The EBS distribution is also a very flexible model, which can assume several shapes. In Figure 2,
plots of the pdf of the EBS distribution are presented for different choices of α, ν, and λ. It is known
that α and β are the shape and scale parameters. From Figure 2, we observe that ν also behaves like a
shape parameter. However, as in the case of the non-central SSN distribution, ν mainly affects skewness
and α mainly affects the kurtosis. The skewness parameter of the EBS distribution, λ, behaves similarly
like the scale parameter β. In addition, the parameter σ modifies the scale as in the non-central SSN
distribution, but in the EBS distribution σ mainly affects the kurtosis.
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Figure 2: plots of the pdf of the EBS distribution.

Now, we present some properties of the EBS distribution.

Theorem 3. Let T ∼ EBS(α, β, σ, ν, λ). Then,

(i) cT ∼ EBS(α, aβ, σ, ν, λ), c > 0;

(ii) T−1 ∼ EBS
(
α, β−1, σ,−ν,−λ

)
;

(iii) For λ ∈ R− {0}, Tλ ∼ BS
(
α, βλ, |λ|σ, sign(λ)ν, λ

)
, with sign(λ) denoting the sign of λ.

Proof. These properties can be readily seen by change of variables.

Remark 3. As in the case of the classical BS distribution, we see from Theorem 3(ii) that the EBS one

also belongs to the family of distributions closed under reciprocation; see Saunders (1974).
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2.3 Reliability analysis

Two useful functions in reliability analysis are the r.f. and h.f., which are given, respectively, by R(t) =
1 − F (t) and h(t) = f(t)/R(t), where f(·) and F (·) are the pdf and cdf, respectively. The behavior of
h(t) allows to characterize the aging of the units. For example, if the h.f. or failure rate is increasing
(IFR class), then the units are aging with time. If h(t) is decreasing (DFR class), then the units improve
in performance with time. Finally, if h(t) is constant, then the life model is necessarily exponential.

The classical BS model does not have an increasing h.f. and it is in general unimodal. However, the
BS distribution converges to the IFR class when α → 0. In addition, if t →∞, then hT (t) → (2α2β)−1;
for more details about a reliability analysis of the BS model, see Balakrishnan et al. (2007). The h.f. of
the BS model behaves similar to that of the inverse Gaussian model; see Johnson et al. (1994. p.266).

Next, we find the r.f. and h.f. for the EBS life distribution.

Theorem 4. Let T ∼ EBS(α, β, σ, ν, λ) and FT (·) be its cdf. Then, the r.f. and h.f. of T are,

respectively,

RT (t) = 1− Φλ(at) and hT (t) = 2φ(at)
(

Φ(λat)
1− Φλ(at)

)
At. (4)

Proof. These expressions follow directly from Theorem 2 and Corollary 2.

Theorem 5. Let T ∼ EBS(α, β, σ, ν, λ) and hT (·) be its hazard function. Then, if t →∞, we obtain

hT (t) →




1+λ2

2α2β , if σ = 2;
∞, if σ < 2;
0, if σ > 2.

Proof. Consider at and At, and hT (t) as given in (3) and (4), respectively. We note that if t →∞, then
at →∞. Applying L’Hospital’s rule for hT (t), we obtain the derivatives as

φ′(at)Φ(λat)A
2
t + φ(at)φ(λat)λA2

t + φ(at)Φ(λat)A
′
t

−φ(at)Φ(λat)A2
t

= −φ′(at)A
2
t + φ(at)A

′
t

φ(at)At
− λ

φ(λat)At

Φ(λat)
, (5)

where A′t and φ′ are the derivatives of At and φ, respectively. On the right side of (5), the first term
corresponds to the normal case and it converges to (2α2β)−1. So, we will only examine the convergence
of φ(λat)At/Φ(λat) as t →∞. We note for 0 < σ < 2, At →∞, and for σ > 2, At → 0. Moreover:

(i) If λ > 0, then φ(λat)/Φ(λat) → 0 and consequently φ(λat)At/Φ(λat) → 0 as t →∞;
(ii) If λ < 0, then φ(λat)/Φ(λat) → 0 as t →∞.

Thus, applying again L’Hospital’s rule to φ(λat)
Φ(λat)

At, we obtain: φ′(λat)λA2
t+φ(λat)A

′
t

φ(λat)λAt
= φ′(λat)At

φ(λat)
+ 1

λ
A′t
At

.

It can be shown that: φ′(λat)At

φ(λat)
= −λatφ(λat)At

φ(λat)
= −λatAt. Then, as t →∞, A′t

At
→ 0 and

atAt →




1
2α2β , if σ = 2;
∞, if σ < 2;
0, if σ > 2.

Therefore, from (5), we obtain, as required,

hT (t) →




1
2α2β , σ = 2
∞, σ < 2
0, σ > 2

+ λ2





1
2α2β , σ = 2
∞, σ < 2
0, σ > 2

=





1+λ2

2α2β , σ = 2;
∞, σ < 2;
0, σ > 2.

3. Application to practical data

In this section, for the purpose of illustration, we use the fatigue data analyzed by Rieck (1989). These
data, displayed in Table 1, consists of twenty-nine AISIM-1 steel balls tested on a rotating ball fatigue
tester at a maximum contact stress of 5.52× 109N/m2. All specimen were tested until failure.
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Table 1. Lifetime (T ) in cycles ×10−5 for AISIM-1 steel balls
62.5 71.0 77.0 112.0 115.0 115.0 120.0 133.0 177.0 180.0
192.0 200.0 200.0 269.0 269.0 300.0 320.0 325.0 338.0 433.0
460.0 470.0 490.0 660.0 740.0 1100.0 1800.0 1900.0 1900.0

The log-likelihood function for a random sample y = (y1, . . . , yn)> from the pdf in (2) is given by

l(θ) =
n

2
log 2− n

2
log π − n log σ +

n∑

i=1

log ξi1 − 1
2

n∑

i=1

ξ2
i2 +

n∑

i=1

log Φ(ξi2),

where θ = (α, γ, σ, ν, λ)>, ξi1 = 2
α cosh

(
yi−γ

σ

)
, and ξi2 = ν + 2

α sinh
(

yi−γ
σ

)
, with i = 1, 2, . . . , n.

In order to estimate the parameters α, γ, σ, ν, and λ of the non-central SSN distribution, we used
the maximum likelihood estimation (MLE) method. The results obtained by this estimation method
are presented in Table 2. This allows us to compare the proposed model with the classical sinh-normal
model. It is important to emphasize that the MLEs of α and β, when σ, ν, and λ are pre-fixed at the
values 2, 0, and 0, respectively, agree with those provided by Rieck (1989, p.97).

Table 2. Estimates of the parameters of the indicated distributions
Distribution σ ν λ α γ
Central sinh-normal 2.0000 - - 1.0302 5.7327
Non-central SSN 1.54961 −0.142024 −0.321818 1.4115 5.4519

Figure 3 shows the PP plots of the data and their R-square for the two models. We observe that both
non-central SSN and SHN models fit the data reasonably well; but, the PP R-square reveals that the
proposed non-central SSN distribution provides a slightly better fit to the data than the SHN one.
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Figure 3: PP plots and R-squares for the SSN and SHN distributions

Concluding remarks

In this paper, we have discussed an extension of the sinh-normal and Birnbaum-Saunders distributions
based on the skew-normal distribution and incorporating a non-centrality parameter. The incorporation
of the skewness and non-centrality parameters results a very flexible model. We have derived their
densities and have presented some plots of densities in order to see how the skewness and non-centrality
parameters influence the shape and form of the density. We have also obtained some properties of this new
model. For the associated Birnbaum-Saunders life distribution, we have also discussed some reliability
properties. Thus, with this extension, we have developed a new family of probability models which can
be used in different situations. An application to a real data shows that this new model provides a
flexible alternative (and a better fit) to the classical model. We are also currently investigating the use
of distributions with heavier tails than the normal one in order to derive a flexible general family.
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