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This work presents a playable version of the so-called Waiting Time Paradox,

suggesting how to construct a physical mechanism for visualizing it. A simple

and intuitive proof of this result for the discrete uniform case is presented.
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1. THE PARADOX

You will enter a die race: each player tosses the die on his/her turn and

advances the number of steps obtained on the cast on a track. The total

length of the track is K steps, K > 6.

The die is assumed to be fair, that is, each one of its six faces has the

same probability, 1/6.

The face showing on each cast has therefore a uniform distribution on the

set {1, 2, 3, 4, 5, 6}, right? Right.

And, therefore, at the last cast, the one that makes you get to the end of

the track and complete the race, the face showing has a uniform distribution

on the set {1, 2, 3, 4, 5, 6}. Right? Wrong!!! At the last cast, larger values

have a better chance of being obtained.

Let us assume, for instance, that the trail has K = 8 steps of total length.

A possible trajectory of the race is the sequence (5, 1, 4), in which the last

cast shows a “4”. Figure 1 displays the observed frequencies of the value

showing on the last cast in a simulation of 40 realizations of the race: face

“6” shows 15 times, while face “1” shows only twice.

Let N denote the number of tosses necessary for one to finish the race,

and XN denote the value showing at the last cast.

Let us also denote the player’s position immediately before his/ her last

cast by SN−1. The random variable SN−1 can only take values on the set

{K − 1, K − 2, K − 3, K − 4, K − 5, K − 6}. If SN−1 = K − 1, then the

player will finish the race at the next cast of the die, regardless of its value.

If SN−1 = K − 2, then XN ∈ {2, 3, 4, 5, 6}. If SN−1 = K − 3, then
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Figure 1: Frequencies for the last cast.

XN ∈ {3, 4, 5, 6}, and so forth until the case SN−1 = K − 6, which entails

XN = 6.

It follows that XN = 1 with probability 1/6 when SN−1 = K − 1 (other-

wise, P (XN = 1) = 0); XN = 2 with probability 1/6 when SN−1 = K − 1 or

with probability 1/5 when SN−1 = K−2. The Theorem of Total Probability

then yields:

Pr(XN = 1) =
1

6
Pr(SN−1 = K − 1)

Pr(XN = 2) = Pr(XN = 1) +
1

5
Pr(SN−1 = K − 2)

Pr(XN = 3) = Pr(XN = 2) +
1

4
Pr(SN−1 = K − 3) (1)

Pr(XN = 4) = Pr(XN = 3) +
1

3
Pr(SN−1 = K − 4)

Pr(XN = 5) = Pr(XN = 4) +
1

2
Pr(SN−1 = K − 5)

Pr(XN = 6) = Pr(XN = 5) +
1

1
Pr(SN−1 = K − 6).
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We have therefore

Pr(XN = 1) < Pr(XN = 2) < . . . < Pr(XN = 6),

whenever K > 6. In other words, larger values have a better chance of being

obtained, as claimed.

As a straightforward consequence, the expected value of XN is larger than

3.5, the expected value of any ordinary throw of the die, Xn.

2. THE CASE K = 8

We will obtain the distribution of SN−1 for equations (1). The necessary

combinatorics may easily be mastered by undergraduate students.

Let x = (x1, x2, . . . , xN ) represent the sequence of tosses until a race of

K = 8 steps is completed. We will denote by π(x1, x2, . . . , xN) all permuta-

tions of x.

As seen previously, SN−1 can only be 2, 3, 4, 5, 6, 7.

The event [SN−1 = 7] occurs if, and only if, the race has a partial sequence

in the set {π(1, 6), π(2, 5), π(3, 4), π(1, 1, 5), π(1, 2, 4), π(1, 3, 3), π(2, 2, 3),

π(1, 1, 1, 4), π(1, 1, 2, 3), π(1, 2, 2, 2), π(1, 1, 1, 1, 3), π(1, 1, 1, 2, 2),

π(1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 1, 1, 1)}, followed by any result at the next cast.

We then have

Pr(SN−1 = 7) =
(

0

6
+

6

62
+

15

63
+

20

64
+

15

65
+

6

66
+

1

67

)

× 1.

Analogously, the event [SN−1 = 6] occurs if, and only if, we observe a

sequence in the set {(6), π(1, 5), π(2, 4), (3, 3), π(1, 1, 4), π(1, 2, 3), (2, 2, 2),
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π(1, 1, 1, 3), π(1, 1, 2, 2), π(1, 1, 1, 1, 2), (1, 1, 1, 1, 1, 1)}, followed by 2, 3, 4, 5

or 6 at the next cast. Therefore,

Pr(SN−1 = 6) =
(

1

6
+

5

62
+

10

63
+

10

64
+

5

65
+

1

66

)

×
5

6
.

The event [SN−1 = 5] may be written as {(5), π(1, 4), π(2, 3), π(1, 1, 3),

π(1, 2, 2), π(1, 1, 1, 2), (1, 1, 1, 1, 1)}, followed by 3, 4, 5 or 6 at the next cast,

yielding

Pr(SN−1 = 5) =
(

1

6
+

4

62
+

6

63
+

4

64
+

1

65

)

×
4

6
.

We have, analogously, [SN−1 = 4] = {(4), π(1, 3), (2, 2), π(1, 1, 2), (1, 1, 1, 1)}

∩ [Xn ∈ {4, 5, 6}], for each possible n ∈ {2, 3, 4, 5}, with

Pr(SN−1 = 4) =
(

1

6
+

3

62
+

3

63
+

1

64

)

×
3

6
,

the event [SN−1 = 3] = {(3), π(1, 2), (1, 1, 1)}∩[Xn ∈ {5, 6}], for each possible

n ∈ {2, 3, 4}, with

Pr(SN−1 = 3) =
(

1

6
+

2

62
+

1

63

)

×
2

6
,

and, finally, [SN−1 = 2] = {(2), (1, 1)}∩[Xn = 6], for each possible n ∈ {2, 3},

with

Pr(SN−1 = 2) =
(

1

6
+

1

62

)

×
1

6
.

Equations (1) therefore yield:

Pr(XN = 1) =
70993

1679616
= .042

Pr(XN = 2) =
171835

1679616
= .102

Pr(XN = 3) =
258271

1679616
= .154 (2)
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Pr(XN = 4) =
332359

1679616
= .198

Pr(XN = 5) =
395863

1679616
= .236

Pr(XN = 6) =
450295

1679616
= .268.

Distribution (2) fits the observed frequencies given in Figure 1.

3. CONCLUSION

You may go up the track by flipping a fair coin: if it falls heads, you

advance one step, if it falls tails, you advance two steps. The probability of

tails at the last toss of the coin is larger than the probability of heads.

The Waiting Time Paradox was originally stated in the context of con-

tinuous time renewal processes. There is no paradox: even if not intuitive

at first, the result is natural. In our example, for each fixed value of n, the

random variable Xn has a uniform distribution on {1, . . . , 6}. However this

is not the case for the random variable XN . One must keep in mind that N ,

the total number of moves, is also a random variable. It is intuitive that a

larger move (six steps, say) has more chance of covering the end of the track

than a short move (one step, say).

The paradox can be found in the literature. Feller (1971, p.12) defines

the problem for the Poisson Process, obtaining the well-known example of

the waiting time for the arrival of next bus at the stop.

David (1973) discusses the effect of the paradox on the design of lifetime

experiments, which may be catastrophic with a careless designer. The income

of a groceries store may be overestimated, as a simple random sample of
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amounts spent by clients at certain fixed times of the day gets clients who

take more time checking out - and who probably spend more than other

clients, as the paradox warns to be the case.

Authors wish to thank Prof. Servet Mat́ınez for his talk at Café Mate-

mático, Universidad de Valparáıso, Chile, where this and other probability

problems were so interestingly presented.
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