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aDepartamento de Matemática Aplicada, IMECC, UNICAMP,
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Abstract

We solve Burgers’ equation with random Riemann initial conditions. The closed
solution allows simple expressions for its statistical moments. Using these ideas we
design an efficient algorithm to calculate the statistical moments of the solution. Our
methodology is an alternative to the Monte Carlo method. The present approach
does not demand a random numbers generator as does the Monte Carlo method.
Computational tests are added to validate our approach.
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1 Introduction

When the data of a differential equation, the coefficients or the initial con-
ditions, are random variables its solution is a random function; this kind of
mathematical problem has been called a random differential equation. A great
number of practical processes under current investigations falls on the stochas-
tic modeling; we may quote the models in control, communications, economic
systems, chemical kinetics, biosciences, statistical mechanics and spatial areas
and so on. The methodology to understand and solve differential equations
with uncertainties has stimulated studies under several points of view. Since
the solution is a random function, one particular solution corresponding to
a specific realization is not of concern: it is important to know the statisti-
cal properties of the solution such as its mean, variance, or other statistical
moments.
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Some methods for random differential equations are categorized as moment
equations methods. In these methods the purpose is to obtain differential
equations governing the statistical moments. The most important of these
equations is the differential equation for the expectation (mean), which is
called for some authors as effective equation. As far as we know no effective
equation is known for the nonlinear problem discussed in this paper.

The Monte Carlo method is an alternative in solving random differential equa-
tions. Partial differential equations and the Monte Carlo method have been
related for more than a century, since the works developed by Lord Rayleigh
(1899), Courant et al (1928), and Kolmogorov (1931). For instance, Courant
et al showed that a particular finite difference equation for the two dimen-
sional Dirichlet boundary value problem and a two dimensional random walk
produce the same results. In modern terms the Monte Carlo method origi-
nated from Los Alamos and the atomic bomb project. Now it is being used
in many scientific fields [6,20]. The basic idea is to solve a large number of
deterministic differential equations choosing particular values for the random
variables according to their assumed probabilistic distribution. The statistical
information of the random solution is estimated using these realizations. The
Monte Carlo method can be used in either linear or nonlinear random dif-
ferential equations. However, the exceptionally large volume of calculations,
and the difficulty for generating random numbers limit the significance of this
method.

In a different direction we have been studying numerical methods for the
random transport equation. In the linear case our ideas were inspired by
Godunov’s method [9,15] for the deterministic transport equation. In [3] we
present an explicit expression for the random solution to one-dimensional ran-
dom advective equations where the constant velocity and the Riemann initial
condition are random variables. This closed solution yields simple expressions
for its statistical moments, and computational experiments show good agree-
ment between our expressions and the Monte Carlo method for the first three
moments. The closed solution for random Riemann problems and Godunov’s
ideas are used in [5] and [4] to design numerical methods to calculate the
mean and variance of the solution to transport equations with more general
initial condition (random fields). Our methods are explicit and do not de-
mand differential equations governing the statistical moments, the effective
equations. Furthermore, our scheme is consistent and stable with the diffusive
effective equation presented in the literature [8]. Computational experiments
have shown good agreements with the Monte Carlo method.

In this paper, we generalize our previous ideas to solve the random Riemann
problem for Burgers’ equation
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∂

∂t
U(x, t) +

1

2

∂

∂x
U2(x, t) = 0, t > 0, x ∈ R,

U(x, 0) =





UL, if x < 0,

UR, if x > 0,
(1)

where UL and UR are random variables. Here the randomness appears only
because of the initial condition. The deterministic version of (1) was intro-
duced by Burgers [1] as the simplest model that captures some key features
of gas dynamics, the nonlinear hyperbolic term. But, rather than modeling a
physical process, the inviscid Burgers equation has been widely used for devel-
oping both theoretical and numerical methods in the literature of deterministic
hyperbolic equations.

Taking into account that several numerical methods to deal with determin-
istic conservation laws use solutions of Riemann problems (Random Choice
Method developed by Glimm [7], and Godunov’s method [9,15], for example),
we believe that the results of the current paper may be useful in develop-
ing numerical methods for more general random conservation laws. Moreover,
since the mathematical theory of methods to random partial differential equa-
tions are difficult and not complete yet (see [13,16,19], for example), numerical
methods can be a good alternative to deal with random differential equations.

Kim (2006) presents a scheme to calculate the statistical moments of the ran-
dom Burgers’equation in [11]. Nevertheless, the author considers the simple
case where the random initial condition is an explicit function of the spatial
variable and of the normal random variable with zero mean and unit variance.
The author uses Wiener chaos expansion to separate random and deterministic
effects, and utilizes the Lax-Wendroff method to discretize the deterministic
system of partial differential equations that governs the propagation of ran-
domness.

In this paper, we use two basic ideas to construct the solution, and its mo-
ments, to (1): (i) the realizations of the probabilistic problem are nonlinear
transport equations whose analytical solutions are known (shock and rarefac-
tion waves); and (ii) the random solution and its statistical moments, as func-
tions of the initial condition and its joint density function, are found using
geometrical partitions of the phase plane (UL, UR). Integrations on these sets
are the shock and rarefaction averaging process.

The outline of this paper is as follows. In Section 2 we deduce an explicit
solution to problem (1). We also show the similarity of the solution as well
as present an expression for its statistical moments. Based on bidimensional
midpoint quadrature formula, in Section 3 we suggest an efficient algorithm to
approximate the statistical moments. Finally, we present some computational
tests and conclusions.
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2 The random solution

In this section, we construct the solution to (1), the one-dimensional Burgers’
equation with random Riemann initial condition. We assume that the ran-
dom initial states, UL and UR, and their joint probability density function,
fULUR

, are known. For a single realization, UL(ω) and UR(ω), of UL and UR,
respectively, we have the deterministic Burgers-Riemann problem:

∂

∂t
u(x, t, ω) +

1

2

∂

∂x
u2(x, t, ω) = 0, t > 0, x ∈ R,

u(x, 0, ω) =





UL(ω), if x < 0,

UR(ω), if x > 0.
(2)

Physically correct solutions to (2), i.e., entropy solutions, are the rarefaction
or shock waves (see [14,15], for example):

(a) If UL(ω) < UR(ω) then the solution is the rarefaction wave emanating
from (x, t) = (0, 0)

u(x, t, ω) =





UL(ω), if x
t

< UL(ω),

x
t
, if UL(ω) ≤ x

t
≤ UR(ω),

UR(ω), if x
t

> UR(ω).

(3)

(b) If UL(ω) > UR(ω) then the solution is the shock wave

u(x, t, ω) =





UL(ω), if x
t

< s(ω),

UR(ω), if x
t

> s(ω),
(4)

with the shock velocity, s(ω) = (1/2) [UL(ω) + UR(ω)], given by the Rankine-
Hugoniot jump condition.

Thus, holding (x, t) fixed, β = x/t, and considering the rarefaction and shock
solutions together, we can join (3)-(4) to express u(x, t, ω) as
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u(x, t, ω) =





UL(ω), if β < UL(ω) and UL(ω) < UR(ω),

β, if UL(ω) ≤ β ≤ UR(ω) and UL(ω) < UR(ω),

UR(ω), if β > UR(ω) and UL(ω) < UR(ω),

UL(ω), if β < 1
2
[UL(ω) + UR(ω)] and UL(ω) > UR(ω),

UR(ω), if β > 1
2
[UL(ω) + UR(ω)] and UL(ω) > UR(ω).

(5)

To simplify (5) we define the following mutually exclusive subsets of the phase
plane (UL, UR):

R−
r = {(UL, UR) such that UL < UR and β < UL} ;

R0
r = {(UL, UR) such that UL < UR and UL ≤ β ≤ UR} ;

R+
r = {(UL, UR) such that UL < UR and β > UR} ;

R−
s =

{
(UL, UR) such that UL > UR and β < 1

2
[UL + UR]

}
;

R+
s =

{
(UL, UR) such that UL > UR and β > 1

2
[UL + UR]

}
.

(6)

In this way, for a fixed β = x/t, we can rewrite the solution (5) as follows:

u(x, t, ω) =





UL(ω), if (UL(ω), UR(ω)) ∈ R−
r

⋃R−
s = R−(β),

β, if (UL(ω), UR(ω)) ∈ R0
r = R0(β),

UR(ω), if (UL(ω), UR(ω)) ∈ R+
r

⋃R+
s = R+(β).

(7)

In Figure 1 we illustrate the phase plane as R−(β)
⋃R0(β)

⋃R+(β); as we
can see this partition of the phase plane depends exclusively of β = x/t.

Let XA be the characteristic function of A, a set in (UL, UR) plane:

XA =





1, if (UL, UR) ∈ A,

0, otherwise.

Using XA in (7), the arguments so far summarized prove the proposition:

Proposition 1 The solution to the random Burgers-Riemann problem (1), in
a fixed (x, t), is the random function

U(x, t) = ULXR− + βXR0 + URXR+ , (8)

where β = x/t, and XR−, XR0, and XR+ are the characteristic functions of
the mutually exclusive sets defined in (7).
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R−(β)P

UR

ULβ 2β

β

R+(β)

R0(β)

Fig. 1. Integration regions.

Remark 2 Expression (8) is the same for all (x, t) such that x/t = β. There-
fore, U(x, t) is a similarity function.

In the following corollary, the expression (8) and the joint probability density
function of UL and UR are used to calculate the statistical properties of the
random solution.

Corollary 3 The mth statistical moment of U(x, t), for a fixed (x, t), β = x/t,
is

〈Um(x, t)〉 =
∫ ∫

R−
um

L fULUR
(uL, uR)duLduR+

+βm
∫ ∫

R0
fULUR

(uL, uR)duLduR +
∫ ∫

R+
um

RfULUR
(uL, uR)duLduR.

(9)

PROOF. From (8), since R−(β), R0(β) and R+(β) are mutually exclusive
sets, we have

〈Um(x, t)〉 =
∫ ∫

R×R
[uLXR− + βXR0 + uRXR+ ]m fULUR

(uL, uR)duLduR =

=
∫ ∫

R×R
[um

LXR− + βmXR0 + um
RXR+ ] fULUR

(uL, uR)duLduR =

=
∫ ∫

R−
um

L fULUR
(uL, uR)duLduR + βm

∫ ∫

R0
fULUR

(uL, uR)duLduR+

+
∫ ∫

R+
um

RfULUR
(uL, uR)duLduR.

2
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Effective values of the moments (9) require the calculations of three double
integrals for each value of β. In some particular cases we can calculate these
integrals exactly. For instance, if UL and UR are independent random variables
and uniformly distributed in the interval [−a, a], some calculations show that
the mean of the solution to (1) is given by

〈U(x, t)〉 =




− β

4a2 [sign(β)β − a]2 , if − a ≤ β ≤ a,

0, otherwise,
(10)

where β = x/t. We will use this solution in Example 6 as a test problem to
assess the performances between the Monte Carlo method and our algorithm.
However, in general we must use numerical integration to calculate (9). In the
following section we describe a useful way to do that.

3 The algorithm

To design an efficient algorithm to calculate the statistical moments using (9),
we take a square in the phase plane (UL, UR), ΓM = [−M, M ] × [−M, M ],
which contains the effective support of fULUR

; this means that outside ΓM the
values of the density probability function, fULUR

, are sufficiently near to zero.

As shown in Figure 1, the point P = (β, β), β = x/t, is critical to define R−,
R0 and R+ regions. This point moves in northeast (southwest) direction as β
increases (decreases). Without loss of generality, we will take t = 1 and use
the similarity property (Remark 2) to obtain the solution for t > 0. Therefore,
we may identify xj = βj and take the same discretization grid for β, UL, and
UR, as illustrated in Figure 2.

Notation:

• {xj = −M + jh; (j = 1 : N)} is the β-mesh with ∆β = h > 0; x1 = −M ;
xN = M ; xj+1/2 = xj + h/2 (j = 1 : N − 1); N is an odd number;

• Il ≈
∫ ∫

R−
um

L fULUR
(uL, uR)duLduR;

• I0 ≈
∫ ∫

R0
fULUR

(uL, uR)duLduR;

• Ir ≈
∫ ∫

R+
um

RfULUR
(uL, uR)duLduR.

We initiate the calculations taking β = β1 = x1. In this case ΓM ⊂ R−(β1)
and, consequently, Il = 〈Um

L 〉, I0 = 0 and Ir = 0; these values are used to
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β = x2

uLx1 x2 x3 x4 x5 xNx7

0

x2

x3

x1

x4

x5

xN

x8

x7

uR β = x3

uLx1 x2 x3 x4 x5 xNx7

0

x2

x3

x1

x4

x5

xN

x8

x7

uR

(a) β = x2 (b) β = x3

Fig. 2. Discretization scheme of the ΓM square.

initiate the algorithm. To save memory, the temporary calculations to update
Il, I0 and Ir in βj-step, xj = xj−1 + h (j = 2, 3, . . . , N), are done in the “Sh

j -
strip”: Sh

j = ΓM
⋂ {R−(βj) \ R−(βj−1)}. This strip is a collection of squares

(and half squares) with edges h and
√

2h (see Figure 2). The integration is
performed using the bidimensional midpoint quadrature formula (see [10]). To
clarify the ideas, in Table 1 we summarized the first step of our algorithm.

Step 1

β ← x2;

Il ← Il − h2xm
1+1/2

{
N−2∑

i=1

f
(
x1+1/2, xN−i+1/2

)
+

1
2
f

(
x1+1/2, x1+1/2

)
}

−h2xm
2 f (x2, x1);

I0 ← I0 + h2
N−2∑

i=1

f
(
x1+1/2, xN−i+1/2

)
;

Ir ← Ir + 1
2h2xm

1+1/2f
(
x1+1/2, x1+1/2

)
+ h2xm

1 f (x4, x1);

〈U(x2, 1)m〉 ← Il + βmI0 + Ir.

Table 1
Illustration of the first step of Algorithm 1

Repeating this idea in the next βj-steps, we formulate Algorithm 1.
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Algorithm 1

N is an odd number;

Il = 〈Um
L 〉; I0 = 0; Ir = 0;

for k = 1 : N−1
2 do

β ← xk+1;

Il ← Il − h2xm
k+1/2

{
N−2∑

i=k

f
(
xk+1/2, xN+k−i−1+1/2

)
+

1
2
f

(
xk+1/2, xk+1/2

)
}

−2h2
2k−1∑

i=k+1

xm
i f (xi, x2k−i+1)− h2xm

2kf (x2k, x1);

I0 ← I0 + h2

{
N−2∑

i=k

f
(
xk+1/2, xN+k−i−1+1/2

)−
k−1∑

i=1

f
(
xi+1/2, xk+1/2

)
}

;

Ir ← Ir + h2xm
k+1/2

{
k−1∑

i=1

f
(
xi+1/2, xk+1/2

)
+

1
2
f

(
xk+1/2, xk+1/2

)
}

+2h2
2k−1∑

i=k+1

xm
2k−i+1f (xi, x2k−i+1) + h2xm

1 f (x2k, x1);

〈U(xk+1, 1)m〉 ← Il + βmI0 + Ir;

end for

for k = N+1
2 : (N − 1) do

β ← xk+1;

Il ← Il − h2xm
k+1/2

{
N−2∑

i=k

f
(
xk+1/2, xN+k−i−1+1/2

)
+

1
2
f

(
xk+1/2, xk+1/2

)
}

−2h2
N−1∑

i=k+1

xm
i f (xi, x2k−i+1)− h2xm

Nf (xN , x2k−N+1);

I0 ← I0 + h2

{
N−2∑

i=k

f
(
xk+1/2, xN+k−i−1+1/2

)−
k−1∑

i=1

f
(
xi+1/2, xk+1/2

)
}

;

Ir ← Ir + h2xm
k+1/2

{
k−1∑

i=1

f
(
xi+1/2, xk+1/2

)
+

1
2
f

(
xk+1/2, xk+1/2

)
}

+2h2
N−1∑

i=k+1

xm
2k−i+1f (xi, x2k−i+1) + h2xm

2k−N+1f (xN , x2k−N+1);

〈U(xk+1, 1)m〉 ← Il + βmI0 + Ir;

end for
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Remark 4 Observe that the ΓM -discretization scheme has the recursive ad-
vantage: the solution at βj can be calculated just by updating the solution at
βj−1.

Remark 5 The main advantage of Algorithm 1 is that it does not require a
random numbers generator (massive simulation of data with a known probabil-
ity distribution) as does the Monte Carlo method. Furthermore, as we will see
in Examples 6 and 9, its convergence is faster than the Monte Carlo method.

4 Computational tests

In this section, we present some examples to assess and illustrate our approach.
In Example 6 we take an initial condition that allows exact calculations for the
mean. In the following examples the initial condition has a bivariate normal
distribution. In these examples the mean, variance, 3rd central moment, and
4th central moment of the solution are obtained by Algorithm 1 and confronted
with the Monte Carlo method. To generate the realizations (UL(ω), UR(ω)),
required by the Monte Carlo method, we use random numbers generators
of MATLAB. The analytical solution for each realization, (UL(ω), UR(ω)), is
given by (3) or (4). We compare the performances of the methods. We also
plot the solution of the deterministic problem where the initial condition is
the statistical mean of the random data. Some authors ([17], for example) use
the name “naive” for this solution. The numerical experiments presented in
this section were done in double precision with some MATLAB codes on a
3.0Ghz Pentium 4 with 512Mb of memory.

Example 6

We use (10) to calculate exact values of the mean of the solution to (1) with
the Riemann initial condition:

U(x, 0) =





UL, if x < 0,

UR, if x > 0,

where UL and UR are independent random variables uniformly distributed in
the interval [−1, 1]. The mean, at t = 0.4 and t = 0.8, is plotted in Figure
3. Absolute errors of approximations given by the Monte Carlo method and
Algorithm 1 are confronted in Table 2, using 〈U(x, 1)〉, x ∈ [−1, 1]. The CPU
times are also presented in this table.
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−1 −0.5 0 0.5 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−1 −0.5 0 0.5 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Fig. 3. Mean at t = 0.4 (left) and t = 0.8 (right).

Monte Carlo method Algorithm 1

realizations absolute error CPU time

(Nr) (|| . ||∞) (sec)

1 000 0.0268 0.071

5 000 0.0124 0.358

10 000 0.0091 0.718

30 000 0.0048 2.154

50 000 0.0037 3.599

100 000 0.0027 7.223

number of absolute error CPU time

partitions (N) (|| . ||∞) (sec)

201 2.49× 10−5 0.084

Table 2
Absolute errors and CPU times; h = 0.01.

Example 7

Let us consider the problem (1) with UL and UR having bivariate normal
distribution defined by: 〈UL〉 = 0.1 (mean of UL); 〈UR〉 = 0.9 (mean of UR);
σL = 0.3 (standard deviation of UL); σR = 0.2 (standard deviation of UR); and
ρ = 0.42 (correlation coefficient between UL and UR). Since the probability
density function with these data has the effective support in the semiplane
UL < UR, the rarefaction wave solutions dominate. Figure 4 illustrates the
mean (confronted with the naive solution), variance, 3rd central moment, and
4th central moment calculated at t = 1 for x ∈ [−3, 3]. As we can see, the
randomness of the initial conditions smoothen the edges of the naive solution,
as in the random linear transport equations.

Example 8

To illustrate a shock-dominant case, we changed the data of UL and UR used
in the previews example: 〈UL〉 = 0.9; 〈UR〉 = 0.1; σL = 0.3; σR = 0.2; and
ρ = 0.42. With these data, the bivariate normal probability density function
has the effective support in the semiplane UL > UR. In Figure 5 we plot the
mean, variance, 3rd central moment, and 4th central moment calculated at
t = 1 for x ∈ [−3, 3]. Again, the randomness of the initial conditions smoothen
the edges of the naive solution.
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our algorithm
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Monte Carlo
our algorithm
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0.035
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Fig. 4. Approximations to the statistical moments using the Monte Carlo method (with 50 000 realiza-

tions), and Algorithm 1 (with N=601).
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Monte Carlo
our algorithm
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0.1
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3rd central moment

Monte Carlo
our algorithm

−3 −2 −1 0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

4th central moment

Monte Carlo
our algorithm

Fig. 5. Approximations to the statistical moments using the Monte Carlo method (with 50 000 realiza-

tions), and Algorithm 1 (with N=601).
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Example 9

In this example, we also consider a bivariate normal distribution with data that
mix rarefaction and shock waves in the realizations: 〈UL〉 = 0.2; 〈UR〉 = 0.4;
σL = 0.2; σR = 0.5; and ρ = 0.42. In Figure 6 we present approximations to
the mean, variance, 3rd central moment, and 4th central moment computed
using the Monte Carlo method and Algorithm 1. We also include the naive
solution. Since 〈UL〉 < 〈UR〉 the naive solution is a rarefaction wave. This
example emphasizes the difference between the mean of the solution and the
solution computed using means of the data. Here, the effect of the randomness
is more than to smoothen edges: as shown in Figure 6 the mean of the solution
is a humped function. In Table 3 we confront the performances between the
Monte Carlo method and Algorithm 1 in calculating 〈U(x, 1)〉, x ∈ [−3, 3],
taking into account the error estimates of each method and the CPU time. For
instance, in the approximations plotted in Figure 6 the Monte Carlo method
has taken 8.675 sec while Algorithm 1 has taken 0.991 sec.

−3 −2 −1 0 1 2 3

0.15

0.2

0.25

0.3

0.35

0.4

0.45

mean

Monte Carlo
our algorithm
naive solution

−3 −2 −1 0 1 2 3

0.05

0.1

0.15

0.2

0.25

0.3
variance

Monte Carlo
our algorithm

−3 −2 −1 0 1 2 3

−0.06

−0.04

−0.02

0

0.02

0.04
3rd central moment

Monte Carlo
our algorithm

−3 −2 −1 0 1 2 3

0

0.05

0.1

0.15

0.2

4th central moment

Monte Carlo
our algorithm

Fig. 6. Approximations to the statistical moments using the Monte Carlo method (with 50 000 realiza-

tions), and Algorithm 1 (with N=601).

5 Conclusions

We have used the basic solutions to nonlinear conservation laws, the shock
and rarefaction waves, to construct the random solution for Burgers’ equation
with random Riemann initial condition. These basic solutions are grouped to
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Monte Carlo method Algorithm 1

realizations estimate of CPU time

(Nr) error O(1/
√

Nr) (sec)

1 000 0.0316 0.185

5 000 0.0141 0.877

10 000 0.0100 1.744

30 000 0.0063 5.210

50 000 0.0044 8.675

100 000 0.0031 17.294

number of estimate of CPU time

partitions (N) error O(1/N2) (sec)

601 0.00018 0.991

Table 3
Absolute errors and CPU times; h = 0.01 (600 subintervals).

deduce simple expressions to calculate the statistical properties of the random
solution by integrations in three mutually exclusive cones in the phase plane
(Figure 1). We also design an algorithm to calculate the integrals, in case
of difficult analytic expressions of the joint density distribution of the initial
condition. Our approach outperformed the Monte Carlo method in terms of
accuracy and computational cost. We believe that this approach can be also
used to solve more general problems.
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