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Abstract

Given a semigroup S with non-empty interior, contained in a semi-
simple real Lie group of non-compact type G, the effective control sets
of S in the flag manifolds are well known. In this work we consider
the orbits of S in a symmetric space and its images by the Weyl group
and describe the effective control sets in the flag manifolds as images
of those orbits.
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1 Introduction

Let G be a semisimple real Lie group of non compact type and finite center
and let S ⊂ G be a semigroup of non empty interior. Let us consider the
left action of S in the flag manifold G/P , where P is a parabolic subgroup

∗This research was partially supported by Fundação Araucária grant no6240.
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of G. In a previous work ([4]) we considered the ideal boundary ∂∞ (X) of
the symmetric space X = G/K, where K is a maximal compact subgroup
of G, and described the relation between the invariant control set of S on
G/P and the set of points in the ideal boundary of ∂∞ (X) that belong to
the closure of any orbit Sx, where x is an arbitrary point of the symmetric
space X.

In this work we complete the previous one ([4]) by describing the rela-
tion of (non invariant) control sets in the flag manifold G/P and the ideal
boundary ∂∞ (X). This will be done using the characterization of control
sets established by San Martin and Tonelli in [9], where the control sets are
indexed by elements of the Weyl group W .

2 Basic constructions

In this section we merely establish the vocabulary and notations that will

be needed to explain and prove the results.All definitions and constructions
needed in this work are presented with some explanations in [4] and we refer
the reader to that work for further details.

Let X be a symmetric space of non-compact type, G = Isom0 (X ) the
identity component of the isometry group of X and K the stabilizer (in G)
of a point x0 ∈ X . Then X = G/K, G is a real semi-simple Lie group and
K a maximal compact subgroup of G. Let g be the Lie algebra of G and
g = k⊕ x the Cartan decomposition, where k is the Lie algebra of K and x its
orthogonal complement (relatively to the Cartan-Killing form).

The root space decomposition of g is given by

g = g0 ⊕
∑

λ∈Λ

gλ

where λ ∈ Hom (a,R) ,

gλ = {Y ∈ g| [H,Y ] = λ (H) Y , for all H ∈ a}

and

Λ = {λ ∈ Hom (a,R) |gλ 6= {0}} .
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The λ’s in Λ are called roots of g and each gλ a root subspace. Each root λ ∈ Λ
determines a hyperplane Hλ = {H ∈ a|λ (H) = {0}}. Each component of

a \
⋃

λ∈Λ

Hλ

is said to be an open Weyl chamber. A Weyl chamber is the closure of an open
Weyl Chamber. A Weyl chamber a+ uniquely determines a set of positive
roots

Π+ =
{
λ ∈ Λ|λ (H) ≥ 0 for every H ∈ a+

}

a set of negative roots Π− = −Π+, and a set of simple roots Σ.
A Weyl chamber a+ (alternatively, a set of positive roots Π+ or a set of

associated simple roots Σ) determines maximal nilpotent subalgebras

n± =
∑

λ∈Π±
gλ.

We denote by m the centralizer of a in k. A minimal parabolic subalgebra is
any algebra conjugate in g to

p = m⊕ a⊕ n+.

The subalgebras a, n+ and m are determined by the choice of a Weyl chamber
a+. For a subset Θ ⊆ Σ, let n− (Θ) stands for the subalgebra spanned by
the root spaces g−λ, for λ ∈ 〈Θ〉, where 〈Θ〉 is the set of (positive) roots
generated by Θ and let we denote by pΘ the parabolic subalgebra

pΘ = n− (Θ)⊕ p.

We note that, p∅ = p and pΣ = g.
An Iwasawa decomposition of g is given by g = k⊕ a⊕ n+.
For all objects introduced so far in the Lie algebra g we find corresponding

objects in the Lie group G and the symmetric space X = G/K. We denote
by x0 the base point in X . The subspace x ⊂ g is identified with the tangent
space of X at x0 so that geodesics in X with initial point x0 are defined as
η (t) = exp (tY ) x0, for some vector Y ∈ x, with ‖Y ‖ = 1.

By defining A = exp a, K = exp k and N+ = exp n+, we get an Iwasawa
decomposition G = KAN+.

A flat in X is an isometrically embedded Euclidean space and F = Ax0 is
a maximal flat in X . Every maximal flat in X is of the form F ′ = gF = gAx0,
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with g ∈ G. The rank of a symmetric space is the dimension of a maximal
flat and it equals the dimension of A.

The structure of Weyl chambers in a carries over to the subgroup A and
to the flat F = Ax0 ⊂ X : if we denote by a+ an open Weyl chamber in a

and by A+ = exp a+ its image in G, we shall call gA+x0 a Weyl chamber, to
any g ∈ G (whenever we mean a chamber in the Lie Algebra, Lie Group or
Simmetric Space it should be clear by the notation and the context). The
point gx0 ∈ gA+x0 is called the base point of the chamber. A subalgebra
HΘ gives rise to Θ-flats gFΘ := g exp (HΘ) x0. In a similar way, we say that

gA
+

Θx0 := g exp
(
a+

Θ

)
x0 is the Θ-wall of the chamber gA+x0.

A parabolic subalgebra pΘ = n− (Θ)⊕ p determines a parabolic subgroup

PΘ = {g ∈ G|Ad (g) pΘ = pΘ} .

The Weyl group of G is the quotient W = M/M ′, where M ′ := ZK (A) is
the centralizer of A in K. The Weyl group may naturally be seen as the
group of symmetries of a generated by the reflections σλin the hyperplanes
Hλ = {H ∈ a|λ (H) = {0}}, for λ ∈ Λ a root. It is actually generated
by reflections in hyperplanes determined by any simple system of roots Σ.
Given a subset Θ ⊂ Σ, we denote by WΘ the subgroup of W generated by
the corresponding reflections.

Each parabolic subgroup determines a (compact) flag manifold G/PΘ. If
λ is a root determined by a, then gλ is the root of Ad (g) a defined by the
formula

gλ (H) = Ad (g) ◦ λ ◦ Ad
(
g−1

)
(H) , for all H ∈ Ad (g) a.

A parabolic subgroup is said to be of type Θ if it is determined by a set of
roots of the form g (Θ) and the flag manifold BΘ may be viewed as the set
of all type Θ parabolic subgroups. In particular, P∅ = P and G/P∅ is the set
of all minimal parabolic subgroups.

Parabolic subgroups are partially ordered by inclusion, with PΘ1 ⊂ PΘ2

iff Θ1 ⊂ Θ2. Hence there is a natural fibration

ρΘ1
Θ2

: G/PΘ1 → G/PΘ2

gPΘ1 7→ gPΘ2

In the special case when G/PΘ1 = G/P , we denote ρΘ1
Θ2

by ρΘ2 .
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A Hadamard manifold is a simply connected manifold of non positive
curvature.

Let X be a Hadamard manifold. Two geodesic rays γ, β : R+ −→ X are
said to be asymptotic if there is a constant a ≥ 0 such that d (γ (t) , β (t)) ≤ a,
for every t ≥ 0. This defines an equivalence relation on the set of all geodesic
rays in X . We call the set of equivalence classes of asymptotic geodesic rays
the ideal boundary of X . We denote this space by ∂∞X and the equivalence
class determined by γ we denote by γ (∞). Since X is simply connected,
given any class γ (∞) and any point x0 ∈ X there is a unique geodesic ray
β : R+ −→ X with β (0) = x0 and β (∞) = γ (∞) , so that we can identify
∂∞X with the unit tangent sphere and give it the usual metric of a unit
sphere. We shall denote this metric by dS (·, ·).

Let X be a Hadamard manifold. We fix a point x0 ∈ X and for a given
η ∈ ∂∞X we choose the unique geodesic ray η (s) such that η (0) = x0 and
η (∞) = η. Given a sequence (xn)n∈N of points in X , consider the sequence
of geodesic rays (ηn (s))∞n=1 such that ηn (0) = x0 and ηn (d (x0, xn)) = xn.
We say that xn converges to η if limn→∞ d (x0, xn) = ∞ and limn→∞ η′n (0) =
η′ (0), this last condition being equivalent to

lim
n→∞

ηn (∞) = η

in (∂∞X , dS). This defines a topology on X := X ∪ ∂∞X that coincides
with the metric topology on X and with the sphere metric dS in ∂∞X , and
such that ∂∞X is closed and X open and dense in X and X is a compact
topological space.

For a subset C ⊂ X , we define its ideal boundary ∂∞C := ∂C ∩ ∂∞X ,
where ∂C stands for the usual boundary in X . If C is convex, then

∂∞C = {η (∞) |η (s) is a geodesic ray contained in C} .

Let us assume from here on that X = G/K is a symmetric space of non-
compact type and real rank at least 2. Since every Weyl chamber Bg = gA+x0

is convex, we have that

gA
+

(∞) = ∂∞
(
gA+x0

)

=
{
η (∞) |η (s) = g (exp sX) x0, X ∈ a+

}
.
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This is called an open Weyl chamber at infinity. Open Weyl chambers at
infinity are either equal or disjoint.

Similar definitions hold also for walls at infinity and flats at infinity,
denoted by gA+

Θ (∞) and gA (∞) respectively. We will consider only closed

chambers gA
+

(∞) and walls at infinity:

gA
+

Θ (∞) = ∂∞
(
gA

+

Θx0

)

=
{
η (∞) |η (s) = g (exp sX) x0, X ∈ a+

Θ

}
.

We define a map

π : ∂∞X →
⋃

Θ⊂Σ

G/PΘ,

as follows: each η ∈ ∂∞X is of the form η (∞) with η (s) = (g exp sX) x0 with

|X| = 1 and X ∈
◦⋃

Θ⊆Σa+
Θ, where we are considering the open chambers and

open walls, so that the union is disjoint. So, we associate to η the parabolic
subgroup π (η) := gPΘg−1 (where X ∈ a+

Θ). This association is independent
of the choice of g.

We denote by ∂Θ
∞X the inverse image π−1 (G/PΘ), the set of all Θ-singular

geodesic rays and note that π−1 (G/P∅) = ∂∅∞X is an open and dense subset

of ∂∞X . Also,
◦⋃

λ∈Σ∂
{λ}
∞ X is open and dense in ∂∞X\∂∅∞X . In the same way,

we find that
◦⋃

Θ⊆Σ
|Θ|=k

∂Θ
∞X is open and dense in ∂∞X\

( ◦⋃
Φ⊆Σ
|Φ|<k

∂Φ
∞X

)
, where

|Θ| is just the cardinality of Θ and k ≤ r (g). The projection π : ∂∞X →⋃
Θ⊆Σ G/PΘ splits as a set of projections

πΘ : ∂Θ
∞X → G/PΘ, Θ ⊆ Σ.

3 Semigroups and control sets

Let X = G/L be an homogeneous manifold. We denote respectively by
clD and intD the closure and the interior of a subset D (of X or G, to be
clearly understood from the context). A set S of diffeomorphisms of M is a
semigroup if the composition of elements of S (with possible restrictions of
domains) is still in S. A control set for S (an S-c.s.) is a subset C ⊆ X
satisfying the conditions:
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(i) int(C) 6= ∅;
(ii) C ⊆ cl (Sx) for all x ∈ C, and

(iii) C is maximal with properties (i) and (ii).

We say that C is an invariant control set for S (an S-i.c.s.) if condition
(ii) is substituted by the following:

(ii’) cl (Sx) = cl (C) , for all x ∈ C.

For the simplicity of the presentation, we assume that G is a semisimple
Lie group of non-compact type and S a subsemigroup of G, even if some of
the results do not depend on the semisimplicity of G. Regarding the control
sets in a compact homogeneous space X = G/L we have the following:

[9, Proposition 2.1] Let X = G/L be a compact homogeneous space and
S a subsemigroup of G with intS 6= ∅. Let C ⊂ X be an S-c.s and let
C0 = {x ∈ C|x ∈ (int S) x}. Then:

(i) C0 = int (S) C ∩ C.

(ii) C ⊂ (int (S))−1 x for all x ∈ C0 (if C0 6= ∅).
(iii) C0 = {x ∈ C|∃g ∈ int S with gx = x}.
(iv) C0 = {x ∈ C|∃g ∈ int S with g−1x ∈ C}.
(v) cl C0 = C.

Because of property (ii) in the proposition above, C0 is called the set of
transitivity of C.

From here on we assume as standart hypothesis that G is a semisimple real
Lie group of non compact type and finite center, X = G/K the associated
symmetric space and S ⊂ G is a semigroup of non empty interior.

The product MA is a closed subgroup of G. The homogeneous space
G/MA may be seen as the set of Weyl chambers in g or the set of Weyl
chambers in G with base point at the identity. Alternatively, it may be seen
as the choice of a Weyl chamber decomposition in each of the flats gAx0 of
X . Each Weyl chamber b = gMA is conjugate to the base chamber A+:
b = gA+g−1.
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We assume throughout the rest of the paper that S has non-empty inte-
rior. Then, it has a unique S invariant control set C ([8, Theorem 3.1]). If
we put

∆ :=
{
b = gA+g−1 ∈ G/MA|b ∩ int S 6= ∅} , (1)

we have the following:

Theorem 3.1 [9, Theorem 3.1] Let C be the unique S-i.c.s. in G/P and C0

be its set of transitivity. Let

p : G/MA → G/MAN+

be the canonical projection. Then

C0 = p (∆) .

Using this theorem we were able to describe the S invariant control set
in the ideal boundary ∂∞ (X ), as follows:

Theorem 3.2 [4, Theorem 4.3] Let S be a sub-semigroup with non-empty
interior of a semisimple Lie group G. Consider the boundary of an orbit Sx0

in G/K and let D be the ideal boundary ∂∞ (Sx0). Then D is the invariant
control set of S. Moreover, if CΘ is the unique S-i.c.s. in G/P and DΘ =
D ∩ ∂Θ

∞ (X ). Then,
πΘ

(
DΘ

)
= CΘ.

Theorem 3.1 describes the invariant control sets as sets of fixed points of
some elements in the interior of the semigroup S. The other control sets (the
non-invariant ones) are given by other classes of fixed points, classes indexed
by the elements of the Weyl group W = M/M ′. In fact, there is a natural
right action of W on G/MA that is given by

(gMA) w = gw̃MA

where w̃ ∈ M is any representative of the element w, that is, w = w̃M . The
control sets in the maximal flag G/MAN+ are determined by the action of
the Weyl group in G/MA, in the following sense:

Theorem 3.3 [9, Theorem 3.2] Let p : G/MA → G/MAN+ be be the
canonical projection. Given w ∈ W , there is a unique control set C ⊂
G/MAN+ such that p (∆w) ⊂ C.
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Not every control set may be described in such a way, but exactly the
class of effective control sets (control sets with non-empty sets of transitivity)
may be obtained in this way and we denote by Ew the (effective) control set
containing p (∆w). We note that Ee is the invariant control set (e ∈ W is
the identity element).

The control sets in other flag manifolds (not necessarily maximal) also
admit a similar description:

Theorem 3.4 [9, Proposition 5.1] Let G/P be the maximal flag manifold
determined by G, PΘ a parabolic subgroup and ρΘ : G/P → G/PΘ the
canonical fibration. Let E ⊂ G/PΘ be an effective control set for S. Then
there exists w′ ∈ W such that ρΘ ((Dw)0) = E0 for every representative
w ∈ w′WΘ. Moreover, πΘ (D0) = E0 if D is an effective control set satisfying
D0 ∩ ρ−1

Θ (D0) 6= ∅.

It is important for the development of this work to note that the pro-
jection p : G/MA → G/MAN+ is invariant by the action of the group W .
Indeed, consider α = gMA ∈ G/MA and w = w̃M ∈ W . Then we have that

p (αw) = p (gw̃MA)

= gw̃MAN+

=
(
gMAN+

)
w

= p (α) w.

3.1 The Action of W in ∂∞X

Our goal in this section is to show that the action of the Weyl group W on the
ideal boundary ∂∞X is invariant by the projection π : ∂∞X → ⋃

Θ⊂Σ G/PΘ.
We start describing the action of W on ∂∞X . Let us consider a point

η ∈ ∂∞X and w ∈ W . Then, η is the equivalence class η (∞) of a geodesic
ray

η (s) = exp (Ad (g) (sX)) x0

where ‖X‖ = 1 (the norm determined by the Cartan-Killing form), X ∈⋃
Θ⊂Σ a+

Θ and g ∈ G. If w̃ ∈ M is a representative of w ∈ W , we define the
action of w on ∂∞X by

ηw := α (∞)
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where
α (s) := exp (Ad (gw̃) (sX)) x0.

Since Ad (w̃) (X) = X for every w̃ ∈ M and every X ∈ ⋃
Θ⊂Σ a+

Θ, this action
is well defined.

In order to prove that the action of W on the ideal boundary is invariant
by the projection π, let X ∈ ⋃

Θ⊂Σ a+
Θ and assume that X ∈ a+

Θ. Then, by
definition of η and π we have that

π (η) = gPΘg−1.

It follows that

π (ηw) = π (α (∞)) = (gw̃) PΘ (gw̃)−1

= g
(
w̃PΘw̃−1

)
g−1

= (gPΘ) w = π (η) w.

3.2 Ideal Boundaries and Control Sets

Let E be a control set for the action on G/P of a sub-semigroup S ⊂ G. As
we quoted in Theorem 3.3, E is an effective c.s if and a only if there is (a
unique) w ∈ W such that

p (∆w) ⊂ E, (2)

where ∆ is defined in (1) and p : G/MA → G/MAN+ is the canonical
projection. In this situation, we denote the effective control set by Ew.

If we denote by C the (unique) invariant control set, we have that p (∆) =
C0, the set of transitivity of C and, as shown in [4, Theorem 4.4] we have
that π∅

(
D∅) = C, where D = ∂∞ (Sx0) and D∅ = D ∩ ∂∅∞ (X ). So, by the

invariance of the action of W in ∂∞ (X ) we find that

π∅
(
D∅w

)
=

(
π∅

(
D∅))w

= Cw = p (∆) w

and by (2) it follows that

p (∆) w ⊂ E = Ew.

In other words we have proved the following:
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Theorem 3.5 Let S be a sub-semigroup with non-empty interior of a semi-
simple Lie group G. Let E be an effective control set for the action of S on the
flag manifold G/P . Consider the orbit Sx of any point x in the symmetric
space X = G/K and its ideal boundary D := ∂∞ (Sx) and D∅ := D∩∂∅∞ (X ).
Then, there is w ∈ W such that

π∅
(
D∅w

) ⊂ E.

We consider now the general case of an effective control set E in a (not
necessarily maximal) flag manifold G/PΘ. Theorem 3.4 assures the existence
of w ∈ W such that ρΘ ((Ew)0) = E0, where ρΘ : G/P∅ → G/PΘ is the
canonical projection and Ew is the unique effective control set in G/P∅ such
that p (∆w) ⊂ Ew. By Theorem 3.5 we have that

π∅
(
D∅w

) ⊂ Ew,

hence the diagram

∂∅∞(X )

∂Θ
∞(X )

G/P∅

G/PΘ

-

-

? ?

π∅

πΘ

pΘ ρΘ

commutes and we find that

πΘ
(
DΘw

)
=

(
πΘ

(
DΘ

))
w

=
(
πΘ

(
ρΘ

(
D∅))) w

=
(
ρΘ

(
π∅

(
D∅))) w

= ρΘ

(
π∅

(
D∅w

))

⊂ ρΘ (Ew)

so that
πΘ

(
DΘw

)
0
⊂ ρΘ (Ew)0 = E0

and we have proved our final result:
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Theorem 3.6 Let S be a sub-semigroup with non-empty interior of a semi-
simple Lie group G. Consider the orbit Sx of any point x in the symmetric
space X = G/K and its ideal boundary D := ∂∞ (Sx). If E is an effective
control set for S in the flag manifold G/PΘ and DΘ = D∩∂Θ

∞ (X ), then there
is an element w ∈ W such that πΘ

(
DΘw

)
0
⊂ ρΘ (Ew)0 = E0.
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