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Abstract

In this article we will show that, in general, for each integral point (γ0, . . . , γn) in the Morse
polytope, Pκ(h0, . . . , hn), one can associate an abstract Lyapunov graph L(h0, . . . , hn, κ) with
ntd-labelling and realize a corresponding flow on Mn, where the Betti numbers of Mn satisfy
βj(Mn) = βn−j(Mn) = γj , for all 0 < j ≤ bn/2c.

1 Introduction

Lyapunov graphs carry dynamical information of gradient-like flows as well as topological

information of its phase space, which is taken to be a closed orientable n-manifold. This information

is coded on the vertices of the Lyapunov graph using dynamical data (h0, . . . , hn, κ), representing the

ranks of the Conley homology index, and on the edges by Betti numbers of level sets of the flow which

are closed co-dimension one sub-manifolds of M . An abstract Lyapunov graph L(h0, . . . , hn, κ) is

labelled with abstract data (h0, . . . , hn, κ) on the vertices and Betti number vectors 1 on the edges.

One can ask in general terms when an abstract Lyapunov graph is realizable as a gradient-like

flow on a closed manifold Mn. What manifolds admit a flow with this data?
∗Partially supported by FAPESP under grant 01/04597-4 and CNPq-PRONEX Optimization
†Partially supported by FAPESP under grant 02/102462 and by CNPq 300072.
1A Betti number vector in dimension n is a list of nonnegative integers (γ0, γ1, . . . , γn−1, γn) that satisfy Poincaré

duality (γn−k = γk, for all k) and the connectivity, or boundary, conditions γ0 = γn = 1. Furthermore, if n = 2i 6≡ 0
mod 4, we have the additional condition that γi be even.
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The Poincaré-Hopf inequalities (1)–(5), presented in [3], in essence filter out unrealizable

dynamical data, and consequently unrealizable Lyapunov graphs, i.e., if the dynamical data

(h0, . . . , hn, κ) does not satisfy the Poincaré-Hopf inequalities, then there is no choice of Betti

numbers that will satisfy the (generalized) Morse-Conley inequalities (33). However, satisfying

these inequalities is not sufficient to guarantee that the Lyapunov graph is realizable. In order to

tackle the question of realizability, Lyapunov graph continuation was introduced in [2], where it

was proved that the Poincaré-Hopf inequalities for isolating blocks were necessary and sufficient

conditions for a general abstract Lyapunov graph to be continued to an abstract Lyapunov graph

of Morse type. Graphs that admit continuation are called admissible.

Are all admissible graphs realizable? If so, on what manifolds can these graphs be realized? A

simpler question would be to ask what are all possible Betti numbers of manifolds on which these

graphs may be realized. The latter question was answered in [3] and [4] where the Morse polytope

Pκ(h0, . . . , hn) is presented as the convex hull of the collection of all Betti number vectors which

satisfy the Morse inequalities for pre-assigned dynamical data (h0, . . . , hn, κ). In [3] it is shown that

for pre-assigned dynamical data (h0, . . . , hn, κ) the Morse inequalities hold for some Betti number

vector (γ0, . . . , γn) if and only if (h0, . . . , hn, κ) satisfies the Poincaré-Hopf inequalities for closed

manifolds.

Our main result in this article, combinatorial in nature, will answer the first two questions in

the previous paragraph, by showing that a Morse polytope is realizable, under certain conditions,

by Morse flows on closed manifolds. In other words, given an integral point γ of Pr
κ(h0, . . . , hn), a

Morse flow with dynamical data equal to (h0, . . . , hn, κ) is constructed on a manifold Mn with the

same Betti numbers as γ.

This is done by working with admissible data (h0, . . . , hn, κ), that is, data which satisfies

the Poincaré-Hopf inequalities and by considering the solutions of the hcd-system for this data.

Each solution of the hcd-system, an hcd vector, is mapped to a point of the Morse polytope,

γ = (γ0, . . . , γn). Also, each hcd vector is mapped to an abstract linear Lyapunov graph of Morse

type, LM(h0, . . . , hn, κ), which is unique except for the order of the hi’s. We show in Theorem 3.1

that each hcd vector admits ntd-labellings2 and in Theorem 3.3 and Theorem 3.6, we prove that

there is a unique one which can be realized topologically, i.e., as a flow on a manifold with Betti

numbers equal to γ = (γ0, . . . , γn). This is done by using an ntd-labelling on LM(h0, . . . , hn, κ) and

2An hcd vector determines several Lyapunov graphs of Morse type. Suppose an ntd-labelling is fixed for any two
such graphs, then the difference in the realization of L1 and L2 is in the order of the attachment of the handles. Since
we are not interested in the order of the attachment of handles, we will make no further reference to the Lyapunov
graph.
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constructing a flow on a generalized tori possibly connected sum with a projective space which has

LM as its Lyapunov graph.

2 Preliminaries

2.1 Lyapunov Graphs

Define an abstract Lyapunov graph in dimension n as a finite, connected, oriented graph, that has

no oriented cycles. Also, each vertex is labelled with a chain recurrent flow Rk on a compact n-

dimensional space which we assume to be an isolated invariant set and each edge is labelled with

topological invariants of a closed (n− 1)-dimensional manifold.

This definition is far too general for our purposes. We will label the vertex vk of an

abstract Lyapunov graph with the dimensions of the Conley homology indices, dim CHj(Rk) =

hj(vk), with j = 0, . . . n. Hence, each vertex is labelled with a list of nonnegative integers

(h0(vk), . . . , hn(vk), κ(vj)).
3 We choose to label the edges with the Betti numbers of a closed

(n− 1)-dimensional manifold, a Betti number vector. This abstract Lyapunov graph is denoted by

L(h0, . . . , hn, κ), where hλ =
∑card V

j=1 hλ(vj) and V is the vertex set and κ =
∑card V

j=1 κ(vj).

Therefore, our dynamical data is encoded in these abstract Lyapunov graphs, which respect

certain incidence rules and weight conditions on the edges. These conditions, that are imposed on

abstract Lyapunov graphs, are necessary conditions. Hence, a Lyapunov graph coming from a flow

φt on a closed manifold must satisfy the above conditions, obtained from the analysis of the long

exact sequences of index pairs of isolated invariant sets of φt.

In [8], this type of homological analysis was done for singularities and periodic orbits of Morse-

Smale flows. The results therein classify singularities with h` = 1 (for Morse flows these correspond

to the non-degenerate singularities of Morse index `) by distinguishing the effect it causes on the

level sets N− and N+.

A singularity, respectively a vertex, labelled with h` = 1 is `-d (`-disconnecting), if it has the

algebraic effect of increasing the `-th Betti number of N+ or respectively, the corresponding β`

label on the incoming edge. A singularity, respectively a vertex, labelled with h` = 1 is (` − 1)-c,

((`−1)-connecting), if it has the algebraic effect of decreasing the (`−1)-th Betti number of N+ or

respectively, the corresponding β`−1 label on the incoming edge. The increase or decrease is always

3An alternative notation is to label the vertex with hj(vk) = nj whenever nj 6= 0. The latter notation is convenient
whenever (h0(vk), . . . , hn(vk), κ(vk)) has many zero entries.
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by one except in the case ` = i when n = 2i+1, and in this case it varies by two. In the case n = 2i

with 2i ≡ 0 mod 4, a singularity, respectively a vertex, labelled with hi = 1 is β-i (beta-invariant),

if all Betti numbers are kept constant. See Figure 1 for ` 6= i, when n = 2i + 1.

β`−1(N
+) = β − 1

β`−1(N
−) = β

h` = 1h` = 1

β-i(`− 1)-c`-d

h` = 1

β`(N
+) = β + 1

β`(N
−) = β

u uu
?

?

?

?

?

?

Figure 1: The three possible algebraic effects.

In [2], this type of homological analysis was done in full generality and lead to the Poincaré-Hopf

inequalities for isolating blocks (N, N−, N+). In fact, the above results can easily be obtained from

the inequalities below. If n is odd, then (1)–(4) need to be satisfied, if n ≡ 0 mod 4, only (1)–(3),

and if n ≡ 2 mod 4, inequalities (1)–(3) and (5).

− hj ≤
j−1∑
k=1

(−1)k+j+1(B+
k −B−

k ) +

j−1∑
k=0

(−1)k+j+1(hn−k − hk) ≤ hn−j, j = 2, . . . ,
⌊n

2

⌋
(1)

h1 ≥ h0 − 1 + κ (2)

hn−1 ≥ hn − 1 + κ (3)

n = 2i + 1

{ i−1∑
k=1

(−1)k(B+
k −B−

k ) + (−1)i B
+
i −B−

i

2
−

n∑
k=0

(−1)khk = 0 (4)

n = 2i, i odd

{
hi −

i−1∑
k=1

(−1)k(B+
k −B−

k )−
i−1∑
k=0

(−1)k(hn−k − hk) ≡ 0 mod 2, (5)

where B+
k (resp., B−

k ) is the sum of the Betti numbers of the incoming boundary components of N ,

denoted by N+ (resp., the outgoing boundary components of N , denoted by N−).
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Letting B+
k = B−

k = 0 for all k, we obtain the Poincaré-Hopf inequalities (6)–(10) for flows on

a closed manifold, which is our focus in this article.

− hj ≤
j−1∑
k=0

(−1)k+j+1(hn−k − hk) ≤ hn−j, j = 2, . . . ,
⌊n

2

⌋
(6)

h1 ≥ h0 − 1 + κ (7)

hn−1 ≥ hn − 1 + κ (8)

n = 2i + 1

{ n∑
k=0

(−1)khk = 0 (9)

n = 2i, i odd

{
hi −

i−1∑
k=0

(−1)k(hn−k − hk) ≡ 0 mod 2. (10)

2.2 Poincaré-Hopf Inequalities and the hcd
κ -System

Bertolim et al. [4] developed a continuation algorithm whose input is an abstract Lyapunov graph

L(h0, . . . , hn, κ) and output is its continuation to an abstract Lyapunov graph of Morse type. This

continuation is possible if and only if the following hcd
κ -system admits a nonnegative integral solution:

hc
1 = −1 + h0 + κ, (11){
hc

j + hd
j = hj, j = 1, . . . , n− 1, j 6=

⌊n

2

⌋
, (12)

n = 2i + 1

{
hc

j + hd
j = hj, j =

⌊n

2

⌋
, (13)

n = 2i

hc
j + hd

j + β = hj,

β ≡ 0 mod 2

j =
⌊n

2

⌋
,

n 6≡ 0 mod 4
(14)

hd
n−1 = −1 + hn + κ, (15){
hd

j − hc
j+1 − hc

n−j + hd
n−(j+1) = 0, j = 1, . . . ,

⌊n

2

⌋
− 1, (16)


n = 2i + 1

{
hd

i − hc
i+1 = 0. (17)

On the other hand, suppose (h0, . . . , hn, κ) is a fixed nonnegative integral vector. Then the

hcd
κ -system (11)–(17) has a nonnegative integral solution if and only if (h0, . . . , hn, κ) satisfies the
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Poincaré-Hopf inequalities for closed manifolds (6)–(10), see [4]. The meaning of the variables in the

hcd
κ -system are as follows: hc

j = card{hj = 1 of type (j − 1)-c} and hd
j = card{hj = 1 of type j-d},

for j = 1, . . . , n− 1. The free variable β appears in the case n = 2i. 4 We will continue to consider

singularities of index i of type β-i only in the case n = 2i ≡ 0 mod 4, and will allow pairs of

singularities of index i to form a dual pair (hc
i , h

d
i ) of type (i − 1)-c, i-d respectively, in any even

dimension. Thus, when n = 2i ≡ 2 mod 4, only the latter is allowed which implies β must assume

an even value.

Hence, the hcd
κ -system has a nice dynamical interpretation related to graph continuation. On

the other hand, the hcd = (hc
1, h

d
1, . . . , h

c
n−1, h

d
n−1) vectors which are nonnegative integral solutions

of the hcd
κ -system can be used to generate the Betti number vectors which in turn determine the

Morse polytope, see [3, 4] for more details. We represent these equivalence results in the following

diagram, see Figure 2.

-�
�� �
 �� �
hcd

κ -system Morse Polytope

�� �
Poincaré-Hopf

�
��	�

��� @
@@R@

@@I

Figure 2: Equivalence Results.

2.3 Admissible and Canonical Lyapunov Graphs

We say that a Lyapunov graph (resp., a Lyapunov semi-graph) L(h0, . . . , hn, κ) satisfies the

Poincaré-Hopf inequalities if the data (h0, . . . , hn, κ) satisfies the Poincaré-Hopf inequalities (6)–

(10) (resp., (1)–(5)).

We define admissible graphs as abstract Lyapunov graphs that satisfy the Poincaré-Hopf

inequalities (1)–(5) at each vertex. These graphs have the property that they can be continued

to abstract Lyapunov graphs of Morse type, see [2].

Admissible graphs were treated in [8] for abstract Lyapunov graphs of Morse-Smale type. The

question of admissibility was completely generalized in [2], [3] and [4] for general abstract Lyapunov

4 In [2], [3] and [4] a β label on an index i singularity, hi, was always considered as being a β-i singularity which
only occurs when n = 2i ≡ 0 mod 4. This explains why we considered β = 0 when n 6≡ 0 mod 4 therein. However,
in this article we will work with a broader class of labellings for β which will simplify the development of what
follows. In this case it will suffice to require that β be even.
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graphs.

The first natural question is to consider whether admissible graphs are realizable in closed

manifolds. The answer to this question depends on the dynamical data and the ambient dimension

of the manifold. For instance, for abstract Lyapunov graphs in dimension n ≡ 0 mod 4 where β-i

vertices are present there are examples that are non-realizable, see Figure 3. Secondly, if the graph

is realizable, we would like to know in how many different ways can this realizability be achieved.

Since an admissible Lyapunov graph can be continued to many Lyapunov graphs of Morse type, see

[2] and [4], it is natural to start our study of realizability with the latter class, since it constitutes

the most elementary admissible graphs.

s
s
s

h0 = 1

h6 = 1

h12 = 1

Figure 3: Admissible non-realizable abstract Lyapunov graph in dimension n = 12.

As in [8], we need to enrich the labelling of an abstract Lyapunov graph of Morse type

L(h0, . . . , hn, κ) by a null-trivial-dual-labelling, in short, an ntd-labelling. An ntd-labelling is the

pairing up of all vertices (except two, one h0 and one hn vertex) in an admissible graph by using

the types:
κ-dual: {hn−1 = 1 of type (n− 1)-d, h1 = 1 of type 0-c}.
dual: {hj = 1 of type j-d, hn−j = 1 of type (n− j − 1)-c}, for j = 1, . . . , n− 2.

null: {hj = 1 of type j-d, hj+1 = 1 of type j-c}, for j = 1, . . . , n− 2.

trivial: {h1 = 1 of type 0-c, h0} (first type) and {hn−1 = 1 of type (n−1)-d, hn}
(second type).

We will see below that all hj’s can be paired up in this way when n is odd. However, when n

is even, say n = 2i, recall that hi may be of type (i − 1)-c, i-d or β. The third set of hi’s, which

is not accounted for in the types of pairings established above, receives a free label beta. The hi’s

labelled with beta may be considered as a β-i singularity 5 or two hi’s labelled with beta may form

a dual pair. In order to simplify notation, we will still talk about the ntd-labellings when n is even,

although in this case there will be an additional element.

5 In [2], [3] and [4] a β label on hi was always considered as a β-i singularity which can only occur when n = 2i ≡ 0
mod 4. This explains why we considered β = 0 when n = 2i 6≡ 0 mod 4 therein. However, in this article we will
consider a broader class of labellings for β which will simplify the development of what follows.
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We define admissible Lyapunov graphs which possess an ntd-labelling as canonical Lyapunov

graphs. Do all admissible graphs of Morse type admit an ntd-labelling? Are all canonical Lyapunov

graphs realizable? Both questions are answered in the next section.

3 Main Results

3.1 Relationship between hcd and ntd-labellings

In this section we establish the existence of an ntd-labelling for a given abstract Lyapunov graph

L(h0, . . . , hn, κ) of Morse type associated with an hcd vector satisfying (11)–(17). Note that all ntd-

labels refer to pairs of singularities, except possibly the beta label, which may assume the specific

labelling of β-i type. In the sequence we will deal with the number and types of pairings associated

with the ntd-labellings.

Henceforth we consider fixed (h0, . . . , hn, κ) and hcd that satisfy (6)–(10) and (11)–(17). Let

dκ = number of κ-dual pairings,

dj = number of dual pairings, for j = 1, . . . , n− 2,

ηj = number of null pairings, for j = 1, . . . , n− 2,

t1 = number of trivial pairings of first type,

t2 = number of trivial pairings of second type,

b = number of labels of type beta.

Theorem 3.1 All admissible graphs of Morse type can be made canonical, i.e., admit an ntd-

labelling. The number of distinct labellings that can be assigned to a fixed abstract Lyapunov graph

of Morse type described by an hcd vector is given by

i−1∏
j=1

(min{hc
j+1, h

d
n−j−1} − [hc

j+1 − hd
j ]

+ + 1) · (hd
i + 1), if n = 2i + 1, (18)

and

i−1∏
j=1

(min{hc
j+1, h

d
n−j−1} − [hc

j+1 − hd
j ]

+ + 1), if n = 2i. (19)
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Proof: Consider a fixed abstract Lyapunov graph of Morse type associated with a nonnegative

integral hcd vector, corresponding to an abstract Lyapunov graph L(h0, h1, . . . , hn, κ) of Morse

type.

By construction, there are h0 − 1 trivial pairings of the first type and hn − 1 trivial pairings of

the second type, implying t1 = h0 − 1 and t2 = hn − 1. Furthermore, the total number of h1 = 1 of

type 0-c is equal to hc
1 and these can be paired with h0 (forming a trivial pairing) or with hn−1 = 1

of type (n− 1)-d (forming a κ-dual pairing). In order to have each of them paired exactly once, dκ

and t1 must be integral, nonnegative, and satisfy dκ + t1 = hc
1. Similarly, we conclude that dκ and

t2 must be integral, nonnegative and satisfy dκ + t2 = hd
n−1. Substituting the values for t1, t2 and

using the equations for hc
1 and hd

n−1 in (11) and (15), respectively, we conclude that

dκ = κ. (20)

Then each remaining hj = 1 of type j-d and hj = 1 of type (j − 1)-c, for j = 1, . . . , n − 2, is

paired exactly once if and only if the vector (η, d) = (η1, . . . , ηn−2, d1, . . . , dn−2) satisfies:

dj + ηj = hd
j , j = 1, . . . , n− 2 (21)

dn−j−1 + ηj = hc
j+1, j = 1, . . . , n− 2. (22)

If n = 2i + 1, we multiply the equations in (22) by −1 and partition the linear system (21)–(22)

into i independent problems:
dj + ηj = hd

j ,

−dn−j−1 − ηj = −hc
j+1,

dn−j−1 + ηn−j−1 = hd
n−j−1,

−dj − ηn−j−1 = −hc
n−j,

for j = 1, . . . , i− 1, (23)

and, {
di + ηi = hd

i ,

−di − ηi = −hc
i+1,

for j = i. (24)

If n = 2i, the same operation produces only the i − 1 linear systems (23). Remember that, if

n 6= 2i and hcd satisfies the hcd
κ -system, then all hj’s have been accounted for, since hj = hc

j + hd
j

for j = 1, . . . , n − 1. However, when n = 2i, we have hi = hcd
i + hd

i + β. Therefore, in this case, β

of the hi = 1 are not paired, and receive instead a label of type beta, implying

b = β. (25)

9



Systems (23) and (24) correspond to network-flow problems. The networks corresponding to

n = 7 are depicted in Figure 4. The existence of nonnegative solutions implies the existence of

nonnegative integral solutions, since the matrices of coefficients of these linear systems are totally

unimodular. For fixed hcd satisfying the hcd
κ -system, necessary and sufficient conditions for the

existence of solutions of (23)–(24) is that the sum of the right-hand-side of these systems be equal

zero, and this is granted by equations (16) and (17) of the hcd
κ -system. Nonnegativity is equivalent

to the following inequalities, obtained via the Fourier-Motzkin elimination process:

hc
j+1 ≥ 0, (26)

hc
j+1 ≥ hc

j+1 − hd
j , (27)

hd
n−j−1 ≥ 0, (28)

hd
n−j−1 ≥ hc

j+1 − hd
j , (29)

for j = 1, . . . , i, if n = 2i + 1, and for j = 1, . . . , i − 1, if n = 2i. Conditions (26)–(28) follow from

the nonnegativity of hcd. Condition (29) follows from the nonnegativity of hcd and equation (16) of

the hcd
κ -system.
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−hc
2

−hc
6

hd
1 hd

5

d5

η5

η1

d1

−hc
3

−hc
5

hd
2 hd

4

d4

η4

η2

d2

−hc
4

hd
3

d3η3

Figure 4: Network problems for n = 7.

Thus, if n = 2i + 1, the general solution of (23)–(24) has the form

(ηj, ηn−j−1, dj, dn−j−1) = (hc
j+1, h

d
n−j−1, h

d
j − hc

j+1, 0) + αj(−1,−1, 1, 1), for j = 1, . . . , i− 1, (30)

(ηi, di) = (0, hd
i ) + αi(1,−1), for j = i, (31)

where [hc
j+1 − hd

j ]
+ ≤ αj ≤ min{hc

j+1, h
d
n−j−1}, for j = 1, . . . , i− 1, and 0 ≤ αi ≤ hd

i . On the other

hand, if n = 2i, then (30) defines all the elements in vector (η, d) satisfying (23).

Summarizing, the number of distinct ntd-labellings or pairings that can be assigned to a fixed

abstract Lyapunov graph of Morse type described by an hcd vector is simply the number of distinct
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integral values the various αj may assume. Given the range of values for α determined in the last

paragraph, we easily arrive at formulas (18) and (19) for the number of distinct ntd-labellings if

n = 2i + 1 and if n = 2i, respectively. �

In [3] and [4] the solution h∗cd to the hcd
κ -system that satisfies the complementarity condition

hc
jh

d
n−j = 0, for j = 2, . . . ,

⌊n

2

⌋
. (32)

played a special role in the development of the results. Notice that, if n is even, then an

abstract Lyapunov graph described by a complementary hcd vector has a unique labelling, since

min{h∗cj+1, h
∗d
n−j−1} = 0, for j = 1, . . . , i − 1. If n is odd, the graph will have h∗di + 1 distinct

labellings.

3.2 Relationship between Betti number vectors and ntd-labellings

In [4] it was shown that, for fixed data (h0, . . . , hn, κ), the hcd
κ -system 11)–(17) admits nonnegative

integral solutions if and only if there exist Betti number vectors that satisfy the generalized Morse-

Conley inequalities:

n∑
k=0

(−1)k+nγk =
n∑

k=0

(−1)k+nhk,

j∑
k=0

(−1)k+jγk ≤
j∑

k=0

(−1)k+jhk, for j = 0, . . . , n− 1,

γ1 ≥ κ.

(33)

This result and the previously established equivalence between the Poincaré-Hopf inequalitites and

the hcd
κ -system lead to an equivalence between the two sets of inequalities: Poincaré-Hopf and

Morse-Conley. The hcd
κ -system was the bridge that enabled the establishment of a link between the

first set of inequalities, containing only dynamical data, and the second set, including topological

data as well. This link was constructive, that is, mappings were defined to-and-fro the two sets of

solutions, the hcd vectors and the Betti number vectors. These mappings will play an important role

in the following sections, where we determine which ntd-labellings for a given nonnegative integral

hcd solving (11)–(17) correspond to a topological realization of a Morse flow on a closed manifold.

Henceforth we assume that the fixed data (h0, . . . , hn, κ) satisfies the Poincaré-Hopf inequalities

for closed manifolds (6)–(10).
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3.2.1 Case n odd

Let n = 2i + 1. Then duality conditions render the first equation in (33) redundant for Betti

number vectors. The linear inequalities, nonnegativity constraints, duality and boundary conditions

imposed on γ define the Morse polytope Pκ(h0, . . . , hn). Instead of analyzing Pκ(h0, . . . , hn)

directly, it is advantageous to eliminate the fixed (γ0, γn) and duplicate (γn−j, for j = 1, . . . , i)

variables using the boundary and duality conditions, and deal instead with the reduced polytope

Pr
κ(h0, . . . , hn) ⊂ Ri. There is thus a 1-to-1 relationship between γ ∈ Pκ(h0, . . . , hn) and

γr = (γ1, . . . , γi) ∈ Pr
κ(h0, . . . , hn). Since the data (h0, . . . , hn, κ) is considered fixed, we will

henceforth drop explicit reference thereto in the polytope’s notation. The following facts concerning

Pr
κ were established in [3, 4].

The integral polytope Pr
κ is the convex hull of two of its faces: the top face Ft and F0 (the

projection of Ft onto the hyperplane γi = 0). Given γr ∈ Ft (and, consequently, γ ∈ Pκ), the

mapping Hcd defined in (34)–(43) below produces a solution hcd to the hcd
κ -system (11)–(17).

Hd
2i(γ) = −

2i∑
j=0

(−1)j+1(hj − γj) + κ, (34)

Hd
2i+1−`(γ) = (−1)`

2i+1−`∑
j=0

(−1)j+1(hj − γj), for 2 ≤ ` ≤ i (35)

Hc
2i+2−`(γ) = (−1)`

2i+1−`∑
j=0

(−1)j+1(hj − γj), for i + 2 ≤ ` ≤ 2i (36)

Hc
1(γ) = h0 − γ0 + κ (37)

Hd
1 (γ) = γ1 + Hc

2(γ)− κ (38)

Hd
` (γ) = γ` + Hc

`+1(γ), for 2 ≤ ` ≤ i− 1 (39)

Hc
` (γ) = γ` + Hd

`−1(γ), for i + 2 ≤ ` ≤ 2i− 1 (40)

Hc
2i(γ) = γ2i + Hd

2i−1(γ)− κ (41)

Hd
i (γ) = γi (42)

Hc
i+1(γ) = γi+1. (43)

If γr ∈ Pr
κ does not belong to Ft, we can still associate to it an hcd vector, albeit indirectly, by first

projecting γr onto the top face and then applying the above mapping to this projection.

Conversely, the mapping Γ(·) given by (44) returns a Betti number vector γ satisfying the

12



Morse-Conley inequalities, given a nonnegative integral solution hcd of (11)–(17).

Γ0(h
cd) = Γ2i+1(h

cd) = 1,

Γj(h
cd) =



hd
1 − hc

2 + κ, if j = 1,

hd
j − hc

j+1, if 2 ≤ j < i,

hd
i , if j = i,

hc
i+1, if j = i + 1,

−hd
j−1 + hc

j, if i + 2 ≤ j ≤ 2i− 1,

−hd
2i−1 + hc

2i + κ, if j = 2i.

(44)

The corresponding γr belongs to the hyperplane supporting Ft but is not necessarily confined to the

top face, in the sense that it is not guaranteed to be nonnegative and satisfy γ1 ≥ κ. The convex

hull of these γr’s may be considered an extended top face. For an illustration thereof see Figure 5.

The dots in the rectangle containing the top face are the reduced versions of the images under Γ of

the nonnegative integral hcd vectors that solve the hcd
κ -system.

γ1
γ2

γ3

Figure 5: Morse polytope and extended top face.

Incidentally, it can be shown, see the Appendix, that Hcd(Γ(hcd)) = hcd for solutions hcd to

the hcd
κ -system (11)–(17). Summarizing, these mappings establish a 1-to-1 relationship between the

solution set of the hcd
κ -system (11)–(17) and the extended top face. Consequently, their restrictions

also constitute 1-to-1 relationships between the vectors in the top face and a subset of solutions

of the hcd
κ -system (11)–(17). Finally, it was shown in [4] that γ∗r = Γ(h∗cd), the image under Γ of

the solution of the hcd
κ -system that satisfies the complementary conditions (32), is the maximum

element of Pr
κ.
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The definitions of Γi(h
cd) and Γi+1(h

cd) were arbitrary. Whereas with the choice in (44)

the reduced vector Γr(hcd) belongs to the affine hull of the top face of Pr
κ, if we were to let

Γi(h
cd) = hd

i − hc
i+1 = 0 = −hd

i + hc
i+1 = Γi+1(h

cd), the reduced vector would belong to the

hyperplane supporting F0. Of course, being Pr
κ convex, if γr ∈ Ft then the whole segment between

γr and its projection onto F0 is in Pr
κ. Thus, in a way, we’ve associated the whole segment between

one vector in Ft and its projection onto F0 with an hcd solution of (11)–(17). The establishment of

pairings will allow one to associate each integral γr on such a segment with a specific set of pairings

in a natural way.

Given a fixed abstract Lyapunov graph of Morse type associated with a solution hcd of the

hcd
κ -system, the vectors η, d and t give the null, dual and trivial number of pairs in a ntd-labelling

assigned thereto. Assume γ = Γ(hcd) belongs to Pκ. We are interested in determining which ntd-

labellings for hcd correspond to a topological realization of a Morse flow on a closed (2i+1)-manifold

with Betti number vector equal to γ. As mentioned, γr ∈ Ft, but the same question is posed for

the Betti number vectors corresponding to integral γr’s below the top face of the reduced polytope.

Recall that all the integral vectors in the segment between γr = Γr(hcd) and its projection on

F0 are associated to hcd. Now the (fixed) hcd vector will, in general, have several ntd-labellings that

may be assigned thereto. Below we construct G(d) that maps an ntd-labelling of a nonnegative

integral hcd, such that Γ(hcd) ∈ Pκ, to a Betti number vector satisfying (33), see Theorem 3.2. This

mapping spreads out evenly the ntd-labellings of hcd amongst the integral vectors in the segment

from Γr(hcd) and its projection on F0. So, if there are k ntd-labellings associated to hcd and m

integral vectors in the segment joining Γr(hcd) ∈ Pr
κ to its projection on F0, then there will be k/m

ntd-labellings associated to each of the integral vectors in the segment. Furthermore, we show in

Theorem 3.3 that, for each γr in this segment, exactly one of the k/m labellings can be realized

topologically.

Theorem 3.2 Let hcd be a nonnegative integral solution of (11)–(17), such that γ = Γ(hcd) belongs

to the Morse polytope Pκ. Let (η, d, t) be the null, dual and trivial pairs of an ntd-labelling of hcd.

Define the mapping G(d) as follows

G0(d) = Gn(d) = 1, (45)

G1(d) = Gn−1(d) = d1 − dn−2 + dκ, (46)

Gj(d) = Gn−j(d) = dj − dn−j−1, for j = 2, . . . , i− 1, (47)

Gi(d) = Gi+1(d) = di. (48)

Then G(d) is a Betti number vector and its associated reduced vector lies in the segment between γr

and its projection onto F0.
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Finally, the total number of pairings of hcd is evenly split amongst the integral vectors in this

segment.

Proof: The expression for d in (30)–(31) implies:

dj − dn−j−1 = hd
j − hc

j+1, for j = 1, . . . , i− 1 (49)

di = hd
i − αi, (50)

where 0 ≤ αi ≤ hd
i . Substituting (49)–(50) in (46)–(48), and using (20), we have:

G1(d) = Gn−1(d) = hd
1 − hc

2 + κ, (51)

Gj(d) = Gn−j(d) = hd
j − hc

j+1, for j = 2, . . . , i− 1, (52)

Gi(d) = Gi+1(d) = hd
i − αi. (53)

Comparing (45), (51), (52) and (53) with (44) it is easy to conclude that, if αi = 0, then

G(d) = γ = Γ(hcd), and therefore Gr(d) belongs to Ft. As αi varies from zero to hd
i , only the

middle components of G(d) change, going from hd
i to zero. Thus the reduced vector Gr(d) is a Betti

number vector.

The number of ntd-labellings associated with hcd is the product of the numbers of values the

various αj in (30)–(31) may assume, for j = 1, . . . , i. For each fixed value of αi we will have

a set of pairings associated with a reduced Betti number vector Gr(d) whose cardinality is the

product of the number of values αj may assume, for j = 1, . . . , i− 1. So each reduced Betti number

vector on the segment between γr and its projection will have the same number of ntd-labellings

associated therewith, since the ranges of the various αj are independent of each other. Therefore

the ntd-labellings are evenly spread out amongst the G(d)’s. �

Theorem 3.3 Let hcd be a nonnegative integral solution of (11)–(17), such that γ = Γ(hcd) belongs

to the Morse polytope Pκ. Let γ̃r be an integral vector in the segment between γr and its projection

onto F0. Then there is a unique ntd-labelling of hcd that can be realized topologically, that is, that

satisfies

γ̃1 = γ̃n−1 = d̃1 + d̃κ, (54)

γ̃j = γ̃n−j = d̃j + d̃n−j, for j = 2, . . . , i− 1, (55)

γ̃i = γ̃i+1 = d̃i, (56)

where d̃ is the vector of dual pairings of this unique ntd-labelling.

Furthermore, this is realizable on a generalized tori with γk factors of the type Sk × Sn−k for

k = 1, . . . , i.
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Proof: We’ve seen in the proof of Theorem 3.2 that G(d) = γ̃ for all vectors d in ntd-labellings

associated with hcd such that di = γ̃i, or, equivalently, αi = γ̃i − hd
i . The number of such ntd-

labellings is precisely the product of the number of values αj may assume, for j = 1, . . . , i − 1.

Using (30)–(31) we obtain, for ntd-labellings associated with hcd,

d1 + dκ = hd
1 − hc

2 + α1 + κ, (57)

dj + dn−j = hd
j − hc

j+1 + αj + αj−1, for j = 2, . . . , i− 1, (58)

di = hd
i − αi, (59)

where [hc
j+1 − hd

j ]
+ ≤ αj ≤ min{hc

j+1, h
d
n−j−1}, for j = 1, . . . , i − 1 and 0 ≤ αi ≤ hd

i . Notice that

the lower bound for αj, 1 ≤ j ≤ i, is always zero since, in this case, hc
2 − hd

1 = −γ1 + κ ≤ 0 and

hc
j+1 − hd

j = −γj ≤ 0, for j = 2, . . . , i − 1. Thus the unique ntd-labelling obtained by choosing

α̃j = 0, for j = 1, . . . , i− 1 and α̃i = γi − hd
i is such that d̃n−j−1 = 0, for j = 1, . . . , i− 1, and thus

such that G(d̃) = γ̃. In other words, for this unique ntd-labelling, the Betti number vector obtained

through (45)–(48) coincides with γ̃, and satisfies (54)–(56).

Each dual pair {hk, hn−k} is responsible for a factor of the type Sk × Sn−k in the resulting

manifold M . In [5] the dual gluing is explained in more detail and we proceed to describe it briefly.

The dual gluing of two handles of complementary indices q and (n− q), consists first in gluing

a q-handle hq trivially to some manifold M0 with boundary N0. We hence create a q-handlebody

Hq and the global result of the gluing is that{
M1 = M0 \ Hq

N1 = N0 ] ∂Hq = N0 ] (Sq × Sn−q−1)

Note that the attachment of this handle corresponds to a singularity of index q of the

disconnecting type, an hd
q , since the q-th Betti number of the boundary N1 increased by one because

of the summand Sq × Sn−q−1.

Next an (n− q)-handle hn−q is attached by identifying its attaching region Sn−q−1 ×Dq to the

belt region of hq:

∂hq ∩N1 = ∂hq \ (Sq−1 × int(Dn−q)) = Dq × Sn−q−1 = Sn−q−1 ×Dq

The resulting manifold is

M2 = M0 ] Sq × Sn−q,

and its boundary is

N2 = N0.
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This second handle corresponds to a singularity of index n − q of the connecting type, an hc
n−q,

since the (n− q − 1)-th Betti number of the boundary N2 decreased by one because the summand

Sq × Sn−q−1 vanishes after the gluing and N2 = N0. �

Under the correspondence defined in Theorem 3.2, the maximum element of Pr
κ, γ∗r = Γ(h∗cd),

corresponds to the ntd-labelling with (η∗, d∗) given by

d∗κ = κ,

(η∗j , η
∗
n−j−1, d

∗
j , d

∗
n−j−1) = (h∗cj+1, h

∗d
n−j−1, h

∗d
j − h∗cj+1, 0), for j = 1, . . . , i− 1,

(η∗i , d
∗
i ) = (0, h∗di ).

Thus this ntd-labelling satisfies η∗j η
∗
n−j−1 = 0 = d∗n−j−1, for j = 1, . . . , i− 1.

Example 3.4 hcd
κ -system and polytope for n = 7.

Let n = 2i + 1 = 7 and (h0, . . . , h7) = (1, 5, 11, 10, 5, 3, 4, 3). Thus κ ∈ {0, 1, 2}. There are 24

distinct integral nonnegative hcd’s that solve the hcd
κ -system, for each value of κ:

(hc
1, h

d
1, h

c
2, h

d
2, h

c
3, h

d
3, h

c
4, h

d
4, h

c
5, h

d
5, h

c
6, h

d
6) = (κ, 5− κ, 3, 8, 5, 5, 5, 0, 3, 0, 2− κ, 2 + κ)

+c1(0, 0, 1,−1, 0, 0, 0, 0,−1, 1, 0, 0)

+c2(0, 0, 0, 0, 1,−1,−1, 1, 0, 0, 0, 0),

where c1 ∈ {0, 1, 2, 3} and c2 ∈ {0, . . . , 5}. The corresponding γr’s belong to the affine hull of the

top face of the Morse polytope. Of these, 9 belong to Ft, see Figure 5.

The numbers of dual and null pairs associated with a given hcd are given by

(η1, η5, d1, d5) = (hc
2, h

d
5, h

d
1 − hc

2, 0) + α1(−1,−1, 1, 1)

= (3 + c1 − α1, c1 − α1, 2− κ + c1 + α1, α1), where [κ− 2− c1]
+ ≤ α1 ≤ c1, (60)

(η2, η4, d2, d4) = (hc
3, h

d
4, h

d
2 − hc

3, 0) + α2(−1,−1, 1, 1)

= (5 + c2 − α2, c2 − α2, 3− c1 − c2 + α2, α2), where [c1 + c2 − 3]+ ≤ α2 ≤ c2, (61)

(η3, d3) = (hc
4, 0) + α3(−1, 1)

= (5− c2 − α3, α3) for 0 ≤ α3 ≤ 5− c2. (62)

The reduced gamma vector associated with an ntd-labelling is

γ1 = d1 − d5 + κ = 2 + c1

γ2 = d2 − d4 = 3− c1 − c2

γ3 = d3 = α3.
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Letting κ = 1, c1 = 1 = c2, we have h̄cd = (1, 4, 4, 7, 6, 4, 4, 1, 2, 1, 1, 3). Then dκ = 1 and

(η, d) = (4−α1, 6−α2, 4−α3, 1−α2, 1−α1, 2+α1, 1+α2, α3, α2, α1), where 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1

and 0 ≤ α3 ≤ 4, so this hcd admits 20 distinct ntd-labellings. On the other hand, the reduced

Betti number vectors associated to the 20 ntd-labellings are not necessarily distinct. Applying the

formulas in Theorem 3.2 we have that the reduced vector associated to an ntd-labelling from this

set is given by γ̃ = (γ̃0, γ̃1, . . . , γ̃7) = (1, 1, 1, α3, α3, 1, 1, 1) and γ̃r = (γ̃1, γ̃2, γ̃2) = (1, 1, α3). Thus, if

α3 = 4, we obtain γ̃r = (1, 1, 4) ∈ Ft and if α3 = 0 we obtain γ̃r = (1, 1, 0) ∈ F0. Notice that γ̃ does

not depend on α1 nor α2. Thus there are 4 = 20/5 pairings (the number of possible values for α1

and α2) associated with each of the five integral γr’s in the segment between (1, 1, 0) and (1, 1, 4)

in Pr
1 . Furthermore, all five γr’s are associated with h̄cd.

The complementary solution is h∗cd = (κ, 5 − κ, 3, 8, 5, 5, 5, 0, 3, 0, 2 − κ, 2 + κ) and the ntd-

labelling that corresponds to the maximum Betti number vector has the following numbers of null

and dual pairs:

d∗κ = κ,

(η∗1, η
∗
5, d

∗
1, d

∗
5) = (3, 0, 2− κ, 0),

(η∗2, η
∗
4, d

∗
2, d

∗
4) = (5, 0, 3, 0),

(η∗3, d
∗
3) = (0, 5).

The top face Ft contains 9 of the 24 γr’s of the extended top face. Table 1 illustrates the

correspondence between γr, hcd and ntd-labellings established in Theorems 3.1, 3.2 and 3.3. �

3.2.2 Case n = 2i

Let n = 2i. Recall that the fixed data (h0, . . . , hn, κ) is assumed to satisfy the Poincaré-Hopf

inequalities (6)–(10). In particular, this means we assume that the alternate sum
∑

j=0(−1)jhj is

even if i is odd. Again we utilize boundary and duality constraints to eliminate variables γ0, γi+1,

. . . , γn from constraints in (33). But this time the first equation in (33) is not redundant, and we

may use it to eliminate γi, expressing it in terms of γ1, . . . , γi−1. The convex hull of the nonnegative

vectors that satisfy the remaining constraints form the reduced polytope Pr
κ ⊂ Ri−1 and bear a 1-

to-1 relationship with the vectors in the polytope Pκ ⊂ Rn+1, the convex hull of the Betti number

vectors satisfying (33). Notice that exactly one representative of each pair of duplicate variables is

present in Pr
κ, but the variable γi is not explicitly present.

This time there is a 1-to-1 relationship between the integral vectors in Pκ and a subset of the

nonnegative integral solutions (hc
1, h

d
1, . . . , h

c
i , β, hd

i , . . . , h
c
2i−1, h

d
2i−1) to the hcd

κ -system, established
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γ̄r h̄cd c1, c2

Range

of α1

Range

of α2

Range

of α3

#ntd-labellings

assoc. with

γ̄r h̄cd

(2, 3, 5) (0, 5, 3, 8, 5, 5, 5, 0, 3, 0, 2, 2) 0, 0 {0} {0} {0, . . . , 5} 1 6

(2, 2, 4) (0, 5, 3, 8, 6, 4, 4, 1, 3, 0, 2, 2) 0, 1 {0} {0, 1} {0, . . . , 4} 2 10

(2, 1, 3) (0, 5, 3, 8, 7, 3, 3, 2, 3, 0, 2, 2) 0, 2 {0} {0, 1, 2} {0, 1, 2, 3} 3 12

(2, 0, 2) (0, 5, 3, 8, 8, 2, 2, 3, 3, 0, 2, 2) 0, 3 {0} {0, 1, 2, 3} {0, 1, 2} 4 12

(1, 2, 5) (0, 5, 4, 7, 5, 5, 5, 0, 2, 1, 2, 2) 1, 0 {0, 1} {0} {0, . . . , 5} 2 12

(1, 1, 4) (0, 5, 4, 7, 6, 4, 4, 1, 2, 1, 2, 2) 1, 1 {0, 1} {0, 1} {0, . . . , 4} 4 20

(1, 0, 3) (0, 5, 4, 7, 7, 3, 3, 2, 2, 1, 2, 2) 1, 2 {0, 1} {0, 1, 2} {0, 1, 2, 3} 6 24

(0, 1, 5) (0, 5, 5, 6, 5, 5, 5, 0, 1, 2, 2, 2) 2, 0 {0, 1, 2} {0} {0, . . . , 5} 3 18

(0, 0, 4) (0, 5, 5, 6, 6, 4, 4, 1, 1, 2, 2, 2) 2, 1 {0, 1, 2} {0, 1} {0, . . . , 4} 6 30

Table 1: Reduced Betti number vectors on Ft, associated h̄cd and

with (η, d) such that di = h̄d
i , values of c1, c2, ranges of α1, α2,

α3, and number of distinct ntd-labellings, supposing κ = 0.

in the Appendix, given by the following mappings:

Γ0(h
cd) = Γ2i(h

cd) = 1,

Γj(h
cd) =



hd
1 − hc

2 + κ, if j = 1,

hd
j − hc

j+1, if 2 ≤ j ≤ i− 1,

β, if j = i,

−hd
j−1 + hc

j, if i + 1 ≤ j ≤ 2i− 2,

−hd
2i−2 + hc

2i−1 + κ, if j = 2i− 1.

(63)
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Hd
2i−1(γ) =

2i−1∑
j=0

(−1)j+1(hj − γj) + κ, (64)

Hd
2i−`(γ) = (−1)`

2i−∑̀
j=0

(−1)j(hj − γj), for 2 ≤ ` ≤ i, (65)

Hc
2i+1−`(γ) = (−1)`

2i−∑̀
j=0

(−1)j(hj − γj), for i + 1 ≤ ` ≤ 2i− 1, (66)

Hc
1(γ) = h0 − γ0 + κ, (67)

Hd
1 (γ) = γ1 + Hc

2(γ)− κ, (68)

Hd
` (γ) = γ` + Hc

`+1(γ), for 2 ≤ ` ≤ i− 1, (69)

Hc
` (γ) = γ` + Hd

`−1(γ), for i + 1 ≤ ` ≤ 2i− 2, (70)

Hc
2i−1(γ) = γ2i−1 + Hd

2i−2(γ)− κ, (71)

B(γ) = γi. (72)

The inequalities defining polytope Pr
κ may be rewritten as (see [4]):

(−1)k+1

k∑
j=1

(−1)j+1γj ≤

(−1)k+1

k∑
j=1

(−1)j+1γ∗j , for k = 1, . . . , i− 1 (73)

(−1)i

i−1∑
j=1

(−1)j+1γj ≥

⌈
(−1)i

(
1 +

1

2

i−1∑
j=0

(−1)j+1hj

)⌉
(74)

γj ≥ 0, for j = 2, . . . , i− 1 (75)

γ1 ≥ κ (76)

The reduced polytope is thus delimited by the two parallel hyperplanes containing the top face

Ft = Pr
κ ∩

{
γr |

i−1∑
j=1

(−1)j+1γj = 1 +
i∑

j=1

−1(−1)j+1γ∗j

}

and the bottom face

Fb = Pr
κ ∩

{
γr |

i−1∑
j=1

(−1)j+1γj = 1 +
1

2

2i∑
j=0

(−1)j+1hj

}
.
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The integral vectors in Pr
κ may be grouped in layers with respect to the slack of the inequality (74).

Twice this slack is precisely the value of γi (resp., γi − 1) if
∑2i

j=0(−1)jhj is even (resp., odd). This

inequality replaces the nonnegativity constraint 0 ≤ γi = (−1)i(
∑2i

j=0(−1)jhj − 2
∑i−1

j=0(−1)jγj)).

The bottom face contains the reduced Betti number vectors associated with γi = 0, or 1, depending

on the parity of the alternate sum of the hj’s, and the top face contains the Betti number vectors

with γi = γ∗i = β∗ (recall that γ∗ = Γ(h∗cd), where h∗cd is the complementary solution, is the

maximum vector of Pr
κ). Thus the top face is always nonempty, whereas the bottom one maybe

empty, see Example A.10 with n = 6 in the Appendix.

Figure 6 depicts an example of Pr
κ for n = 8 and κ = 0, with three layers of integral elements,

two of which are highlighted. The top face corresponds to γ4 = β = 2, while the bottom one

corresponds to γ4 = β = 0. All images of hcd’s under the mapping Γ are shown, but some of them

lie outside the polytope. There are 20 distinct hcd’s for each of the three possible possible values of

β, but only 10 γr’s in the top and middle layers, but only 9 in the bottom one. The data for this

polytope will be given in Example 3.7.

γ1
γ2

γ3

Figure 6: Top and bottom layers of reduced Morse polytope for n = 8.

Theorem 3.5 Let hcd be a nonnegative integral solution of (11)–(17), such that γ = Γ(hcd) belongs

to the Morse polytope Pκ. Let (η, d, t) be the null, dual and trivial pairs and b be the number of beta
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labels of an ntd-labelling of hcd. Define the mapping G(d, b) as follows

G0(d, b) = Gn(d, b) = 1, (77)

G1(d, b) = Gn−1(d, b) = d1 − dn−2 + dκ, (78)

Gj(d, b) = Gn−j(d, b) = dj − dn−j−1, for j = 2, . . . , i− 1, (79)

Gi(d, b) = b. (80)

Then G(d, b) = Γ(hcd) is a Betti number vector.

Furthermore, the whole set of labellings associated with hcd is mapped to the Betti number vector

G(d, b).

Proof: Equations (20), (25) and (30) imply

G1(d, b) = Gn−1(d, b) = hd
1 − hc

2 + κ (81)

Gj(d, b) = Gn−j(d, b) = hd
j − hc

j+1, for j = 2, . . . , i− 1 (82)

Gi(d, b) = b = β. (83)

Since the αj’s were cancelled out, the whole set of ntd-labellings associated with hcd is mapped to

the vector G(d, b). Finally observe that expressions (77), (81)–(83) coincide with the definition of

Γj(h
cd) given in (63), for j = 1, . . . , i. Given that Γ(hcd) satisfies duality conditions we conclude

that G(d, b) = Γ(hcd). �

Theorem 3.6 Let hcd be a nonnegative integral solution of (11)–(17), such that γ = Γ(hcd) belongs

to the Morse polytope Pκ.

Then there is a unique ntd-labelling of hcd that can be realized topologically, that is, that satisfies

γ1 = γn−1 = d̃1 + d̃κ, (84)

γj = γn−j = d̃j + d̃n−j, for j = 2, . . . , i− 1, (85)

γi = 2d̃i + b̃, (86)

where d̃ is the vector of dual pairings and b̃ is the number of beta labels of this unique ntd-labelling.

Furthermore,

1. if b̃ is even, this is realizable on a generalized tori of dimension 2i, i odd, with γk factors of

the type Sk × Sn−k, for k = 1, . . . , i.
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2. if b̃ is odd, this is realizable on a n = 2i, i even, dimensional manifold obtained as:

(a) a complex projective space CP2k, connected sum with a generalized tori of dimension

n = 4k, k odd, with γj factors for j odd, γj − 1 factors for j even, of the type Sj × Sn−j

for j = 1, . . . , 2k, provided γj ≥ 1, for j even.

(b) a generalized tori of dimension n = 4k, k even, connected sum with a Hamiltonian

projective space HPk, with γj factors for j 6≡ 0 mod 4, γj − 1 factors for j ≡ 0 mod 4,

of the type Sj × Sn−j for j = 1, . . . , 2k, provided γj ≥ 1, for j ≡ 0 mod 4 6.

Proof: Applying equations (20), (25) and (30) we obtain the following

γ1 = γn−1 = hd
1 − hc

2 + α1 + κ, (87)

γj = γn−j = hd
j − hc

j+1 + αj + αj−1, for j = 2, . . . , i− 1, (88)

γi = 2αi−1 + β, (89)

where [hc
j+1 − hd

j ]
+ ≤ αj ≤ min{hc

j+1, h
d
n−j−1}, for j = 1, . . . , i − 1. The lower bound for αj,

1 ≤ j ≤ i, is always zero since hc
2−hd

1 = −γ1 +κ ≤ 0 and hc
j+1−hd

j = −γj ≤ 0, for j = 2, . . . , i− 1.

Recalling (63) we conclude that (87)–(89) are satisfied if and only if αj = 0, for j = 1, . . . , i − 1.

This choice gives the unique ntd-labelling such that (84)–(86) hold.

We now proceed to realize the Morse polytope of dimension 2i. We first consider the case where

i is odd. There is a topological restriction that the alternating sum,
∑2i

j=1(−1)jhj, of the number

hj of index j singularities be even, which is equivalent to γi being even. Once this is assumed,

this implies that the number of beta labels, b̃, of the unique ntd-labelling, is even. These algebraic

beta labels on hi’s can be paired up conveniently as dual i-pairs. Hence, we realize the points on

the polytope as the connected sum of a generalized tori with γk factors of the type Sk × Sn−k for

k = 1, . . . , i− 1, and γi = 2d̃i + b̃ factors of the type Si × Si. The latter statement is proved as in

Theorem 3.3.

We now realize the Morse polytope of dimension 2i, with i even. We represent this dimension

as 2i = 4k. If the alternating sum
∑4k

j=0(−1)jhj is even, everything follows as in the prior case. If

the alternating sum is odd, then the hcd vector has β odd.

Hence, the number of beta labels, b̃, of the unique ntd-labelling is odd. These algebraic beta

labels on h2k’s can all be paired up conveniently as dual 2k-pairs except one which will be labelled

as a β-i singularity.

6there is one exception, when k = 4 it is better to use OP2 in the connected sum.
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Hence, we realize the points in the Morse polytope as a 4k-manifold, which will be a connected

sum of a projective space and a generalized tori. We consider the two cases where k is even and

odd separately below.

Due to topological restrictions, a β-i singularity h2k can only be realized in the presence of other

singularities, which we refer to as β-i chain. This β-i chain of singularities are realized in projective

spaces, ([1] and [16]).

If k is even it suffices that there exists a β-i chain of type:

(h4k, h4k−4, . . . , h4k+4, h2k(β-i), h2k−4, . . . , h4, h0),

where each entry of the β-i chain is equal to one. This β-i chain can be realized topologically by

HP k.

Otherwise, if k is odd, there must exist a β-i chain of type:

(h4k, h4k−2, . . . , h2k+2, h2k(β-i), h2k−2, . . . , h2, h0),

where each entry of the β-i chain is equal to one. In this case, the β-i chain can be realized

topologically by CP 2k.

Hence, the realization of a point on a Morse polytope is obtained in the case k even by a

connected sum of HP k and a generalized tori T . The tori T is obtained with γj factors for j 6≡ 0

mod 4 and γj − 1 factors otherwise, of the type Sj × S4k−j, for j = 1, . . . , 2k.

In the case k odd, the realization of a point on a Morse polytope is obtained by a connected

sum of CP 2k and a generalized tori T . The tori T is obtained with γj factors for j odd and γj − 1

factors for j even, of the type Sj × S4k−j, for j = 1, . . . , 2k.

The last two statements follow because of the handle decomposition of the aforementioned

projective spaces. The remaining dual pairs form the generalized tori T as was proved in

Theorem 3.3. �

Example 3.7 hcd
κ -system and polytope for n = 8.
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Let h = (2, 5, 5, 6, 5, 4, 3, 4, 2). The solutions to the hcd
κ -system are

hcd = (1 + κ, 4− κ, 1, 4, 1, 5, 1, 4, 0, 4, 0, 3, 0, 3− κ, 1 + κ)

+ c1(0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0)

+ c2(0, 0, 0, 0, 1,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0)

+ c3(0, 0, 0, 0, 0, 0, 1,−2, 1, 0, 0, 0, 0, 0, 0),

(90)

where κ ∈ {0, 1, 2, 3}, 0 ≤ c1 ≤ 3, 0 ≤ c2 ≤ 4 and 0 ≤ c3 ≤ 2. The inequalities that define the

reduced Morse polytope are

γ1 ≤ 3

γ1 − γ2 ≥ 0

γ1 − γ2 + γ3 ≤ 4

γ1 − γ2 + γ3 ≥ 2

γ1 ≥ κ

γ1, γ2, γ3 ≥ 0.

(91)

Three views of the polytope for the case κ = 0 are shown in Figure 7. The top and bottom faces

thereof are highlighted in the drawing of Figure 6.

γ1

γ2

γ3

γ1

γ2

γ3

γ1

γ3

Figure 7: Three views of polytope defined in Example 3.7.

The 10 integral vectors belonging to the top face of Pr
κ, the respective hcd, values of the

circulations (c3 = 0 for all of them), ranges of αj’s and number of ntd-labellings associated therewith

are shown Table 2.

Consider now h̃ = (2, 5, 5, 6, 6, 4, 3, 4, 2), that is, only the i-th entry of h changed, going from

5 to 6. This entry appears only in inequality (74). Since the argument inside the ceiling operator
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γ̄r h̄cd c1, c2

Range

of α1

Range

of α2

Range

of α3

#ntd-labellings

assoc. with γ̄r, h̄cd

(3, 3, 4) (1, 4, 1, 4, 1, 5, 1, 4, 0, 4, 0, 3, 0, 3, 1) 0, 0 {0} {0} {0} 1

(3, 2, 3) (1, 4, 1, 4, 2, 4, 1, 4, 0, 3, 1, 3, 0, 3, 1) 0, 1 {0} {0, 1} {0} 2

(3, 1, 2) (1, 4, 1, 4, 3, 3, 1, 4, 0, 2, 2, 3, 0, 3, 1) 0, 2 {0} {0, 1, 2} {0} 3

(3, 0, 1) (1, 4, 1, 4, 4, 2, 1, 4, 0, 1, 3, 3, 0, 3, 1) 0, 3 {0} {0, 1, 2, 3} {0} 4

(2, 2, 4) (1, 4, 2, 3, 1, 5, 1, 4, 0, 4, 0, 2, 1, 3, 1) 1, 0 {0, 1} {0} {0} 2

(2, 1, 3) (1, 4, 2, 3, 2, 4, 1, 4, 0, 3, 1, 2, 1, 3, 1) 1, 1 {0, 1} {0, 1} {0} 4

(2, 0, 2) (1, 4, 2, 3, 3, 3, 1, 4, 0, 2, 2, 2, 1, 3, 1) 1, 2 {0, 1} {0, 1, 2} {0} 6

(1, 1, 4) (1, 4, 3, 2, 1, 5, 1, 4, 0, 4, 0, 1, 2, 3, 1) 2, 0 {0, 1, 2} {0} {0} 3

(1, 0, 3) (1, 4, 3, 2, 2, 4, 1, 4, 0, 3, 1, 1, 2, 3, 1) 2, 1 {0, 1, 2} {0, 1} {0} 6

(0, 0, 4) (1, 4, 4, 1, 1, 5, 1, 4, 0, 4, 0, 0, 3, 3, 1) 3, 0 {0, 1, 2, 3} {0} {0} 4

Table 2: Reduced Betti number vectors on Ft, respective h̄cd,

values of c1, c2, ranges of α1, α2, α3, and number of distinct

ntd-labellings, supposing κ = 0.

goes from 2 to 3/2, the ceiling doesn’t change. This means that the reduced polytope associated

with h̃ and κ = 0 is the same as before. Nevertheless, the whole polytope would be different, since

γi assumes odd values instead of even ones. Thus, although Pr
κ(h̃) = Pr

κ(h), the first layer of Pr
κ(h̃)

is associated with γ4 = 1, the middle layer with γ4 = 3 and the top layer with γ4 = 5. �

Appendix

Theorem A.8 Let n = 2i + 1, hcd be a solution to the hcd
κ -system (11)–(17), Hcd the mapping

defined in (34)–(43) and Γ the mapping defined in (44). Then Hcd(Γ(hcd)) = hcd.

Proof: In the following we use the fact that Γ(hcd) satisfies (33), duality and boundary conditions,

established in [4].
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Calculating Hd
2i(Γ(hcd)):

Hd
2i(Γ(hcd)) =

2i∑
j=0

(−1)j(hj − Γj(h
cd)) + κ

= h0 − 1 + κ− h1 + hd
1 − hc

2 + κ +
i−1∑
j=2

(−1)j(hj − hd
j + hc

j+1)

+ (−1)i(hi − hd
i ) + (−1)i+1(hi+1 − hc

i+1)

+
2i−1∑

j=i+2

(−1)j(hj + hd
j−1 − hc

j) + (h2i + hd
2i−1 − hc

2i − κ)

= hc
1 − hc

1 − hc
2 +

i−1∑
j=2

(−1)j(hc
j + hc

j+1)

+ (−1)ihc
i + (−1)i+1hd

i+1

+
2i−1∑

j=i+2

(−1)j(hd
j + hd

j−1) + (hd
2i + hd

2i−1)

= (−1)i−1hc
i + (−1)ihc

i + (−1)i+1hd
i+1

+ (−1)i+2hd
i+1 + (−1)2i−1hd

2i−1 + hd
2i + hd

2i−1

= hd
2i. (92)
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Now let ` ∈ {2, . . . , i}:

Hd
2i+1−`(Γ(hcd)) = (−1)`

2i+1−`∑
j=0

(−1)j+1(hj − Γj(h
cd))

= (−1)`+1

2i+1−`∑
j=0

(−1)j(hj − Γj(h
cd))

= (−1)`+1

[
h0 − 1− h1 + hd

1 − hc
2 + κ +

i−1∑
j=2

(−1)j(hj − hd
j + hc

j+1)

+ (−1)i(hi − hd
i ) + (−1)i+1(hi+1 − hc

i+1)

+
2i+1−`∑
j=i+2

(−1)j(hj + hd
j−1 − hc

j)

]

= (−1)`+1

[
hc

1 − hc
1 − hc

2 +
i−1∑
j=2

(−1)j(hc
j + hc

j+1)

+ (−1)ihc
i + (−1)i+1hd

i+1 +
2i+1−`∑
j=i+2

(−1)j(hd
j + hd

j−1)

]
= (−1)`+1

[
(−1)2i+1−`hd

2i+1−`

]
= hd

2i+1−`, for 2 ≤ ` ≤ i. (93)

Calculating Hd
i (Γ(hcd)):

Hd
i (Γ(hcd)) = Γi(h

cd) = hd
i . (94)

Using (93), we may compute Hc
` (Γ(hcd)) for ` = 2i:

Hc
2i(Γ(hcd)) = Γ2i(h

cd) + Hd
2i−1(Γ(hcd))− κ

= −hd
2i−1 + hc

2i + κ + hd
2i−1 − κ

= hc
2i, (95)

and for ` ∈ {i + 2, . . . , 2i− 1}:

Hc
` (Γ(hcd)) = Γ`(h

cd) + Hd
`−1(Γ(hcd))

= −hd
`−1 + hc

` + hd
`−1

= hc
`, for i + 2 ≤ ` ≤ 2i− 1. (96)
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Furthermore,

Hc
i+1(Γ(hcd)) = Γi+1(h

cd)

= hc
i+1. (97)

In order to calculate Hc
k(Γ(hcd)), for k ∈ {2, . . . , i}, we use (36) with ` = 2i + 2− k:

Hc
k(Γ(hcd)) = (−1)2i+2−k

k−1∑
j=0

(−1)j+1(hj − Γj(h
cd))

= (−1)k+1

k−1∑
j=0

(−1)j(hj − Γj(h
cd))

= (−1)k+1

[
−hc

2 +
k−1∑
j=2

(−1)j(hc
j + hc

j+1)

]
= (−1)k+1

[
−hc

2 + hc
2 + (−1)k−1hc

k

]
= hc

k, for 2 ≤ k ≤ i. (98)

The last component of Hc is calculated using (37):

Hc
1(Γ(hcd)) = h0 − Γ0(h

cd) + κ

= h0 − 1 + κ

= hc
1. (99)

Having shown Hc(Γ(hcd)) = hc, we may compute Hd
` (Γ(hcd)), for ` ∈ {2, . . . , i}. Using (39), we

have

Hd
` (Γ(hcd)) = Γ`(h

cd) + Hc
`+1(Γ(hcd))

= hd
` − hc

`+1 + hc
`+1

= hd
` , for 2 ≤ ` ≤ i− 1, (100)

and, if ` = 1,

Hd
1 (Γ(hcd)) = Γ1(h

cd) + Hc
2(Γ(hcd))− κ

= hd
1 − hc

2 + κ + hc
2 − κ

= hd
1. (101)

�
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Theorem A.9 Let n = 2i, hcd be a solution to the hcd
κ -system (11)–(17), Hcd the mapping defined

in (64)–(72) and Γ the mapping defined in (63). Then Hcd(Γ(hcd)) = hcd.

Proof: In the following we use the fact that Γ(hcd) satisfies (33), duality and boundary conditions,

established in [4].

Calculating Hd
2i−1(Γ(hcd)):

Hd
2i−1(Γ(hcd)) =

2i−1∑
j=0

(−1)j+1(hj − Γj(h
cd)) + κ

= −h0 + 1 + κ + h1 − hd
1 + hc

2 − κ +
i−1∑
j=2

(−1)j+1(hj − hd
j + hc

j+1)

+ (−1)i+1(hi − β)

+
2i−2∑

j=i+1

(−1)j+1(hj + hd
j−1 − hc

j) + (h2i−1 + hd
2i−2 − hc

2i−1 − κ)

= −hc
1 + hc

1 + hc
2 +

i−1∑
j=2

(−1)j+1(hc
j + hc

j+1) + (−1)i+1(hc
i + hd

i )

+
2i−2∑

j=i+1

(−1)j+1(hd
j + hd

j−1) + hd
2i−2 + hd

2i−1

= (−1)ihc
i + (−1)i+1(hc

i + hd
i ) + (−1)i+2hd

i + (−1)2i−1hd
2i−2 + hd

2i−2 + hd
2i−1

= hd
2i−1. (102)

Now let ` ∈ {2, . . . , i}:

Hd
2i−`(Γ(hcd)) = (−1)`

2i−∑̀
j=0

(−1)j(hj − Γj(h
cd))

= (−1)`

[
h0 − 1− h1 + hd

1 − hc
2 + κ +

i−1∑
j=2

(−1)j(hj − hd
j + hc

j+1)

+ (−1)i(hi − β) +
2i−∑̀

j=i+1

(−1)j(hj + hd
j−1 − hc

j)

]
= (−1)`

[
hc

1 − hc
1 − hc

2 + hc
2 + (−1)i−1hc

i

+(−1)i(hc
i + hd

i ) + (−1)i+1hd
i + (−1)2i−`hd

2i−`

]
= hd

2i−`, for 2 ≤ ` ≤ i. (103)
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Calculation of B(Γ(hcd)):

B(Γ(hcd)) = Γi(h
cd) = β. (104)

Using (103), we may compute Hc
` (Γ(hcd)) for ` = 2i− 1:

Hc
2i−1(Γ(hcd)) = Γ2i1(h

cd) + Hd
2i−2(Γ(hcd))− κ

= −hd
2i−2 + hc

2i−1 + κ + hd
2i−2 − κ

= hc
2i−1, (105)

and for ` ∈ {i + 1, . . . , 2i− 2}:

Hc
` (Γ(hcd)) = Γ`(h

cd) + Hd
`−1(Γ(hcd))

= −hd
`−1 + hc

` + hd
`−1

= hc
`, for i + 1 ≤ ` ≤ 2i− 1. (106)

Using (66), we have:

Hc
k(Γ(hcd)) = (−1)2i+1−k

k−1∑
j=0

(−1)j(hj − Γj(h
cd))

= (−1)k+1

[
−hc

2 +
k−1∑
j=2

(−1)j(hc
j + hc

j+1)

]
= (−1)k+1

[
−hc

2 + hc
2 + (−1)k−1hc

k

]
= hc

k, for 2 ≤ k ≤ i. (107)

The last component of Hc is calculated using (67):

Hc
1(Γ(hcd)) = h0 − Γ0(h

cd) + κ

= h0 − 1 + κ

= hc
1. (108)

Having shown Hc(Γ(hcd)) = hc, we may compute the remaining components of Hd, using (69)

and (68):

Hd
` (Γ(hcd)) = Γ`(h

cd) + Hc
`+1(Γ(hcd))

= hd
` − hc

`+1 + hc
`+1

= hd
` , for 2 ≤ ` ≤ i− 1, (109)
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and, if ` = 1,

Hd
1 (Γ(hcd)) = Γ1(h

cd) + Hc
2(Γ(hcd))− κ

= hd
1 − hc

2 + κ + hc
2 − κ

= hd
1. (110)

�

Example A.10 hcd
κ -system and polytope for n = 6.

Let h̄ = (4, 5, 4, 3, 6, 7, 3). The general solution to hcd
κ -system

hcd = (3, 2, 0, 4, 2, 1, 3, 3, 5, 2)

+ c (0, 0, 1,−1, 0, 0,−1, 1, 0, 0), (111)

where 0 ≤ c ≤ 3. Thus (hc
3, h

d
3) = (2, 1) for all hcd vectors. In fact, only the subvector (hc

2, h
d
2, h

c
4, h

d
4)

changes in the various hcd solutions. The network is given in Figure 9.
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Figure 8: Network for the case n = 6.

The reduced polytope, depicted in Figure 9(a) for κ = 0, is defined by the inequalities (112). In

this case we can also draw a reduced polytope in all non-duplicate variables, that is, from γ1 up to

γi, since i = 3. The system of inequalities defining this polytope is given in (113), see Figure 9(b).
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γ1 ≤ 2

γ1 − γ2 ≥ −1

γ1 − γ2 ≤ 0

γ1 ≥ κ

γ1, γ2 ≥ 0.

(112)

γ1 ≤ 2

γ1 − γ2 ≥ −1

2γ1 − 2γ2 + γ3 = 0

γ1 ≥ κ

γ1, γ2, γ3 ≥ 0.

(113)

γ1

γ2

γ3 = 0

γ3 = 2

(a) Projection of P0 onto γ1, γ2.

γ1

γ2

γ3

(b) Projection of P0 onto γ1, γ2, γ3.

Figure 9: Reduced polytopes.

The line delimiting the top of Pr
0 corresponds to Betti number vectors with γ3 = 2, whereas

the one delimiting the reduced polytope on the bottom corresponds to γ3 = 0. The four integral

solutions to the hcd
κ -system given in (111) are mapped to the points highlighted on this lower line.

Notice that the one of the images (corresponding to the solution with c = 3) leads to a nonpositive

γ.

Now if we keep hj fixed, for j 6= 3, and increase h3 by 2, only the third inequality in (112)

changes, becoming γ1 − γ2 ≤ 1. Geometrically, the bottom line delimiting the reduced polytope

was translated downwards. For this value of h3 only two hcd are mapped onto feasible Betti number

vectors. Figure 10 shows this and other reduced polytopes obtained by further increasing h3, always

33



by an increment of 2. When h3 = 7 only one solution of the hcd
κ -system is mapped onto a feasible

γ. For h3 > 7 the constraint γ1 − γ2 ≤ 1 + 1/2
∑6

j=0(−1)j+1hj becomes redundant.

γ2

γ1

(a) h3 = 5.

γ2

γ1

(b) h3 = 7.

γ2

γ1

(c) h3 = 9.

Figure 10: Pr
0 for hj = h̄j, j 6= 3.
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