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Abstract

In complex diversity analysis, specially arising in genetics, genomics, ecology and

other high-dimensional (and sometimes low sample size) data models, typically sub-

group-decomposability (analogous to ANOVA decomposability) arises. In group-

divergence of diversity measures in a high-dimension low sample size scenario, it

is shown that Hamming distance-type statistics lead to a general class of quasi U-

statistics having a martingale (array) property, providing key to the study of general

(nonstandard) asymptotics. Neither the stochastic independence nor homogeneity

of the marginal probability laws play a basic role. A genomic MANOVA model is

presented as an illustration.

1 Introduction

For the classical analysis of variance (ANOVA) models, a decomposition of the total sum

of squares into two (or more) additive components provides the basis for statistical infer-

ence. Homoscedasticity and normality of errors insure the scope for exact (finite sample)
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inference. In multivariate (M)ANOVA, in addition, a larger sample size (depending on

the dimension) is generally needed. A greater challenge is encountered in the analysis of

high-dimensional (purely) qualitative data models which abound in genomics and bioin-

formatics. Typically, K, the number of positions (loci), is far larger than n, the number

of sequences, i.e., K >> n. In some cases, even n may be small. Moreover, for such

qualitative categorical data models, conventional discrete multivariate analysis tools are

of little use.

For qualitative data (and even for quantitative ones), diversity analysis has evolved

as a viable alternative for statistical modelling and analysis. To motivate our approach,

in the next section, we introduce adequate diversity measures and incorporate them in

a suitable MANOVA or group-divergence models for high-dimensional data models with

special emphasis on categorical ones. A general formulation of Hamming distance type

functionals underlies our approach. The sample counterparts of such functionals are suit-

able (generalized) U-statistics [3], and the proposed subgroup-decomposability has led to

a class of quasi U-statistics. Since we have in mind the scenario K >> n, it is quite

anticipated that standard statistical theory may not be appropriate here. Of particular

interest is the distribution theory of such quasi U-statistics under the hypothesis of the

homogeneity of several groups, which is the central theme of the present study.

Section 3 deals with the formulation of a general class of quasi U-statistics. A martin-

gale (array) characterization is established in Section 4. This is then incorporated in the

derivation of the main results. The curse of dimensionality problem arising in a genomics

setup is focused in Section 5. The Hoeffding decomposition of U-statistics [4; 9] is ex-

tended here to quasi U-statistics. This decomposition along with the martingale property

provide us with the necessary tool for the study of general (nonstandard) asymptotics

(when K >> n). The concluding section deals with some general remarks.

2 Preliminary Notions

Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random variables

(r.v.), not necessarily continuous or even quantitative, having a distribution F . Whenever

the Xi are quantitative, diversity or dispersion is measured in terms of the spread of F ;
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common measure is the standard deviation σF , where σ2
F = E(X − EX)2 may also be

written as

(2.1) σ2
F = Ed(X1, X2), where d(x, y) =

1
2
(x− y)2.

Suppose now that we have a second sample Y1, . . . , Ym drawn independently from a dis-

tribution G, so that σ2
G = Ed(Y1, Y2) = 1

2E(Y1 − Y2)2. Further, we denote by γ(F,G) =

E[d(X,Y )], and note that

(2.2) γ(F, G) =
1
2
(σ2

F + σ2
G) +

1
2
(EX − EY )2 ≥ 1

2
(σ2

F + σ2
G), ∀F,G,

where the equality sign holds only when EX = EY . This simple inequality directly extends

to the multi sample case and makes no specific homoscedasticity assumption.

Consider next a multivariate extension where the Xi = (Xi1, . . . , Xip)′ and Yi =

(Yi1, . . . , Yip)′ have mean vectors µ1 and µ2, and dispersion matrices Σ1 and Σ2 respec-

tively. Then, again, we have

(2.3) Γ(F, G) =
1
2
E{(X−Y)(X−Y)′} =

1
2
(Σ1 + Σ2) +

1
2
(µ1 − µ2)(µ1 − µ2)

′,

so that for every λ ∈ Rp,

λ′Γ(F, G)λ =
1
2
{λ′(Σ1 + Σ2)λ}+

1
2
‖λ′(µ1 − µ2)‖2(2.4)

≥ λ′
{

1
2
(Σ1 + Σ2)

}
λ, ∀F,G,

where the equality sign holds only when λ′(µ1 − µ2) = 0. If we choose a real-valued

function φ(A) of a positive semi-definite (p.s.d.) A as a norm, we like to confine ourselves

to a class of φ(·), such that

(2.5) φ(Γ(F,G)) ≥ 1
2
{φ(Σ1) + φ(Σ2)} , ∀φ ∈ Φ,

where the equality sign holds only when µ1 = µ2. Since the sample counterparts of Σ1

and Σ2 are both U-statistics and that of Γ(F, G) is a generalized U-statistic, (2.5) can be

incorporated in a MANOVA testing problem (for the homogeneity of the mean vectors)

without putting too much emphasis on the homogeneity of Σ1 and Σ2.

Among the possible choices of φ(·), the commonly used ones are (i) the generalized

variance criterion φ(A) = |A|, the determinant of A (usually raised to the power 1/p),
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(ii) the trace criterion φ(A) = traceA, and (iii) Roy’s [6] largest root criterion φ(A) =

chmax(A). Note that

(2.6) chmax(A) ≥ 1
p
trace(A) ≥ |A|1/p ≥ 0,

where |A| could be equal to zero only if A is not of full rank. For the trace criterion,

(2.4) leads to (2.5) in an additive way, and it holds in a sub-additive way for the Roy’s

criterion too. The classical likelihood ratio test for the equality of µ1 and µ2 is based on

the homogeneity assumption that Σ1 = Σ2 = Σ, so that whenever Σ is positive definite

(p.d.)

(2.7) Σ−1Γ(F, G) = Ip +
1
2
Σ−1(µ1 − µ2)(µ1 − µ2)

′,

and hence, the generalized variance criterion applies as well.

Let us now turn our attention to qualitative data models. Suppose now Xi can

have C qualitative (categorical) responses, labelled as 1, 2, . . . , C (≥ 2), with respec-

tive probabilities π1, π2, . . . , πC . Thus, F is a multinomial distribution represented by

πF = (π(F )
1 , π

(F )
2 , . . . , π

(F )
C )′, defined on the simplex SC−1 = {x ∈ [0, 1]C : x′1 = 1}.

Quantitative measures of central tendency and spread (dispersion) are not meaningful in

this context, yet diversity measures can be formulated in terms of the vector πF . [2] and

[8], apparently unaware of Gini’s work, proposed the measure

(2.8) I(πF ) = 1− π′F πF =
C∑

c=1

π(F )
c (1− π(F )

c ).

This is known as the Gini-Simpson index (of bio-diversity) and has a simple interpre-

tation if we let d(X1, X2) = I(X1 6= X2), then

(2.9) I(πF ) = EF [d(X1, X2)] = P{X1 6= X2} = 1− π′F πF .

In a similar manner, for the multinomial law G with a probability vector πG, we define

the Gini-Simpson index as I(πG). Let then

(2.10) I(F, G) = P{X 6= Y } = 1− P{X = Y } = 1− π′F πG.

It is easy to verify that

(2.11) I(F, G) ≥ 1
2
{I(πF ) + I(πG)} , ∀F,G,
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where the equality holds only when F = G (or πF = πG), both defined on a common

simplex SC−1. Thus, if one is basically interested in testing the homogeneity of πF and

πG against such a diversity alternative, it seems desirable to incorporate the measures

I(F,G), I(πF ) and I(πG) in the formulation. Sample counterparts of these measures are

all (generalized) U-statistics, and that would afford the possibility of using established

statistical methods for drawing statistical conclusions.

Consider now a multidimensional qualitative data model where the Xi = (Xi1, . . . , XiK)′

are K-vectors, each Xik taking on one of the C (≥ 2) qualitative responses labelled

as 1, 2, . . . , C. It is possible to allow the number of categories different for different

k (= 1, 2, . . . ,K), but for simplicity of presentation, we sacrifice the generality.

Let c = (c1, . . . , ck)′ with each ck taking on the labels 1, . . . , C, and let

(2.12) CK = {c : ck = 1, . . . , C; k = 1, . . . , K}

so that the cardinality of CK is equal to CK . Let

(2.13) π = {π(c) : c ∈ CK}; π(c) = P{X = c}, c ∈ CK .

The distribution F of X relates to this multidimensional law with the probability set π;

we denote it πF . Similarly, for Y with a distribution G also defined on CK , the probability

set is denoted by πG. We intend to compare πF and πG with emphasis on their diversities

aspects, specially when K is very large, K >> n, thus creating a challenging statistical

task.

In many applications there is a greater emphasis on marginal diversity measures which

are to be combined into a single overall measure, so that one could incorporate the K

marginal Gini-Simpson indexes in a way analogous to the trace criterion for the quantita-

tive case. With that in mind, we introduce the Hamming distance as

dH(X1,X2) = K−1
K∑

k=1

I(Xik 6= Xjk)

= K−1
K∑

k=1

d(Xik, Xjk),(2.14)

where d(x, y) = I(x 6= y) is the distance function underlying the Gini-Simpson index. Let

F (k), k = 1, . . . , K, stand for the marginal distributions of the Xik, k = 1, . . . , K, and
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let I(F (k)) be the corresponding Gini-Simpson indexes. Then, the population Hamming

distance HF for F is

(2.15) HF = EF [dH(X1,X2)] =
1
K

K∑

k=1

P{X1k 6= X2k} =
1
K

K∑

k=1

I(F (K)).

Thus, HF is a diversity measure for F based on the Hamming distance in (2.14). We

define HG in an analogous way. Further, let H(F, G) = E[dH(X,Y)], where X and Y

come respectively from F and G; it is the Hamming distance between F and G. Using

(2.11) for each marginal index, we obtain that

H(F, G) =
1
K

K∑

k=1

I(F (k), G(k)) ≥ 1
2

{
1
K

K∑

k=1

I(F (k)) +
1
K

K∑

k=1

I(G(k))

}

=
1
2
{HF +HG} ,(2.16)

where the equality sign holds only when F (k) ≡ G(k), ∀k = 1, . . . , K.

In order to cover both quantitative and qualitative data models, in a general multi-

dimensional setup, we consider a set of n independent random vectors X1, . . . ,Xn from

a distribution F , and define a parameter δ(F ) as a distance functional of F . Let δ(F (k))

be a similar functional of the k-th marginal distribution F (k), k = 1, . . . , K; δ((·)) =

(δ(F (1)), . . . , δ(F (K)))′. Then, we assume that δ(F ) is a convex combination of δ((·)). For

example, we may take a convex linear function:

(2.17) δ(F ) = λ′δ((·)) : λ ∈ R+K and λ′λ = 1.

Whenever the elements of δ((·)) satisfy (coordinatewise) an inequality similar to (2.11),

(2.17) also leads to the same for δ(F ). Next, we assume that the δ(F (k)) are estimable

parameters (or regular functionals) in the sense of [3]. Keeping in mind that the δ(F (k))

are distance functions (that typically applies to a pair of points), we assume that there is

a kernel of degree 2 and symmetric in its arguments such that

(2.18) δ(F (k)) =
∫ ∫

φ(x1, x2)dF (k)(x1)dF (k)(x2),

where φ(·) is nonnegative. Further, we assume that

(2.19) δ(F (k), G(k)) =
∫ ∫

φ(x1, x2)dF (k)(x1)dG(k)(x2)
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satisfy (2.11), i.e., for all F and G,

(2.20) δ(F (k), G(k)) ≥ 1
2

(
δ(F (k)) + δ(G(k))

)
, ∀k = 1, . . . , K.

This implies in turn that δ(F,G) ≥ {δ(F ) + δ(G)} /2, ∀F, G. Our proposed test for the

homogeneity of G groups with respect to their diversity measures is based on the δ(F )

and their sample counterparts which are all (generalized) U-statistics.

3 A Class of Quasi U-Statistics

Consider G (≥ 2) independent groups of samples drawn from distributions F1, . . . , FG, of

sizes n1, . . . , nG respectively, where all the Fg are K-dimensional and defined on a common

probability space. As in (2.17)-(2.20), consider a nonnegative kernel φ(x,y) (expressible

as a convex linear compound of the componentwise kernels φ(xk, yk), k = 1, . . . ,K). Let

Xg1, . . . ,Xgng denote the observations (vectors) in the g-th group, g = 1, . . . , G, and let

(3.1) U (g)
ng

=
(

ng

2

)−1 ∑

1≤i<j≤ng

φ(Xgi,Xgj), g = 1, . . . , G.

Note that the U
(g)
ng are U-statistics [3] and are unbiased estimators of δ(Fg), 1 ≤ g ≤ G.

Similarly, let

(3.2) U (g,g′)
ng ,ng′ =

1
ngng′

ng∑

i=1

ng′∑

j=1

φ(Xgi,Xg′j), 1 ≤ g < g′ ≤ G.

These generalized U-statistics are unbiased estimators of δ(Fg, Fg′), which satisfy (2.20).

For notational simplicity, we let n = n1 + · · · + nG and denote U
(g)
ng and U

(g,g′)
ng ,ng′ , by Un,g

and Un,gg′ respectively. Then, note that by definition, for the combined sample Un, we

have

(3.3) Un =
G∑

g=1

ng(ng − 1)
n(n− 1)

Un,g + 2
∑

1≤g<g′≤G

ngng′
n(n− 1)

Un,gg′,

which corresponds to the within groups and between groups components. However, to

include the classical MANOVA as a special case, we proceed as in [7] and [5], and consider

the following sub-group decomposition:

Un =
G∑

g=1

ng

n
Un,g +

∑

1≤g<g′≤G

ngng′
n(n− 1)

{2Un,gg′ − Un,g − Un,g′}

= Wn + Bn, say.(3.4)
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In (3.3), the last term is nonnegative, while in (3.4), Bn could be both positive and neg-

ative. Under the hypothesis of homogeneity of the G groups, E(Bn) = 0, while E(Bn) ≥ 0

under alternatives. Hence, we intend to use Bn as an appropriate test statistic. We need

to standardize Bn appropriately so that it has a nondegenerate distribution.

If F1, . . . , FG are not all the same, E(Bn) > 0. Further, Bn, being a linear combination

of generalized U-statistics, is attracted by the central limit theorem, and hence n1/2(Bn−
E(Bn)) will be asymptotically normal. The situation will be somewhat different when

F1 ≡ · · · ≡ FG (i.e, the G groups are homogeneous). Our main interest centers on this

nonstandard situation. First, EBn = 0, and Bn can thereby assume both negative and

positive values. Secondly, these generalized U-statistics are then stationary of order one

(in the sense of [3]) for which generally non-normal asymptotic distributions prevail. To

explore this situation fully, we note that when the G groups are homogeneous, Xgi, 1 ≤
i ≤ ng, 1 ≤ g ≤ G are i.i.d.r.v.’s with a common distribution F . We let

(3.5) φ1(x) = E[φ(X1,X2)|X1 = x]; φ0 = E[φ(X1,X2)].

Then, we write

φ(X1,X2) = φ0 + {φ1(X1)− φ0}+ {φ1(X2)− φ0}

+{φ(X1,X2)} − φ1(X1)− φ1(X2) + φ0}

= φ0 + ψ1(X1) + ψ1(X2) + ψ2(X1,X2),(3.6)

which is the Hoeffding decomposition of U-statistics [9]. The nice properties are (i) ψ1(Xi)

are i.i.d r.v.’s centered at 0, (ii) ψ2(Xi,Xj) are orthogonal and also centered at 0, so that

E[ψ2(X1,X2)ψ2(X3,X4)] = 0 and

(3.7) E[ψ2(X1,X2)ψ2(X1,X3)] = 0,

and (iii) relabelling the Xgi, 1 ≤ i ≤ ng, 1 ≤ g ≤ G simply as X1, . . . ,Xn with the

convention that the first n1 indexes relate to group 1, the next n2 to group 2, ..., the last

nG to group G, we may rewrite Bn equivalently as

(3.8)
(

n

2

)−1 ∑

1≤i<j≤n

ηnijψ2(Xi,Xj),
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where

(3.9) ηnij =





1, if i and j come from different groups,

− (n−ng)
(ng−1) , if i and j are both from group g, 1 ≤ g ≤ G.

Thus,

(3.10)

∑

1≤i<j≤n

ηnij = 0,

∑

1≤i<j≤n

η2
nij =

(
n

2

)
(G− 1)

{
1 + 1

n
∑G

g=1
n− ng

(ng − 1)(G− 1)

}
.

Motivated by (3.8)-(3.10), in the next section, we proceed to study a general class of quasi

U-statistics and their asymptotic properties.

4 Martingale Property

We consider a general statistic

(4.1) Tn =
∑

1≤i<j≤n

ηnijφ(Xi,Xj), n ≥ 4,

where φ(x, y) is a first-order stationary kernel, centered at 0, and forms an orthogonal

system for which

E[φ(X1,X2) | X1] = φ1(X1) = 0 a.e.,(4.2)

E[φ(X1,X2)φ(X1,X3)] = 0, Eφ2(X1,X2) < ∞,(4.3)

and the Xi are i.i.d.r.v.’s with a distribution F . Further, the (nonstochastic) ηnij , 1 ≤ i <

j ≤ n, satisfy

(4.4)
∑

1≤i<j≤n

ηnij = 0,
∑

1≤i<j≤n

η2
nij = Mn(↗ in n ≥ 2).

Let Znj =
∑j−1

i=1 ηnijφ(Xi,Xj), j = 2, . . . , n and let

(4.5) Tnk = Zn2 + . . . + Znk, 2 ≤ k ≤ n; Tn = Tnn.

Further, let Bnk = B(Xi, i ≤ k) be a nondecreasing (in j) sub-sigma field generalized by

the Xi, i ≤ k, for 2 ≤ k ≤ n.
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Theorem 4.1 For first-order stationary kernel, under (4.1)-(4.3), {Tnk,Bnk : 2 ≤ k ≤ n}
is a (zero mean) martingale (array), closed on the right by Tn.

Proof

We need to show that

(4.6) E(Tn | Bnk) = Tnk, a.e., ∀2 ≤ k ≤ n.

Since Tn = Tnk +
∑n

j=k+1 Znj , for k < n, it suffices to show that

(4.7) E(Znk+1 | Bnk) = 0 a.e., for every k < n.

Towards this note that

E(Znk+1 | Bnk) =
k∑

i=1

ηnik+1E(φ(Xi,Xk+1) | Bnk)

=
k∑

i=1

ηnik+1φ1(Xi) = 0 a.e.,(4.8)

by (4.2), for every k = 1, . . . , n− 1. ¤

Having the martingale (array) characterization, we are naturally tempted to incor-

porate suitable martingale array central limit theorems for our study of asymptotics for

Tn in (4.1). In this context, we also note that the Xi are i.i.d.r.v.’s, so that their joint

distribution remains invariant under any permutation of the indices 1, 2, . . . , n (among

themselves); this (discrete) uniform probability measure on n! equally likely permutations

is denoted by Pn. Also, let

U (2)
n = EPn [φ(X1,X2)]

=
(

n

2

)−1 ∑

1≤i<j≤n

φ(Xi,Xj);(4.9)

U (3)
n = EPn [φ(X1,X2)φ(X1,X3)]

=
1

n(n− 1)(n− 2)

∑

1≤i6=j 6=l≤n

φ(Xi,Xj)φ(Xi,Xl);(4.10)

U (2,2)
n = EPn [φ2(X1,X2)]

=
(

n

2

)−1 ∑

1≤i<j≤n

φ2(Xi,Xj).(4.11)
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Note that Pn is a conditional (given the collection of n observations) probability mea-

sure, and U
(2)
n , U

(3)
n and U

(2,2)
n are all suitable U-statistics [3]. Then

EPn(Tn) =
∑

1≤i<j≤n

ηnijEPn(φ(Xi,Xj))

=


 ∑

1≤i<j≤n

ηnij


U (2)

n

= 0 a.e., by (4.2).(4.12)

This also implies that E(Tn) = E(EPn(Tn)) = 0. In the same way, defining

U (4)
n = EPn{φ(X1,X2)φ(X3,X4)}(4.13)

= {n[4]}−1
∑

1≤i 6=j 6=r 6=s≤n

φ(Xi,Xj)φ(Xr,Xs),

we obtain that

VPn(Tn) = EPn(T 2
n) =

∑

1≤i<j≤n

η2
nijU

(2,2)
n +

+
∑∗

1
ηnijηnrsU

(3)
n +

∑∗
2
ηnijηnrsU

(4)
n ,(4.14)

where the summation
∑∗

1 extends over n[3] terms: (i, j), (r, s) for which exactly one index

is common between (i, j) and (r, s), and
∑∗

2 over the remaining
(
n
2

)(
n−2

2

)
terms for which

i, j, r, s are all distinct. As
∑

1≤i<j≤n ηnij = 0, we have

(4.15)
∑∗

1
ηnijηnrs = −

∑

1≤i<j≤n

η2
nij −

∑∗
2
ηnijηnrs,

and further
∑∗

2 ηnijηnrs = O(M3/2
n ) if not O(Mn). Thus,

(4.16) EPn(T 2
n) =

(
U (2,2)

n − U (3)
n

) ∑

1≤i<j≤n

η2
nij +

(
U (4)

n − U (3)
n

)∑∗
2
ηnijηnrs.

Now, under the condition τ2 = Eφ2(Xi,Xj) < ∞, EU
(3)
n = 0 = EU

(4)
n , and

(4.17) U (2,2)
n /τ2 → 1 a.s./L1 − norm, as n →∞,

while U
(3)
n and U

(4)
n are stationary of order 2 and 3 respectively, so that if Eφ4(X1,X2) < ∞

then letting (WLOG) Mn = O(n2).

(4.18) E(U (3)
n )2/τ2

2 = O(n−3); E(U (4)
n )2/τ2

2 = O(n−4).
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Therefore, |U (4)
n − U

(3)
n |/τ2 = Op(n−3/2), so that writing V ∗

n = U
(2,2)
n − U

(3)
n , we have

(4.19) V ∗
n Mn/E(T 2

n)
p→ 1, as n →∞.

Motivated by these findings, we intend to study the asymptotics for Tn. In addition to

(4.4) , we assume that as n →∞,

(4.20)
∑

1≤i6=j<k≤n

η2
nikη

2
njk

/
M2

n → 0 ,

(4.21)
∑

1≤i<j≤n

η4
nij

/
M2

n → 0 .

(Whenever max{|ηnij | : 1 ≤ i < j ≤ n} = o(
√

Mn), both (4.20) and (4.21) hold).

Theorem 4.2 If φ(·, ·) is centered, stationary of order 1, Eφ4(X1,X2) < ∞, and if (4.2)-

(4.4) and (4.20)-(4.21) hold, then as n →∞,

(4.22) Ln = (MnV ∗
n )−1/2Tn

D−→ N(0, 1).

Proof: Led by Theorem 4.1, we let

(4.23) vnk = E(Z2
nk | Bnk−1), 2 ≤ k ≤ n and Vn =

n∑

k=2

vnk.

Then, by the martingale property (Theorem 4.1), for every n ≥ 2,

(4.24) E(Vn) =
n∑

k=2

E(Z2
nk) = E

(
n∑

k=2

Znk

)2

= E(T 2
n).

Further, note that for every k ≤ n,

(4.25) vnk =
∑

1≤i<k

η2
nikψ2(Xi) +

∑

1≤i6=j<k

ηnikηnjkψ3(Xi,Xj),

where

(4.26) ψ2(Xi) = E[φ2(Xi,Xk) | Xi] (⇒ Eψ2(Xi) = τ2);

(4.27) ψ3(Xi,Xj) = E[φ(Xi,Xk)φ(Xj ,Xk) | Xi,Xj ] (i 6= j),
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so that E(Xi,Xj) = EU
(3)
n = 0, ∀ i 6= j. Therefore, Evnk = τ2

∑
1≤i<k η2

nik, ∀ k ≤ 2, and

hence, EVn = ET 2
n , as expected from Theorem 4.1. Further,

Vn/ET 2
n =

∑

1≤i<j≤n

η2
nijψ2(Xi)/{Mnτ2}

+
∑

1≤i6=j<k≤n

ηnikηnjkψ3(Xi,Xj)/{Mnτ2}

= An + Bn, say.(4.28)

By (4.21) and (4.26), EAn = 1 and Var(An) → 0 as n → ∞, so that An
P→ 1 as n → ∞.

Also, EBn = 0, and

(4.29) EB2
n =

(
E[ψ2

3(X1,X2)]/τ2
2

)

 ∑

1≤i6=j<k≤n

η2
nikη

2
njk


 /M2

n.

Thus, noting that Eψ2
3(X1,X2) ≤ Eφ4(X1,X2) < ∞, by (4.20), we have EB2

n → 0 as

n →∞ so that Bn = op(1). Thus,

(4.30) Vn/E(T 2
n)

p→ 1, as n →∞.

To establish (4.22), by virtue of (4.19) and (4.30), we are in a position to use the martingale

(array) central limit theorem [1], and it suffices to verify the Lindeberg condition: ∀ ε > 0,

as n →∞,

(4.31)
n∑

k=2

E(Z2
nkI(|Znk| > ε

√
E(T 2

n)))/E(T 2
n) → 0.

Since the Znk have finite moments at least up to the order 4, instead of the Lindeberg condi-

tion, we may as well use (the more restrictive) Liapounoff condition
∑n

k=2 E(Z4
nk)/[E(T 2

n)]2 →
0 as n →∞, and the proof of this follows along the lines of (4.24)-(4.30). ¤

Remark: In the specific context of subgroup decomposability, treated in Section 3,

the |ηnij | are all bounded (and O(1)), and hence, (4.4) , (4.20) and (4.21) all hold, without

requiring any further condition. As for the moment condition on φ(·, ·), we may note

that φ(·, ·) is a function of a vector kernel depending on the K coordinates of the Xi.

This requires some delicate appraisal, and in the next section, we shall examine the case

of Hamming distance based measures allowing inter-positions dependence to a certain

extent.
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5 The Genomics Case

Genomic sequences differ from the usual statistical data for two main reasons. First, be-

cause of their functional characteristics, inter-positions independence is optimistic at best.

Sites relate by their molecular use and intricate (deterministic and stochastic) associations

should be expected. Another source of complexity added to the analysis arises from the

fact that it is not unusual to have a sample of n sequences of inidvidual lengths K, where

K >> n.

In this section, we show that under mixing conditions one still has CLT for Tn. Theorem

5.1 shows that Tn is asymptotically normal when both K and n are large. If K >> n

(and n is even possibly bounded), one can not apply directly the martingale CLT but one

still has a CLT for Tn, as long as some very mild moment and mixing conditions hold.

Theorem 5.1 Let X1,X2, . . . ,Xn be a sequence of i.i.d. K×1 categorical random vectors.

Let φ(·, ·) be a first order U-statistics kernel such that

(5.1) φ(Xi,Xj) =
1
K

K∑

l=1

φ?(Xil,Xjl),

for some first order U-statistics kernel φ?(·, ·). Let Tn be defined by (4.1), and assume that

all conditions in Theorem 4.1 hold.

Suppose that {ηnij , 1 ≤ i < j ≤ n , n ≥ 1} is a triangular array of random variables

independent of {X1,X2, . . . ,Xn , n ≥ 1}, and

(5.2)
∑

1≤i<j≤n

η2
nij −Mn = op(Mn) as n →∞.

Suppose also that

(5.3)
∑

1≤l<m≤K

E [φ?(Xli,Xlj)φ?(Xmi,Xmj)] = O(K) as K →∞.

Then

(5.4) (MnV ?
n )−1/2Tn

D→ N(0,1) as n →∞ and K →∞,

where V ?
n = U

(2,2)
n − U

(3)
n , and U

(2,2)
n , U

(3)
n are defined respectively by (4.9) and (4.10).
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Proof

For the time being, we take the array {ηnij : 1 ≤ i < j ≤ n}, n ≥ 2, such that
∑

1≤i<j≤n ηnij = 0 and
∑

1≤i<j≤n η2
nij =

(
n
2

)
. We also take K ∈ N.

By Theorem 4.1, the martingale characterization of Tn is achieved and, by Theorem

4.2, (5.4) follows.

Next, consider the case of stochastic {ηnij , 1 ≤ i < j ≤ n}. As in the proof of

Theorem 4.1, we take (WLOG) Mn =
(
n
2

)
. We assume that the ηnij are independent of

the Xi, i ≤ n, so that conditionally on ηn = (ηnij , 1 ≤ i < j ≤ n), the permutation law Pn

remains intact. Let then η̄n =
(
n
2

)−1{∑1≤i<j≤n ηnij}, so that letting η◦nij = ηnij − η̄n, 1 ≤
i < j ≤ n, we have

∑
1≤i<j≤n η◦nij

= 0. Then, we can write

(5.5) Tn =
∑

1≤i<j≤n

η◦nij
φ(Xi,Xj) +

(
n

2

)
η̄nU (2)

n ,

where U
(2)
n =

(
n
2

)−1 ∑
1≤i<j≤n φ(Xi,Xj) → 0 a.s./L2-norm, and U

(2)
n = Op(n−1). As such,

if with n →∞,

(a) η̄n
p→ 0, and

(b)
∑

1≤i<j≤n η◦nij

2/
(
n
2

) p→ 1,

then letting T ◦n =
∑

1≤i<j≤n η◦nij
φ(Xi,Xj), we have

(
n

2

)−1/2

Tn =
(

n

2

)−1/2

T ◦n +
(

n

2

)1/2

η̄nU (2)
n ∼

(
n

2

)−1/2

T ◦n ,

so that by the Slutsky’s Theorem:

(MnV ?
n )−1/2Tn

D−→ N(0, 1).

Suppose now that K varies. If the weights are non-stochastic, following (5.1), and

recalling that 0 < τ2 = Eφ2(Xi,Xj) < ∞,

(5.6) Kτ2 = τ̄2 +
2
K

∑

1≤l<m≤K

η2
n12E [φ?(X1l,X2l)φ?(X1m,X2m)] ,

where τ̄2 = (1/K)
∑K

l=1 η2
n12E

[
φ?2(X1l,X2l)

]
. By (5.3), one has a finite limit for (5.6)

when K →∞. Let τ0 = limK→∞Kτ2. Then,

KU (4)
n

p−→ τ0 as n →∞ and K →∞
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and (5.4) follows by [1]. So that, we have as n →∞,

(MnV ?
N )−1/2Tn

D−→ N(0, 1).

If we then consider random coefficients {ηnij ; i, j = 1, 2, . . . , n; n ≥ 2}, (5.4) will follow

as well, because of (5.2) and (5.5). ¤

Theorem 5.2 Let Tn be defined as in Theorem 5.1. Suppose that (5.3) holds. Then,

Tn/
√

V ar(Tn) D→ N(0, 1),

as K →∞ ( either if n →∞, n/K → 0, as K →∞ or if n is bounded).

Proof

We apply Theorem 2.1 from [10]. Notice that Tn can be written as Tn = K−1
∑K

k=1 tnk,

where tnk =
∑

1≤i<j≤n ηnijφ
∗(Xik,Xjk). We can take Sn = K−1

∑K
k=1 xnk, where xnk =

tnk/
√(

n
2

)
.

Since φ∗(·, ·) is bounded (as a function of categorical values), take, for every k ≥ 1,

|φ(X1k,X1l)| ≤ M w.p.1. Then, |xnk| ≤ M w.p.1. and ‖∑a+b
j=a+1 xnk‖2+ε ≤ bM . Hence,

the rate of growth of the partial sums (2 + ε)-norm is guaranteed.

The mixing condition (5.3) ensures the l-mixing [11]. Moreover, (5.3) also implies that

V ar(Sn) = O(K) → ∞ as K → ∞ and that the covariances are absolutely summable.

Therefore, the CLT holds for Tn at a rate O(
√

K) if n is bounded or O(n
√

K) if both

K →∞ and n →∞. ¤

Using the notation from Section 3, Hoeffiding’s decomposition assures that φ(·, ·) can

be written as

φ(Xgi,Xgj) = θgg + ψ1g(Xgi) + ψ1g(Xgj) + ψ2gg(Xgi,Xgj)

φ(Xgi,Xg′j) = θgg′ + ψ1g′(Xgi) + ψ1g(Xg′j) + ψ2gg′(Xgi,Xg′j),

for g, g′ = 1, . . . , G, where all the ψ’s are centered.

Note that θgg = 0 and ψ1g(Xgi) = ψ1g(Xgj) = 0 a.e. . Therefore one can write

Tn =
G∑

g=1

∑

i∈Ig ,j∈Ig′

ηnijψ2gg(Xgi,Xgj) +
∑

g<g′

∑

i∈Ig ,j∈Ig′

ηnijψ2gg′(Xgi,Xgj) +

∑

g<g′

∑

i∈Ig ,j∈Ig′

ηnijθ(gg′) +
∑

g<g′

∑

i∈Ig ,j∈Ig′

ηnij

[
ψ1g′(Xgi) + ψ1g(Xgj)

]
.(5.7)
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Theorems 4.1, 4.2, 5.1 and 5.2 provide the asymptotic behavior of Tn for several setups,

including n →∞ and/or K →∞, deterministic or random coefficients ηnij . These results

however assume a sample drawn from a single situation. For hypothesis testing, one needs

to deal with multipopulation samples. Theorem 5.3 summarizes the results for Pitman

alternatives.

Theorem 5.3 Let φ(·, ·) be centered, stationary of order 1, Eφ4(Xi,Xj) < ∞. Suppose

n = n1 + . . . + nG, for which ni is the size of the sample drawn from the i-th distribution,

i = 1, . . . , G. Let Eφ(Xi,Xj) = θrs, where Xi and Xj are drawn from the r-th and s-

th populations, respectively. Consider the hypotheses H0 : θrs = 0 ∀r, s and H1 : ∃r 6=
s s.t. θrs 6= 0.

Suppose the following moment conditions whithin each distribution, as follows,

E[φ(Xi,Xj) | Xi] = 0 a.e.,(5.8)

E[φ(Xi,Xj)φ(Xi,Xk)] = 0, Eφ2(Xi,Xj) < ∞,(5.9)

for all i 6= j 6= k.

Suppose also that one of the following set of conditions holds:

(A.1) - (4.4), (4.20) and (4.21) hold and n →∞.

(B.1) - {ηnij , 1 ≤ i < j ≤ n, n ≥ 1} is a triangular array independent of X1, . . . ,Xn

and n,K →∞.

(B.2) - (5.3) holds

(C.1) - {ηnij , 1 ≤ i < j ≤ n, n ≥ 1} is a triangular array independent of

X1, . . . ,Xn.

(C.2) - K →∞ ( either if n →∞, n/K → 0, as K →∞ or if n is bounded).

Finally, suppose a sequence of hypotheses {Hn} contiguous to H0. Then,

(5.10) PHn

(
Tn√
MnV ∗

n

> qα

)
→ 1− Φ(qα −∆) ,

where EHnTn −
√

Mnτ0∆ → 0.
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Proof

We will proceed WNLOG under conditions from Theorem 5.1 and Mn =
(
n
2

)
.

From (5.7),

Tn − ETn = Tn1 + Tn2,

where the ψ1g, ψ1g′ etc. appear in Tn1 in a linear (contrast) form, while Tn2 is expressible

as
G∑

g,g′=1

∑

{i,j}
cgg′ijψ2gg′(Xgi,Xg′j)

where the cgg′ij are nonstochastic. Note that under {Hn},

E
[
ψ2gg′(Xgi,Xg′j)− ψ2gg(Xgi,Xg′j)

]2 → 0, as n → 0.

Also,

E
[
ψ1g′(Xgi)− ψ1g(Xgi)

]2 → 0, as n → 0.

Therefore, noting that ETn has the right order under Hn to match the variance factor,

Tn1 can be approximated up to the principal term by T 0
n1 in the null case, and similarly

Tn2, we obtain the desired result. ¤

Remark: For the Hamming distance case, φ(Xgi, Xg′j) and ψ1g′(Xgi) are related by

(3.6). For alternatives such that
√

Kθgg′/
√

n2τ0 = O(1), ∀g, g′ = 1, . . . , G, ψ1g′(Xgi) are

functionals of the empirical distribution functions which differ at most by O((n
√

K)−1).

Hence in those cases the contiguity condition in Theorem 5.3 can be relaxed to a weaker

condition on θgg′ .

6 Discussion

A general class of quasi U-statistics is presented. We have proven that this class has a

martingale array property and derive the asymptotic normality under a general set of

conditions, for either large sample and/or high-dimensional setups.

The asymptotic normality results are valid for a large class of kernels. In particular,

ANOVA-type decomposition tests in genomic studies as well as other diversity analysis

can be theoretically justified by these results. One such case of special interest is that of

Hamming distance genomic decomposition tests [7; 5].
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