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Abstract

We describe the statistics of the number of occurrences of a string
of symbols in a stochastic process: Chosen a string A of length n, we
prove that the number of visits to A up to time t, denoted by Nt, has
approximately a Poisson distribution. We provide a sharp error for this
approximation. Contrarily to previous works who presente uniform error
terms based on the total variation distance, our error is point-wise. As
a byproduct we obtain approximations for all the moments of Nt. Our
result holds for processes that verify the φ-mixing condition. The error
term is explcitely expressed as function of φ and then easily computable.
We breafly extend our result to the weaker α-mixing case.

Keyword: Mixing, recurrence, rare event, number of visits, Poisson distri-
bution.

1 Introduction

This paper describes the statistics of occurrence times of a string of symbols in
a mixing stochastic process with a finite alphabet. For n ∈ IN , we consider a
fixed string of n symbols. We prove an upper bound for the difference between
the law of the number of occurrences of the string in a long sequence and a
Poisson law. Our result stands for φ-mixing and strong or α-mixing processes
(see definitions below), each one with its corresponding error.

The first result about number of visits is obviusly the convergence of the
binomial distribution to the Poisson distribution. Recently, motivated by the
statistical analysis of data sources coming from different areas such as physics,
biology, computer science, linguistics among other there was a major interes to
generalise this convergence in various sense:
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(a) dependent process

(b) explicit rate of convergence

(c) different kind of observables

The pioneer paper considering (a) is that of Doeblin ([13]), who studied
the Poisson approximation for the Gauss transformation. There is abundant
litterature on this subjet in the dynamical systems contex. See for instance
Galves and Schmitt [15] and the references there in.

Probably the most used tool to attack (b) is the Chen-Stein method intro-
duced by Chen ([10]). There is also abundant litterature on this subject (see
e.g. [6], [7], [8].) The principal feature of this method is that it provides only
uniform bounds for the rate of convergence based on the total variation dis-
tance. As far us we know, this method was only implemented in processes that
verify the Markov property. Wether it is usefull in other context is an open
question for us. We are only aware of one work which provides point-wise rate
of convergence. Haydn and Vaienti ([16]) prove a rate of convergence using the
method of factorial moments. The result holds for (ψ − f)-mixing processes.
The bound decreases factorially fast on k but it holds only for those values of k
that does not exceed the inverse of some (positive) power of the measure of the
n-string.

Our result tends to give bring some light over (a); (b); and (c).
With respect to (b) we prove an upper bound for the rate of convergence of

the number of occurrences of a fixed string to the Poisson law, namely,

lim
IP (A)→0

IP
(
Nt/IP (A) = k

)
=

e−ttk

k!
,

where Nt is the number of visits of the process to the string A up to time t.
The error bound we obtain decreases factorially fast as a function of k for

all values of k. This control on the tail distribution of Nt allows us to obtain
an approximation for all the moments of Nt by those of a Poisson random
variable.

Our approach relies on a sharp result proved by Abadi ([1]) that states that
for any string that does not overlaps itself,

IP (Nt/IP (A) = 0) ≈ e−t .

A crucial point is that, if A is any string, Nt/IP (A) could not be well approximated
by a Poisson law. An example of this fact is shown by Hirata ([17]), where it
is proven that for periodic points, the asymptotic limit law of

{
Nt/IP (A) = 1

}
differs of the one-level Poisson law. When this happens, Abadi and Vergne ([5],
Theorem 2) show that the law of τA is different from the exponential. Moreover,
Theorem 24 in the same paper shows that A occurs in clumps with geometric
size, which says that Nt is not Poisson distributed.

Our result is established with its own error term. This error is explicitly
expressed as function of the mixing rate. As we said, tt turns out that the error
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term depends on the overlapping properties of A. We state some basic facts
about overlapping useful to prove our theorem. More on that topic can be find
in [5].

With respect to (a) we establish our result under the mixing conditions. Mix-
ing is a large family of processes. For instance, irreducible and aperiodic finite
state Markov chain are known to be ψ-mixing with exponential decay. Moreover,
Gibbs states which have summable variations are ψ-mixing (see [18]). They have
exponential decay if they have Hölder continuous potential (see [9]). We refer
the reader to Doukhan ([14]) for a source of examples of mixing processes. How-
ever, sometimes the ψ-mixing condition is very restricted hypothesis difficult
to test. We establish our result under the more general φ-mixing condition.
Even when the result is weaker, we find interesting to present also the α-mixing
case. In this case we need to impose an extra condition in order for the theorem
to hold: the string needs to be non-overlapping (up to some fraction of its own
lenght).

With respect to (c), since any observable can be constructed as a union of
strings, we focus our work on them.

Our result is applied in a forthcoming paper: In [5] the authors applied the
Poisson approximation to test a method for detecting strings of high frequency
in DNA and protein sequences.

This paper is organized as follows. In section 2 we establish our framework.
In section 3 we collect some definitions and properties of overlapping. In section
4 we state and prove the convergence of the number of occurrences to a Poisson
law. The statement are for φ-mixing processes. Since the proof of the α-mixing
case is similar and easily obtained from that one, we briefly treat this case
section 5.

2 Framework and notations

Let E be a finite set. Put Ω = EZZ . For each x = (xm)m∈ZZ ∈ Ω and m ∈ ZZ,
let Xm : Ω → E be the m-th coordinate projection, that is Xm(x) = xm. We
denote by T : Ω → Ω the one-step-left shift operator, namely (T (x))m = xm+1.

We denote by F the σ-algebra over Ω generated by strings. Moreover we
denote by FI the σ-algebra generated by strings with coordinates in I, I ⊆ ZZ.

For a subset A ⊆ Ω we say that A ∈ Cn if and only if

A = {X0 = a0; . . . ; Xn−1 = an−1} ,

with ai ∈ E , i = 0, . . . , n− 1.
We consider an invariant probability measure IP over F . We shall assume

without loss of generality that there is no singleton of probability 0.
We say that the process (Xm)m∈ZZ is φ-mixing if the sequence

φ(l) = sup |IPB (C)− IP (C)| ,

converges to zero. The supremum is taken over B and C such that B ∈
F{0,.,n}, n ∈ IN, IP (B) > 0, C ∈ F{m≥n+l+1}.
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Similarly, we say that the process (Xm)m∈ZZ is α-mixing if the sequence

α(l) = sup |IP (B ∩ C)− IP (B)IP (C)| ,

converges to zero. The supremum is taken over B and C such that B ∈
F{0,.,n}, n ∈ IN, C ∈ F{m≥n+l+1}.

For two measurables V and W , we denote as usual IP (V |W ) = IPW (V ) =
IP (V ;W ) /IP (W ) the conditional measure of V given W . We write IP (V ; W ) =
IP (V ∩W ). We also write V c = Ω\V , for the complement of V .

We use the probabilistic notation: {Xm
n = xm

n } = {Xn = xn, . . . , Xm =
xm}. For a n-string A = {Xn−1

0 = xn−1
0 } and 1 ≤ w ≤ n, we write A(w) =

{Xn−1
n−w = xn−1

n−w} for the w-string belonging to the σ-algebra F{n−w,...,n−1} and
consisting of the last w symbols of A.

The mean of a r.v. X is denoted by IE(X). Wherever it is not ambiguous
we will write C and c for different positive constants even in the same sequence
of equalities/inequalities. For brevity we put (a ∨ b) = max{a, b} and (a ∧ b) =
min{a, b}.

3 Overlapping

Definition 1 Let A ∈ Cn. We define the periodicity of A (with respect to T )
as the number τ(A) defined as follows:

τ(A) = min
{
k ∈ {1, . . . , n} | A ∩ T−k(A) 6= ∅} .

Let us write n = q p + r, with τ(A) = p, q = [n/p] and 0 ≤ r < p. Thus

A =
{

Xp−1
0 = X2p−1

p = . . . = Xqp−1
(q−1)p = ap−1

0 ; Xn−1
qp = ar−1

0

}
.

For instance

A = (

period︷ ︸︸ ︷
aaaabb

period︷ ︸︸ ︷
aaaabb

rest︷︸︸︷
aaa) . (1)

Thus, consider the set of overlapping positions of A:

O(A) =
{
k ∈ {1, . . . , n− 1} | A ∩ T−k(A) 6= ∅} .

Split O(A) in a disjoint union of {τ(A), . . . , [n/τ(A)]τ(A)} and R(A) where

R(A) =
{
k ∈ {[n/τ(A)]τ(A) + 1, . . . , n− 1} | A ∩ T−k(A) 6= ∅} .

Put rA = #R(A). The cardinal of O(A) is then σ(A) = [n/τ(A)] + rA.
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4 Poisson approximation

For 1 ≤ t′ < t integers, let N t
t′ =

∑t
i=t′ 11T−iA , so that, N t

t′ counts the number of
occurrences of A between t′ and t. For the sake of simplicity we write Nt = N t

1.
With some abuse of notation we also put (−1)! = 1.

Theorem 2 Let (Xm)m∈ZZ be a φ-mixing process. There exists a constant
C > 0, such that for all A ∈ Cn, and all non negative integer k, the following
inequality holds:

∣∣∣∣IP
(
Nt/IP (A) = k

)− e−ttk

k!

∣∣∣∣ ≤ Ce(A)g(A, k) ,

with e(A) = e1(A) + e2(A),

e1(A)
def
= inf

1≤w≤τ(A)

[
(σ(A) + n)IP (A(w)) + φ ((τ(A))− w)

]
, (2)

e2(A)
def
= inf

n≤`≤1/IP (A)

[
`IP (A) +

φ (`)
IP (A)

]
+ φ(n) , (3)

and

g(A, k)
def
=





(2λ)k−1

(k−1)! k 6∈
{

λ
e(A) , . . . ,

t
IP (A)

}

(2λ)k−1

( λ
e(A) )! ( 1

e(A) )
k− 1

e(A)−1
k ∈

{
λ

e(A) , . . . ,
t

IP (A)

} ,

where λ
def
= t

[
1 + φ(`A)

IP (A)

]
and `A is the ` that defines e2(A).

Below we state several remarks to better understand the error term of the
theorem.

Remark 3 Clearly e(A) is the uniform error term and g(A, k) is the error
factor that provides the control on the tail distribtion.

Remark 4 e1(A) is the error that arises from the short correlations of the
process while e2(A) is the error that arises from long ones.

Remark 5 IP (An) ≤ Ce−cn (see [1].) φ(n) goes to zero by hypothesis. There-
fore e1(A) is small if τ(A) is large enough to chose a w between 1 and τ(A)
such that Ce−cw and φ(τ(A)− w) are small.

Remark 6 Take a sequence of n-strings An with n diverging. e1(A) → 0 if
τ(An) also diverges with n faster than ln n (since IP (An) decays exponentially
fast.)

Remark 7 e2(A) → 0 as n →∞ if the sequence φ(`) is summable.
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Remark 8 Collet et al. ([11]) proved that for exponentially ψ-mixing processes
there exist positive constants C and c such that IP (A ∈ Cn ; τA ≤ n/3) ≤ Ce−cn.
Abadi ([1]) proved that for φ-mixing processes IP (A ∈ Cn ; τA ≤ sn) ≤ Ce−cn

with s ∈ (0, 1) that just depends on the cardinality of the alphabet of the process.
Abadi and Vaienti ([3]) proved the above inequality for Gibbs measures and for
any value of s (with c = c(s).) This shows that Theorem 2 holds for typical
(in the sense of τ(A)) strings. Taking limit on the length of the strings along
infinite sequences, we get that the Poisson limit law holds almost everywhere.

Remark 9 When τ(A) is not large enough, the return time is better approx-
imated by a mixture of a Dirac measure at the origin and an exponential law
as shown by Abadi and vergne ([5], Theorem 2). Therefore, the numbers of
occurrences of the string can not be Poisson distributed.

Remark 10 When e2(A) is small, so is φ(`)/IP (A). Therefore λ is just the
parameter of the Poisson law with a small correction factor 1 + φ(`)/IP (A).
Thus λ/e(A) is a large number (smaller or equal to t/IP (A).) For k ≤ λ/e(A)
or k ≥ t/IP (A) we get tha g(A, k) decays factorially fast. For k in the strip
λ/e(A) to t/IP (A) we don’t get k! but something that we could call ”truncated
facorial”: just get (1/e(A))! times k − (1/e(A)) factors 1/e(A).

The point-wise error term given in Theorem 2 allows us to estimate the
moments of Nt/IP (A) by those of a r.v. with Poisson distribution.

Corollary 11 Let β > 0. Let Z be a r.v. with Poisson distribution of parameter
t > 0. Under the conditions of Theorem 2

∣∣∣IE
(
Nβ

t/IP (A)

)
− IE(Zβ)

∣∣∣ ≤ Cβ e(A) ,

where Cβ is a constant that just depends on β.

4.1 Preparatory results

The next lemma says that the occurrence of two copies of A very close have
small probability.

Lemma 12 Let (Xm)m∈ZZ be a φ-mixing process. Then, for all A ∈ Cn the
following inequalities hold:

IPA




2n−1⋂

j=1

T−jA


 ≤ e1(A) ,

and all ` ≥ 2n

IPA


 ⋂̀

j=2n

T−jA


 ≤ `IP (A) + φ(n) ,
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Proof By the overlapping properties of A one has

A

2n−1⋂

j=1

T−jA = A ∩

 ⋂

j∈O(A)

2n−1⋂

j=n

T−jA


 .

The cardinal of the intersection is σ(A) + n. Now since T−jA ⊆ T−jA(w) for
any 1 ≤ w ≤ τ(A), the first part of the lemma follows using the φ-mixing
property with V = A and W =

⋂
j∈O(A)

⋂2n−1
j=n T−jA(w).

The cardinal of the intersection in the second statement of the lemma is
` − n + 1. The second part of the lemma follows using the φ-mixing property
as in the previous case. ¤

Definition 13 Given A ∈ Cn, and j ∈ IN , we define the j-occurrence time of
A as the r.v. τ

(j)
A : Ω → IN ∪ {∞}, defined as follows: For any x ∈ Ω, define

τ
(1)
A (x) = inf{k ≥ 1 : T k(x) ∈ A} and for j ≥ 2

τ
(j)
A (x) = inf{k > τ

(j−1)
A (x) : T k(x) ∈ A} .

The next proposition says that the measure of all the configurations where
there are no two occurrences of A very close, is close to the product measure.

Proposition 14 Let (Xm)m∈ZZ be a φ-mixing process. Then, for all A ∈ Cn,
all 0 ≤ t1 < t2 < . . . < tk ≤ t, and all k ∈ IN , for which

min
2≤j≤k

{tj − tj−1} > 2(`A + n) ,

(`A defined in Theorem 2) the following inequality holds:
∣∣∣∣∣∣
IP




k⋂

j=1

τ
(j)
A = tj ; τ

(k+1)
A > t


− IP (A)k

k+1∏

j=1

IP (tj − tj−1 − 2(`A + n))

∣∣∣∣∣∣
≤ 5k (IP (A) + φ(`A))k

e(A) .

Proof We prove the proposition by induction on k. For shorthand notation
put `A = 2(`A + n), ∆1 = t1, ∆k+1 = t − tk, ∆i = ti − ti−1 and Pi =
IP

(
τA > ∆i − `A

)
; i = 1, . . . , k + 1.

For k = 1, the triangle inequality gives∣∣∣∣∣∣
IP

(
τA = t1 ; τ

(2)
A > t

)
− IP (A)

2∏

j=1

Pj

∣∣∣∣∣∣
(4)

≤
∣∣∣IP

(
τA = t1 ; τ

(2)
A > t

)
− IP

(
τA = t1 ; N t

t1+`A+n = 0
)∣∣∣ (5)

+
∣∣IP (

τA = t1 ; N t
t1+`A+n = 0

)− IP (τA = t1)P2

∣∣ (6)

+
∣∣IP (A ; τA > t1 − 1)− IP

(
A ; N t1−1

n+`A
= 0

)∣∣ P2 (7)

+

∣∣∣∣∣∣
IP

(
A ; N t1−1

n+`A
= 0

)P2 − IP (A)
2∏

j=1

Pj

∣∣∣∣∣∣
. (8)
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In (7) we used that by stationarity IP (τA = t) = IP (A; τA > t− 1). Term (5)
is equal to

IP

(
τA = t1;

t1+`A+n−1⋃

i=t1+1

T−iA; N t
t1+`A+n = 0

)

≤ IP

(
T−t1A;

t1+`A+n−1⋃

i=t1+1

T−iA

)

= IP

(
A;

`A+n−1⋃

i=1

T−iA

)
. (9)

We divide the above sum in those terms with 1 ≤ i < 2n, and 2n ≤ i ≤ `A + n.
Lemma 12 implies

IP

(
A;

2n−1⋃

i=1

T−iA

)
≤ IP (A)e1(A) .

and,

IP

(
A;

`A+n⋃

i=2n+1

T−iA

)
≤ IP (A) (`AIP (A) + φ(n)) .

Term (6) is bounded using the mixing property by φ(`A)IP (A). Analogous
computations are used to bound terms (7) and (8). This shows that (4) is
bounded by 2e(A)IP (A).

Now let us suppose that the proposition holds for k − 1 and let us prove it
for k. We use a triangle inequality where the terms involved are defined below.
We briefly comment the idea behind each term. For brevity denote for each non
negative i, Si =

{
τ

(i)
A = ti

}
. Thus we have

∣∣∣∣∣∣
IP




k⋂

j=1

Sj ; τ
(k+1)
A > t


− IP (A)k

k+1∏

j=1

Pj

∣∣∣∣∣∣
≤ I + II + III + IV + V .

In I we open a gap of length `A + n at the left of the k-th occurrence of A,
namely, between coordinates tk − (`A + n) and tk − 1.

I
def
=

∣∣∣∣∣∣
IP




k⋂

j=1

Sj ; τ
(k+1)
A > t


− IP




k−1⋂

j=1

Sj ;N
tk−(`A+n)
tk−1+1 = 0; T−tkA; N t

tk+1 = 0




∣∣∣∣∣∣

= IP




k−1⋂

j=1

Sj ; N
tk−(`A+n)
tk−1+1 = 0;

tk−1⋃

i=tk−(`A+n)+1

T−iA;T−tkA; N t
tk+1 = 0


 (10)

≤ IP




k−1⋂

j=1

T−tj A ;
tk−1⋃

i=tk−(`A+n)+1

T−iA ; T−tkA


 .
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As with (9) we split the above sum in terms with tk− (`A +n)+1 ≤ i ≤ tk−2n,
tk−2n+1 ≤ i ≤ tk−1. We recall that by hypothesis ∆i > `A for all i = 1, . . . , k.
As in Lemma 12 we have

IP




k−1⋂

j=1

T−tj A;
tk−2n⋃

i=tk−(`A+n)+1

T−iA; T−tkA




≤ IP




k−1⋂

j=1

T−tj A;
tk−2n⋃

i=tk−(`A+n)+1

T−iA


 (IP (A) + φ(n)) .

The φ-mixing property over the left most factor in the right hand side of the
above inequality, we get that it is bounded by

IP




k−1⋂

j=1

T−tj A


 (`AIP (A) + φ(`A)) .

Iterating this procedure we get

IP




k−1⋂

j=1

T−tj A


 ≤ (IP (A) + φ(`A))k−1

.

Similarly

IP




k−1⋂

j=1

T−tj A;
tk−1⋃

i=tk−2n+1

T−iA;T−tkA


 ≤ (IP (A) + φ(`A))k

e1(A) .

In II we apply the φ-mixing property to factorize the probability in the
right hand side of the modulus in I. Then we iterated the φ-mixing property
to obtain the last inequality.

II
def
=

∣∣∣∣∣∣
IP







k−1⋂

j=1

Sj ;N
tk−(`A+n)
tk−1+1 = 0


 ;

(
T−tkA; N t

tk+1 = 0
)

−

− IP




k−1⋂

j=1

Sj ; N
tk−(`A+n)
tk−1+1 = 0


 IP

(
A ; N t−tk

1 = 0
)

∣∣∣∣∣∣

≤ IP




k−1⋂

j=1

Sj ; N
tk−(`A+n)
tk−1+1 = 0


φ(`A)

≤ IP




k−1⋂

j=1

T−tj A


φ(`A)

≤ (IP (A) + φ(`A))k φ(`A)
IP (A)

.
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In III we “fill-up” the gap we opened in I

III
def
=

∣∣∣∣∣∣
IP




k−1⋂

j=1

Sj ; N
tk−(`A+n)
tk−1+1 = 0


− IP




k−1⋂

j=1

Sj ; N tk−1
tk−1+1 = 0




∣∣∣∣∣∣
IP

(
A; N t−tk

1 = 0
)

≤ IP




k−1⋂

j=1

Sj ; N
tk−(`A+n)
tk−1+1 = 0 ;

tk−1⋃

tk−(`A+n)+1

T−iA


 IP (A)

≤ IP




k−1⋂

j=1

T−tj A;
tk−1⋃

i=tk−(`A+n)+1

T−iA


 IP (A)

≤ (IP (A) + φ(`A))k 2`AIP (A) .

In IV we use the inductive hypothesis

IV
def
=

∣∣∣∣∣∣
IP




k−1⋂

j=1

Sj ; N tk−1
tk−1+1 = 0


− IP (A)k−1

k∏

j=1

Pj

∣∣∣∣∣∣
IP

(
A; N t−tk

1 = 0
)

≤ C(k − 1) (IP (A) + φ(`A))k−1
e(A)IP (A) .

In V we use k = 1 to get

V
def
= IP (A)k−1

k∏

j=1

Pj

∣∣IP (
A ; N t−tk

1 = 0
)− IP (A)Pk+1

∣∣

≤ IP (A)k 2e(A) .

Summing the bounds above we end the proof of the proposition. ¤

4.2 Proof of Theorem 2 and Corollary 11.

Proof of Theorem 2. Take t ∈ IN . Let us write for the sake of simplicity
N = Nt. For k = 0 note that IP (N = 0) = IP (τA > t). By Theorem 1 in Abadi
([2]) one has

|IP (τA > t) e−ξAIP (A)t| ≤ e(A)(IP (A)t ∨ 1)e−ξAIP (A)t , (11)

with a certain ξA > 0. Moreover, it follows in the proof of Theorem 2 in Abadi
and Vergne ([4]) that |ξA − ζA| ≤ e1(A) where ζA = IPA(ζA > τ(A)). Finally
|ζA− 1| = IPA(ζA = τ(A)) ≤ e1(A) by Lemma 12. This concludes the proof for
k = 0.

For k > t we have that IP (N = k) = 0. Then
∣∣∣∣IP (N = k)− e−tIP (A)(tIP (A))k

k!

∣∣∣∣ =
e−tIP (A)(tIP (A))k

k!

≤ (tIP (A))k−1

(k − 1)!
IP (A) .
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Let us consider k with 1 ≤ k ≤ t. The idea of the proof is the following:
Consider a realization x = (xm)m∈ZZ of the process (Xm)m∈ZZ such that the
sequence (x1, . . . , xt) contains exactly k occurrences of A. These occurrences
can appear in clusters or isolated one from each other. We prove that realizations
with aisolated A’s give the approximation to the Poisson law and realizations
with clustered A’s have small measure. We now formalize this idea. Given
1 ≤ t1 < . . . < tk ≤ t, let us define the following measurable set:

T (t1, . . . , tk) =
k⋂

j=1

{
τ

(j)
A = tj

} ⋂ {
τ

(k+1)
A > t

}
.

As in Proposition 14 we put ∆j = tj − tj−1, for j = 2, . . . , k. Put also ∆1 = t1
and ∆k+1 = t − tk. Define I(T (t1, . . . , tk)) = min {∆j | 2 ≤ j ≤ k} . As before
put ¯̀

A = 2(`A + n). Let us divide {N = k} in two sets

Bk =
⋃

I(T (t1,...,tk))<`A

T (t1, . . . , tk) and Gk =
⋃

I(T (t1,...,tk))≥`A

T (t1, . . . , tk) .

Since {N = k} = Bk ∪Gk, disjoint union, we have
∣∣∣∣IP (N = k)− e−tIP (A)tkIP (A)k

k!

∣∣∣∣

≤ IP (Bk) +
∣∣∣∣IP (Gk)− e−tIP (A)tkIP (A)k

k!

∣∣∣∣ . (12)

We will prove that both quantities in the right hand side of (12) are small.

Proof: configurations with clusters have small measure.

We will prove an upper bound for IP (Bk). First observe that if we fix t1 then

⋃
t2,...,tk

T (t1, t2, . . . , tk) ⊆
⋃

i=2,...,k

ti=ti−1,...,ti−1+`A

k⋂

j=1

T−tj A .

Now define

C(T (t1, . . . , tk)) =
k∑

j=2

11{∆j>`A} + 1 .

The above quantity compute how many clusters there are in a given T (t1, . . . , tk).
Suppose that C(T (t1, . . . , tk)) = 1 and fix the position t1. Each occurrence in-
side the unique cluster (with the exception of the most left one which is fixed at
t1) can appear at distance d of the previous one, with d ∈ O(A) or n ≤ d ≤ `A.
Therefore, the iterative argument of the φ-mixing property used to bound (10)
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leads to the bound

IP




⋃
i=2,...,k

ti=ti−1,...,ti−1+`A

k⋂

j=1

T−tj A


 (13)

≤ IP (A)
(
e1(A) + `AIP (A) + φ(n)

)k−1

≤ IP (A)e(A)k−1 .

Suppose now that C(T (t1, . . . , tk)) = i. Assume also that the most left
occurrence of these i clusters occurs at 1 ≤ t(1) < . . . < t(i) ≤ t fixed. By the
same argument used in (13), we have the inequalities

IP


 ⋃

{t1,...,tk}\{t(1),...,t(i)}
T (t1, . . . , tk)




≤ IP (A) (IP (A) + φ(`A))i−1
e(A)k−i

≤ (IP (A) + φ(`A))i
e(A)k−i . (14)

To obtain an upper bound for IP (Bk) we must sum the above bound over
all T (t1, . . . , tk) such that C(T (t1, . . . , tk)) = i with i that runs from 1 to k− 1.

Fixed C(T (t1, . . . , tk)) = i, the locations of the most left occurrences of A
of each one of the i clusters can be chosen at most in

(
t
i

)
many ways.

The cardinality of each one of the i clusters can be arranged in
(
k−1
i−1

)
many

ways. (This corresponds to break the interval (1/2, k + 1/2) in i intervals at
points chosen from {1 + 1/2, . . . , k − 1/2}.)

Collecting these information and (14) we have that IP (Bk) is bounded by

k−1∑

i=1

(
t

i

)(
k − 1
i− 1

)
(IP (A) + φ(`A))i

e(A)k−i ≤ e(A)k max
1≤i≤k−1

γi

i!

k−1∑

i=1

(
k − 1
i− 1

)
,

where γ = tIP (A) [1 + φ(`A)/IP (A)] /e(A). The maximum in the above expres-
sion is reached at (k−1∧γ). The most right sum is bounded by 2k−1. Therefore
we have

IP (Bk) ≤ e(A).





(2γe(A))k−1

(k−1)! k − 1 < γ

2k−1(γe(A))γ

γ!( 1
e(A) )

k−γ−1 k ≥ γ

. (15)

This ends the proof of the bound for IP (Bk).

Proof: A’s isolated provide the Poisson limit law.
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We can bound the most right term on the right-hand side of (12) by the
following triangular inequality:

∑

T (t1,...,tk)∈Gk

∣∣∣∣∣∣
IP




k⋂

j=1

τ
(j)
A = tj ; τ

(k+1)
A > t


− IP (A)k

k+1∏

j=1

Pj

∣∣∣∣∣∣
(16)

+ IP (A)k
∑

T (t1,...,tk)∈Gk

∣∣∣∣∣∣

k+1∏

j=1

Pj −
k+1∏

j=1

e−(∆j−`A)IP (A)

∣∣∣∣∣∣
(17)

+ IP (A)k#Gk

∣∣∣e−(t−(k+1)`A)IP (A) − e−tIP (A)
∣∣∣ (18)

+
∣∣∣∣
#Gk k!

tk
− 1

∣∣∣∣
e−tIP (A)tkIP (A)k

k!
. (19)

By a simple combinatorial argument we get the bounds

(t− k(n + `A))k

k!
≤

(
t− k(n + `A − 1)− 1

k

)
≤ #Gk ≤

(
t

k

)
≤ tk/k! . (20)

Moreover, the leading term in (16) is bounded using Proposition 14. Thus (16)
is bounded by

5
tk

(k − 1)!
(IP (A) + φ(`A))k e(A) .

The difference between the leading factors in (17) is bounded as follows: again
by (11)

|Pj − e−ξAIP (A)(∆j−`A)| ≤ Ce1(A) .

As stated at the beginning of the proof one has |ξA−1| ≤ e1(A). Therefore (17)
is bounded by

tk

k!
IP (A)k(k + 1) max

1≤j≤k+1

∣∣∣Pj − e−(∆j−¯̀
A)IP (A)

∣∣∣ ≤ k + 1
k

(tIP (A))k

(k − 1)!
Ce1(A) .

(18) is bounded using the Mean Value Theorem by

tkIP (A)k

k!
(k + 1)`AIP (A) ≤ k + 1

k

(tIP (A))k

(k − 1)!
4`AIP (A) .

The left hand side of (20) and the Mean Value Theorem provide a bound for
the difference below

∣∣∣∣
#Gk k!

tk
− 1

∣∣∣∣ ≤
∣∣∣∣
(t− k(n + `A))k

tk
− 1

∣∣∣∣ ≤
k k(n + `A)

t
≤ k .

So, (19) is bounded by
(tIP (A))k

(k − 1)!
4`AIP (A) .
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Summing the bounds obtained for (16), (17), (18) and (19) we get the desired
bound for the difference in the right hand term of inequality (12). The exchange
of variables t̃ = tIP (A) ends the proof of the theorem. ¤

Proof of Corollary 11. By definition

∣∣∣IE
(
Nβ

t/IP (A)

)
− IE(Zβ)

∣∣∣ =

∣∣∣∣∣∣
∑

k≥0

kβIP
(
Nt/IP (A) = k

)−
∑

k≥0

kβ e−ttk

k!

∣∣∣∣∣∣

≤
∑

k≥0

kβ

∣∣∣∣IP
(
Nt/IP (A) = k

)− e−t tk

k!

∣∣∣∣ .

The summability in k of kβ times the error term in Theorem 2 ends the proof
of the corollary. ¤

5 α-mixing processes

Theorem 15 Let (Xm)m∈ZZ be α-mixing process. For all τ(A) ≥ C1n with a
constant C1 ∈ (0, 1), the following inequality holds:

∣∣∣∣IP
(
Nt/IP (A) = k

)− e−ttk

k!

∣∣∣∣ ≤ C2e
α
k (A)gα(A, k),

with

gα(A, k)
def
=





2k−1

(k−1)! k 6∈
{

t
eα(A) , . . . ,

2t
nIP (A)

}

2k−1

“
1

eα
1 (A)

”
!
“

1
eα
1 (A)

”k− 1
eα
1 (A)−1

k ∈
{

t
eα
1 (A) , . . . ,

2t
nIP (A)

} ,

and

eα
k (A)

def
= inf

1≤w≤nA

{
(rA + nA)IP (A(w)) +

α (nA − w)
IP (A)k

}
.

Furthermore, assume that for a fixed k ∈ IN , eα
k (An) → 0 as n → ∞. Then,

Nt/IP (An) converges in distribution to a Poisson law for Nt/IP (An) = j, for all
0 ≤ j ≤ k.

Remark 16 The condition α(nA − w)/IP (An)k → 0 as n → ∞ for all k basi-
cally means that α must decay super-exponentially fast in order to have conver-
gence for all the values of k. However, we usually are interested in the conver-
gence for not too large values of k, say k ≤ C, for a certain positive constant C.
In that case, in order to have convergence we need an α decaying exponentially
fast with constant c such that c/m > C(h + ε), with ε > 0, m > 2, where h
is the entropy of the process, where we used the Shannon-Mac-Millan-Breiman
Theorem ([12]) to make IP (A) ≈ e−hn for almost every A.
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Proof Take a realization with k occurrences of A at t1, . . . , tk. Assume first
that k = 2. Take any w with 1 ≤ w ≤ (t2 − t1 ∧ n). The α-mixing property
gives the upper bound

IP (T−t1A ∩ T−t2A) ≤
{

IP (A)IP (Aw) + α(t2 − t1 − w) for t2 − t1 < 2n
IP (A)2 + α(t2 − t1 − n) for t2 − t1 ≥ 2n

.

Now choose wi as w above for each i = 2, . . . , k (or wi = n if t2− t1 ≥ 2n ). Put
wmin = min{wi | 2 ≤ i ≤ k}. Iterating the above procedure of the α-mixing
property one has

IP

(
k⋂

i=1

T−tiA

)
≤ IP (A)

k∏

i=2

IP (A(wi)) +
k−1∑

j=0

α(tj − tj−1 − wj)
j∏

i=0

IP (A(wi))

≤ IP (A)IP (A(wmin))k−1 + Cα(nA − wmin).

This bound can be used to prove a similar result to Proposition 14 in the α-
mixing context. Theorem 1 in [2] can be replaced by Theorem 17 in the same
paper which establishes that

sup
t≥0

|IP (τA > t)− e−λ(A)IP (A)t| ≤ n
√

IP (A) ,

with a certain parameter λ(A). It is easy to follows the proof of Lemma 19 in
the same paper to show that |λ(A) − ζA| ≤ eα

1 (A). The condition τ(A) ≥ C1n
implies that |ζA − 1| ≤ eα

1 (A). The rest of the proof follows as in the φ-mixing
case. ¤
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