
MARTINGALES ON FRAME BUNDLES

PEDRO CATUOGNO AND SIMÃO STELMASTCHUK

Abstract. Let M be a smooth manifold endowed with a symmetric connec-

tion ∇. There are two important ways of lift the connection ∇ of M to the

frame bundle BM , the canonical lift ∇c and the horizontal lift ∇h. The aim
of this work is determine the ∇c-martingales and the ∇h-martingales on BM .

Our results allow to establish new characterizations of harmonic maps from

Riemannian manifolds to frame bundles. Finally, we consider on the associ-
ated vector bundles to BM the canonical lift ∇† and give a characterization

of the ∇†-martingales.

1. Introduction

Let M be a smooth manifold and BM its frame bundle. The differential geom-
etry of BM has been studied by many authors and a survey of these results can be
find in L. Cordero et al. [6]. The idea is simple, starting from a connection ∇ on
M endowed BM with a natural connection and study the associated geometry.

In this article we study the stochastic differential geometry of BM . We take the
point of view that the stochastic calculus have two main purposes: determine mar-
tingales and construct new processes. The martingales are the stochastic analogue
to geodesics and the stochastic differential equations are the tools for constructing
new processes.

Our original motivation comes from the following problem: find via stochastic
calculus a deterministic characterization of the harmonic maps from Riemannian
manifolds to frame bundles.

The stochastic differential geometry of TM has been studied intensively by P.
Meyer [15], M. Arnaudon and A. Thalmaier [1], [2]. Recently, one of the authors
has considered the stochastic differential geometry of BM (see P. Catuogno [4]).

This paper is organized as follows: In section 2, we review some fundamental facts
on differential geometry of the frame bundle and stochastic calculus on manifolds
(see for instance L. Cordero et al [6], R. Bishop and R. Crittenden [3], S. Kobayashi
and N. Nomizu [12], M. Emery [7], [9], E. Hsu [10] and P. Meyer [14], [15]) and
introduce the canonical lift and the horizontal lift to the frame bundle BM of a
connection on M (see L. Cordero et al [6], L. Cordero and M. De León [5], K. Mok
[16], [17]). In section 3 we prove our principal results:

Let M be a smooth manifold endowed with a symmetric connection ∇ and Y
an BM -valued semimartingale. Then

1) Y is a ∇h-martingale if and only if π ◦ Y is a ∇-martingale and∫
ωδY +

1
2

∫
ω � ω(dY, dY )
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is a local martingale.
2) Y is a ∇c-martingale if and only if π ◦ Y is a ∇-martingale and∫

ω δY +
1
2

∫
ω � ω(dY, dY ) +

1
2

∫
ac (dY, dY )

is a local martingale.
We apply these results in order to obtain the following characterization of har-

monic maps into frame bundles.
Let N be a Riemannian manifold with metric g, M a smooth manifold endowed

with a symmetric connection ∇ and F : N → BM an smooth map. Then:
1) F is an (g,∇h)-harmonic map if and only if π ◦ F is an harmonic map and

d∗F ∗ω + trF ∗(ω � ω) = 0.
2) F is an (g,∇c)-harmonic map if and only if π ◦ F is an harmonic map and

d∗F ∗ω + trF ∗(ω � ω + ac) = 0.
Finally, in section 4 we consider in the associated vector bundles to BM the

canonical lift ∇† and we give a characterization of the ∇†-martingales. The lift ∇†

is a particular case of the general lift studied by P. Meyer [15] and M. Arnaudon
and A. Thalmaier [2], and extends the case of tensor bundles and tangent bundles
studied by A. Mağden and A. Salimov [13], K. Yano and S. Ishihara [18].

2. Differential geometry and Stochastic calculus

We begin by recalling some fundamental facts on differential geometry of the
frame bundle and stochastic calculus on manifolds, we shall use freely concepts and
notations of L. Cordero et al. [6], S. Kobayashi and N. Nomizu [12] and M. Emery
[7]. Let M be a differentiable manifold with tangent bundle TM . The frame bundle
BM of M consists of all linear isomorphism p : Rn → TxM for some x ∈ M , with
projection π : BM → M given by π(p) = x. The fibre bundle BM is a principal
bundle over M with structure group GL(n, R).

A connection ∇ on M determines a decomposition of each tangent space TpBM
into the direct sum of the vertical subspace VpBM = Ker(π∗(p)) and the horizontal
subspace HpBM of the tangent at p of horizontal lifts of curves in M . We recall
that if α : I → M is a curve in M , the horizontal lift of α to BM can be written
as the composition

αH
p (t) := P∇

t,0(α) ◦ p

where P∇
t,s(α) : Tα(s)M → Tα(t)M is the parallel transport along the curve α.

The above decomposition naturally defines the horizontal lifts of X ∈ Tπ(p)M at
p ∈ BM as the unique tangent vector XH = Hp(X) ∈ HpBM such that π∗(XH) =
X. Let A ∈ gl(n, Rn), A∗ the fundamental vector field corresponding to A is the
vertical vector field defined by A∗

p = p∗(Id)(A) where p is considered as the mapping
p : GL(n, Rn) → BM , p(g) = p ◦ g.

Let us denote by hU and vU the horizontal and vertical parts of U ∈ TBM ,
respectively. The canonical form θ : TBM → Rn and the connection form ω :
TBM → gl(n, Rn) are defined by

θ(Up) = p−1π∗(Up)

and
ω(Up) = A

where vUp = A∗
p.
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The curvature form is the gl(n, Rn)-valued 2-form on BM defined by Ω(U, V ) =
dω(hU,hV ) and the torsion form is the Rn-valued 2-form on BM defined by
Θ(U, V ) = dθ(hU,hV ), where d denote the exterior differential.

The curvature tensor R and the torsion tensor T are defined by

R(X, Y )Z = p(Ω(XH , Y H)(p−1Z))
and

T (X, Y ) = p−1(Θ(XH , Y H))
where X, Y and Z belong to Tπ(p)M .

The vertical lift γS of a section S of T (1,1)M is the vertical vector field on BM
defined by

γS(p) = (p−1 ◦ S ◦ p)∗(p).
There are many ways of extending a connection ∇ of M to BM . We are partic-

ularly interested in the canonical lift ∇c and the horizontal lift ∇h. The canonical
and the horizontal lift to BM of a linear connection on M has been introduced and
studied by K. Mok in [17] and L. Cordero and M. De Leon in [5], respectively. In
the book of L. Cordero et al. [6] we find a survey of the elementary properties of
these connections. Let X, Y ∈ Γ(TM) and A,B ∈ gl(n, Rn). The canonical lift ∇c

and the horizontal lift ∇h are completely defined by the relations:

(2.1)


∇c

A∗B∗
p = (AB)∗p

∇c
A∗XH

p = (p ◦ T (−, X) ◦ p−1 ◦A)∗p
∇c

XH B∗
p = 0

∇c
XH Y H

p = (∇XY )H
p + γ(R(−, X)Y − (∇XT )(Y,−))p

and

(2.2)


∇h

A∗B∗
p = (AB)∗p

∇h
A∗XH

p = (p ◦ T (−, X) ◦ p−1 ◦A)∗p
∇h

XH B∗
p = 0

∇h
XH Y H

p = (∇XY )H
p .

The following lemma will be needed in Section 3.

Lemma 2.1. Let ∇ be a symmetric connection on M and ω be the connection form
associated. Then

1) The projection map π : BM → M is (∇c,∇)-affine and (∇h,∇)-affine.
2) The symmetric part of ∇hω is −ω � ω.
3) The symmetric part of ∇cω is −ω � ω + ac, where

ac
p(U, V ) =

1
2
p−1(R(− ◦ p, π∗U)π∗V + R(− ◦ p, π∗V )π∗U)

for U, V ∈ TpBM .

Proof. The proof follows from straightforward computations. �

Let (Ω, (Ft), P) be a filtered probability space, and M a smooth manifold en-
dowed with a connection ∇. Let X be a continuous semimartingale with values
in M , α a section of TM∗ and b a section of T (2,0)M . We denote by

∫
α δX the

Stratonovich integral of α along X, by
∫

α d∇X the Itô integral and by
∫

b d(X, X)
the quadratic integral of b along X. We recall that X is a ∇ martingale if and only
if

∫
α d∇X is a local martingale, for any α ∈ Γ(TM∗). Locally these integrals can
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be describe as follows. Let (U, xi) be a local coordinate system in M . With respect
to this chart the 1-form α and the bilinear form b can be written as αx = αi(x)dxi

and bx = bij(x)dxi ⊗ dxj respectively, where αi and bij are smooth functions in U .
We have that ∫ t

0

αδX =
∫ t

0

αi(X)dXi +
1
2

∂αi

∂xj
(X)d < Xi, Xj >,

∫ t

0

αd∇X =
∫ t

0

αi(X)dXi +
1
4
(Γjk + Γkj)(X)d < Xi, Xj >

and ∫ t

0

b (dX, dX) =
∫ t

0

bij(X)d < Xi, Xj >

where Γi
jk are the Christoeffel symbols of ∇.

We observed that ∫ t

0

α d∇X =
∫ t

0

α d∇̃X

and ∫ t

0

b (dX, dX) =
∫ t

0

bs (dX, dX)

where ∇̃ = ∇ + 1
2T∇ is the associated symmetric connection to ∇ and bs is the

symmetric part of b.
The Stratonovich-Itô conversion formula and the Itô formula are the corner

stones of stochastic calculus. Now, we write in term of the above line integrals
theses formulaes on manifolds. The proofs are straightforward using local coordi-
nates and the usual Itô formula. Let M be a manifold and α a section of TM∗.
The Stratonovich-Itô conversion formula is given by:

(2.3)
∫ t

0

αδX =
∫ t

0

αd∇X +
1
2

∫ t

0

∇α (dX, dX).

Let M and N be manifolds, α a section of TN∗, b a section of T (2,0)N and
F : M → N a smooth map. We have the following Itô formulaes for Stratonovich
and quadratic integrals:

(2.4)
∫ t

0

α δF (X) =
∫ t

0

F ∗α δX

and

(2.5)
∫ t

0

b (dF (X), dF (X)) =
∫ t

0

F ∗b (dX, dX).

In the case that M and N are endowed with connections ∇ and ∇′ respectively,
we have the following Itô formulae for the Itô integral:

(2.6)
∫ t

0

α d∇
′
F (X) =

∫ t

0

F ∗α d∇X +
1
2

∫ t

0

β∗F α (dX, dX),

where βF is the second fundamental form of F .
From the above formula, it follows that F is an affine map if and only if sends

∇-martingales to ∇′-martingales.
Let M be a Riemannian manifold with metric g. Let B be a continuous semi-

martingale with values in M , we say that B is a g-Brownian motion on M if B is
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a martingale with respect to the Levi-Civita connection of g and for any section b
of T (2,0)M we have that

(2.7)
∫ t

0

b(dB, dB) =
∫ t

0

tr bBsds.

Combining (2.4) with (2.7), we obtain the following Manabe formula:

(2.8)
∫ t

0

αδB =
∫ t

0

αd∇B +
1
2

∫ t

0

d∗αBs
ds.

From (2.6) and (2.7) we deduce the useful formula:

(2.9)
∫ t

0

αd∇
′
F (X) =

∫ t

0

F ∗αd∇X +
1
2

∫ t

0

τ∗F αBs
ds,

where τF is the tension field of F .
We recall that an application F : M → N is an harmonic map if τF = 0.

Applying the above formula, we obtain the Bismut characterization of harmonic
maps: F : M → N is an harmonic map if and only if sends Brownian motions to
∇′-martingales.

3. Martingales on BM

In this section we prove our main results. We characterize the ∇h-martingales
and ∇c-martingales on BM . The characterization is in terms of its projections and
the Stratonovich integral of the connection form. We apply these results in order
to determine all harmonic maps from a Riemannian manifold N into BM .

Theorem 3.1. Let M be a smooth manifold endowed with a symmetric connection
∇ and Y an BM -valued semimartingale. Then Y is a ∇h-martingale if and only
if π ◦ Y is a ∇-martingale and∫

ωδY +
1
2

∫
ω � ω(dY, dY )

is a local martingale.

Proof. Let Y be a ∇h-martingale. From the conversion formula (2.3) and the fact
that the symmetric part of ∇hω is −ω � ω we have that∫

ω δY =
∫

ωd∇
h

Y − 1
2

∫
ω � ω (dY, dY ).

Since
∫

ω d∇
h

Y is a local martingale,
∫

ω δY + 1
2

∫
ω � ω(dY, dY ) is a local mar-

tingale. It remains to prove that π ◦ Y is a ∇-martingale, which is clear because π
is an affine map.

Conversely, it is sufficient to show that
∫

π∗θ d∇
h

Y is a local martingale for each
α ∈ Γ(T ∗M). Combining (2.6) and the fact that βπ = 0 yields∫

π∗α d∇
h

Y =
∫

α d∇(π ◦ Y ).

As by assumption π ◦ Y is a ∇-martingale, we conclude that
∫

α d∇(π ◦ Y ) is a
local martingale. �
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Theorem 3.2. Let M be a smooth manifold endowed with a symmetric connection
∇ and Y an BM -valued semimartingale. Then Y is a ∇c-martingale if and only
if π ◦ Y is a ∇-martingale and∫

ω δY +
1
2

∫
ω � ω(dY, dY ) +

1
2

∫
ac (dY, dY )

is a local martingale.

Proof. We apply 3) of Lemma 2.1 and proceed as in the proof of Theorem 3.1. �

Remark 3.1. P. Meyer [15] observed that the horizontal lift of semimartingales
to BM with respect to a given connection ∇ is a function of its prolongations to
BM . In fact, let ∇̃ be a prolongation of ∇ to BM and X a M -semimartingale.
The horizontal lift XH at p (where π(p) = X0) respect to ∇̃ is the solution of the
Itô equation,

d∇̃Y = HY d∇X

with initial condition Y0 = p.
It is clear that the horizontal lifts of a ∇-martingale with respect to ∇c (∇h) are

∇c (∇h)-martingales.

Theorem 3.3. Let N be a Riemannian manifold with metric g, M a smooth man-
ifold endowed with a symmetric connection ∇ and F : N → BM and smooth map.
Then F is an (g,∇h)-harmonic map if and only if π ◦ F is an harmonic map and
d∗F ∗ω + trF ∗(ω � ω) = 0.

Proof. Let F be an harmonic map and B a g-Brownian motion. From the Bismut
characterization of harmonic maps and Theorem 3.1 we have that∫

ωδF (B) +
1
2

∫
ω � ω (dF (B), dF (B))

is a local martingale. Applying (2.4) and (2.5) we obtain

(3.1)
∫

ωδF (B)+
1
2

∫
ω�ω (dF (B), dF (B)) =

∫
F ∗ωδB+

1
2

∫
F ∗ω�ω(dB, dB).

From the definition of g-Brownian motion (2.7) and the Manabe formula (2.8)
we have that
(3.2)∫

F ∗ωδB +
1
2

∫
F ∗ω � ω(dB, dB) =

∫
F ∗ωd∇

g

B +
1
2

∫
(d∗F ∗ω + trF ∗ω � ω) ds

where ∇g is the Levi-Civita connection associated to g. Combining (3.1) and (3.2),
we obtain that the local martingale

∫
ωδF (B) + 1

2

∫
ω � ω (dF (B), dF (B)) can be

written as ∫
F ∗ωd∇

g

B +
1
2

∫
(d∗F ∗ω + trF ∗ω � ω)Bs

ds.

Doob-Meyer decomposition, says that∫
(d∗F ∗ω + trF ∗ω � ω)Bs ds = 0.

Since B is arbitrary, we conclude that d∗F ∗ω + trF ∗(ω � ω) = 0.
It remains to prove that π ◦F sends Brownian motion to ∇-martingales. As F is

an harmonic map we obtain that F (B) is a ∇h-martingale. We have that π ◦F (B)
is a ∇-martingale, because π is an affine map.
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Conversely, from the Bismut characterization is sufficient to show that F sends
Brownian motion to ∇h-martingales. Let B be a g-Brownian motion. We have
that

∫
ωδF (B) + 1

2

∫
ω � ω (dF (B), dF (B)) can be written as∫

F ∗ωd∇
g

B +
1
2

∫
(d∗F ∗ω + trF ∗ω � ω)Bs ds.

Since d∗F ∗ω+trF ∗(ω�ω) = 0, it follows that
∫

ωδF (B)+ 1
2

∫
ω�ω (dF (B), dF (B))

is a local martingale. We have that π(F (B)) is a ∇-martingale, because π ◦ F is
an harmonic map. That F (B) is an ∇h-martingale follows from Theorem 3.1. �

The following result may be proved in the same way as Theorem 3.3.

Theorem 3.4. Let N be a Riemannian manifold with metric g, M a smooth man-
ifold endowed with a symmetric connection ∇ and F : N → BM and smooth map.
Then F is an (g,∇c)-harmonic map if and only if π ◦ F is an harmonic map and
d∗F ∗ω + trF ∗(ω � ω + ac) = 0.

Remark 3.2. Using the above results and the fact that a geodesic is an harmonic
map, it is easy to check that γ is a ∇h-geodesic of BM if and only if π ◦ γ is a
∇-geodesic and ∇2γi = 0 for i = 1, ..., n. Similarly, we have that γ is a ∇c-geodesic
of BM if and only if π ◦ γ is a ∇-geodesic and γi is a Jacobi field along to π ◦ γ
for i = 1, ..., n. See [5], [6], [16] and [17].

4. Martingales on the associated fibre bundles

Let F be a vector space on which GL(n, R) acts on the left. We begin by recalling
the construction of the vector bundle E = E(M,F,GL(n, R), BM) associated to
BM having standard fibre F (see [3] and [12]). GL(n, R) acts on BM × F on the
right by the rule (p, f)g = (pg, g−1f) where p ∈ BM , f ∈ F and g ∈ GL(n, R).
Let E be the quotient space thus obtained and φ : BM × F → E the canonical
projection. The projection πE : E → M is defined by πE(φ(p, f)) = π(p). For each
x ∈ M , the fibre π−1

E (x) consists of all points φ(p, f) such that π(p) = x and f ∈ F
is arbitrary.

Lemma 4.1. Let M be a differentiable manifold, E = E(M,F,GL(n, R), BM) a
vector bundle associated to BM , Z a right invariant vector field on BM and ξ a
left invariant vector field on F . Then

(1) There exists an unique vector field Z† on E satisfying:

Z†
φ(p,f) = φ(−, f)∗Zp

where (p, f) ∈ BM × F .
(2) There exists an unique vertical vector field ξ‡ on E satisfying:

ξ‡φ(p,f) = φ(p,−)∗ξf

where (p, f) ∈ BM × F .

Proof. It suffices to show that Z†
φ(p,f) and ξ‡φ(p,f) are independent of the choice of

(p, f) ∈ BM × F . Let (p, f) and (q, h) in BM × F such that φ(p, f) = φ(q, h). By
definition, there exists g ∈ GL(n, R) such that q = pg and h = g−1f . From the
right (left) invariance of Z (ξ) and properties of φ, we have that

φ(−, h)∗Zq = φ(−, g−1f)∗ ◦Rg∗Zp = (φ(−, g−1f) ◦Rg)∗Zp = φ(−, f)∗Zp
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and

φ(q,−)∗ξh = φ(gp,−)∗ ◦ Lg−1∗ξf = (φ(gp,−) ◦ Lg−1)∗ξf = φ(p,−)∗ξf .

�

Let M be a smooth manifold endowed with a connection ∇, and E a vector
bundle associated with BM having standard fibre F . Naturally, ∇ induces a co-
variant derivative operator ∇E on E. Let s ∈ Γ(E), e ∈ E and w ∈ TxM such that
πE(e) = x, then ∇E is given by

∇E
ws(e) = p

d

dt
a−1

t s(π(at))|t=0

where π(p) = x and a is a horizontal curve in BM such that a0 = p and a′0 = wH ∈
TpBM .

The vertical lift ve : Eπ(e) → TeE at e ∈ E is given by ve(s) = d
dt (e + ts)|t=0.

We observe that every section s ∈ Γ(E) has a vertical lift sv ∈ Γ(TE) defined by
sv(e) = ve(s(πE(e))).

The horizontal lift he : Tπ(e)M → TeE is given by he(w) = φ(−, f)∗(wh) where
e = φ(p, f). We observe that every vector field X ∈ Γ(TM) has a horizontal lift
Xh ∈ Γ(TE) defined by Xh(e) = he(X(πE(e))).

We recall that a connection ∇′ on BM is GL(n, R)-invariant if Rg is affine for
every g ∈ GL(n, R). The GL(n, R)-invariant connection ∇′ is projectable if there
exists a connection ∇ on M such that π : BM → M is (∇′,∇) affine. In this case,
we says that ∇ is the projection on M of ∇′. See [4] for more information in the
general case of a principal fiber bundle.

The following result shows that a projectable GL(n, R)-invariant connection on
BM , induces naturally connections on the associated vector bundles.

Proposition 4.1. Let M be a manifold and ∇′ a projectable GL(n, R)-invariant
connection on BM with projection ∇. Let E be a vector bundle associated with
BM . Then there exists an unique connection ∇† on E satisfying:

(4.1)


∇†

rvsv = 0
∇†

rvXh = 0
∇†

Xhsv = (∇E
Xs)v

∇†
XhY h = (∇′

XH Y H)†

where r, s ∈ Γ(E) and X, Y ∈ Γ(TM).

Proof. The proof follows immediately from Theorem 5 [15]. �

Proposition 4.2. Let M be a manifold and ∇′ a projectable GL(n, R)-invariant
connection on BM with projection ∇. Let E be a vector bundle associated with
BM having standard fibre F . Then the canonical projection φ : BM × F → E is
(∇×,∇†) affine. Where ∇× is the product connection on BM × F of ∇′ and the
flat connection of F .

Proof. The proof is an straightforward calculation in local coordinates. �

Corollary 4.1. Let M be a manifold and ∇′ a projectable GL(n, R)-invariant
connection on BM with projection ∇. Let E be a vector bundle associated with
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BM having standard fibre F and ξ a E valued semimartingale. Then ξ is a ∇†-
martingale if and only if πE ◦ ξ is a ∇-martingale and f = (πE ◦ ξH)−1ξ is a local
martingale of F .

Proof. It is clear that ξ = φ(πE ◦ ξH , f). Now, we suppose that πE ◦ ξ is a ∇-
martingale and f = (πE ◦ξH)−1ξ is a local martingale of F . By Remark 3.1, πE ◦ξH

is a ∇′-martingale. But φ is affine from Proposition 4.2, hence ξ = φ(πE ◦ ξH , f) is
a ∇†-martingale.

�

Remark 4.1. Let M be a manifold endowed with a connection ∇. The canonical
lift ∇c and the horizontal lift ∇h are projectable GL(n, R)-invariant connections
on BM with projection ∇. By Proposition 4.1, these connections naturally induces
connections on the tensor bundle T (r,s)M of type (r, s) over M . We denote by ∇c

(∇h) the induced connections. The connection ∇c (∇h) will be called the canonical
(horizontal) lift of ∇ on T (r,s)M . We observe that our definitions agree with those
of A. Magden and A. Salimov [13] and extend the classical ones of K. Yano and S.
Ishihara [18] for the tangent bundle of M .
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abilités, XXXVI, 419-456, Lecture Notes in Math., 1801, Springer, Berlin 2003.

[3] Bishop, R., and Crittenden, R., Geometry of Manifolds, Academic-Press, New York 1964.

[4] Catuogno, P., On stochastic parallel transport and prolongation of connections , Rev. Un.
Mat. Argentina 41, (1999), 107-118.

[5] Cordero, L., and De León, M., Horizontal lift of connections to the frame bundle, Bolletino

U.M.I. (6) 3-B, (1984), 223-240.
[6] Cordero, L., Dodson, C., and De León, M., Differential Geometry of Frames Bundles, Kluwer

Academic Publisher, Dordrecht 1989.
[7] Emery, M., Stochastic Calculus in Manifolds, Springer, Berlin 1989.

[8] Emery, M., On two transfer principles in stochastic differential geometry, Séminaire de Prob-
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