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Abstract

The paper presents the Frailty Model using the hazard function in a
logistic form. The model developed here is a survival analysis method
which aggregates linkage analysis role. The model structure is based on
a Cox model extension. The hazard function has a parametric form, the
logistic one (Mackenzie, 1996). The censure is defined using the current
age and the age at onset , thus if one has the age at onset greater than
the current age, then a censured observation is characterized. The addi-
tive frailties are constructed from a gamma densities and it incorporates
genetic and environmental contributions on the trait of interest. The use
of these techniques in a unified way has been shown to be efficient, once
the age at onset is usually collected in genetic mapping studies, moreover
it is shown to be associated to complex diseases. Then, this is a useful
model, which is able to be applied to Cox model situations and genetic
mapping cases. The model is adjusted by maximization of retrospective
likelihood (Whittemore, 1996), using an iterative algorithm based on the
Kuhn-Tucker equations. The proposed model is ascertained by the analy-
sis of simulated data created using G.A.S.P. package and by comparisons
with the results from the joint analysis with SAS and GeneHunter soft-
wares.

1 Introduction

Usually in survival analysis it is assumed that there is independence among the
observations. However, sometimes we are interested in study age-at-onset of a
certain disease in individuals of the same family. In this case it is expected that
the behavior of the observed age at onset among related individuals showed some
similarity that are not observed between unrelated individuals. The common
practice to analyze age at onset for unrelated individuals is the application of
the Cox models (Cox, 1972). Recently, frailty models has been used as one
solution to deal with the lack of independence observed age at onset among
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related individuals (Chang & Hsiung, 1995; Yau& McGilchrist, 1998). Among
the frailty models, the gamma distribution is the most used to model the frailty
variable (Clayton & Cuzick, 1985, Nielsen et al., 1992).

Frailty models are random effects models designed to work with censored
survival data, in which the differences between homogeneous groups are mod-
elled by adding a non-observable factor in the hazard function.

The main purpose of this article is to present a hazard function in the logistic
form (Mackenzie, 1996) in frailty models and compare it with other models using
frailties such as the Cox models using Martingale residuals with applications in
linkage analysis. These models are applied to linkage analysis, as seen in Li and
Zhong (2002).

2 Methods

In this section we will describe the different phases of the survival models using
frailty. First, we will describe the classical gamma frailty model. Then, we
will extend the gamma frailty model using the hazard function in the logistic
form (Mackenzie, 1996). The main advantage of using a hazard function in the
logistic form is that it is very flexible, in the sense that it can have different
forms. The logistic hazard is a function of time and the logit of the baseline
hazard is linear in time.

2.1 The Gamma Frailty

The gamma frailty models were first introduced by Clayton (1978) and Vaupel et
al. (1979). They assumed models without covariates, where the frailty variable
affects the hazard function in a multiplicative way. Later, Clayton and Cuzick
(1985) extended the model proposed in Clayton (1978) to include covariates.
The model has the form:

λij(t | Zi,Xij) = ZiYij(t)α0(t)exp(β′Xij) (1)

where Yij = 1 if the j-th individual of group i is at risk until t− (time immediate
before t) and zero otherwise; α0(t) is the baseline hazard function (arbitrary);
β is the vector of regression coefficients; Xij is the vector of covariates for
individual j of group i and Zi ∼ Gamma(ν, η) are independent with ν ≥ 0,
η ≥ 0 and ν = η = θ−1, i.e., E(Zi) = 1 and Var(Zi) = θ.

Oakes (1982) discusses a reparametrization of the model introduced by Clay-
ton (1978) using bivariate life tables. A few years later, some authors (Self and
Prentice, 1986, Nielsen et al., 1992 and Anderson et al., 1993) used the formu-
lation of counting process to study the Gamma frailty models considering the
semiparametric Cox Model.

2.2 Frailty Models for Affected Sibpairs

Let Zj be the unobserved frailty and Tj be the random variable representing the
age-at-onset of a particular disease for the j-th sib. Z1, . . . , Zn are correlated
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due to the genetic segregation and shared frailty, so are T1, . . . , Tn.
Assuming that Tj given Zj are independent and based on the model (4), we

can see that conditioning on the frailty vector Z, the joint density and survival
function can be written as

S(t1, . . . , tn|Z1, . . . , Zn) = e−Λ1(t1)Z1−···−Λn(tn)Zn ,

where Λj(tj) = Λ0(tj)eX
′
jβ ; j = 1, . . . , n.

where λ0 is the baseline hazard function, Xj is the vector of covariates
for the j-th sib and β is a vector of parameters, Zj is the unobserved frailty.
Z1, . . . , Zn are correlated due to the genetic segregation and shared frailty, so
are T1, . . . , Tn.

Integrating over Z, we get the following marginal joint survival function,
which is demonstrated in the Appendix:

S(t1, . . . , tn) =





4∏

i=1

ηvd/2

[∑n
j=1 Λj(tj)aji + η

]vd/2




×

×




ηvp

[∑n
j=1 Λj(tj) + η

]vp



 . (2)

Usually, the observations are censored and we need both the survival function
and combinations of density and survival functions. For a sibship with a affected
sibs (j = 1, . . . , a) and n− a unaffected, the joint survival and density function
is

P (t1, δ1 = 1, . . . , ta, δa = 1, ta+1, δa+1 = 0, . . . , tn, δn = 0) =

(−1)a ∂aS(t1, . . . , tn)
∂t1 . . . ∂ta

.

When all the sibs are unaffected (a = 0), we use the survival function itself,
since the density function is used only when there are censored observations.

For a sibship with all sibs affected, the joint density function is:

P (t1, δ1 = 1, . . . , tn, δn = 1) = (−1)n ∂nS(t1, . . . , tn)
∂t1 . . . ∂tn

.

For a sibship with two sibs, the joint survival and density function can be
determined for a sib pair who shares 0, 1 and 2 alleles identical by descendent
at locus d. These joint functions are shown at Table 2.11, in which Λ∗j =
Λj(tj) + η , j = 1, 2 and Λ12 = Λ1 + Λ2 + η. We can see that, when vd = 0, the
joint survival function does not depend on the number of IBD alleles at locus
d, indicating that there is no linkage between disease and locus d.

1Demonstrations in the Appendix.
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Table 2.1: Joint Survival and Density Function - Bivariate Case

Joint Survival and Density Function
P (t1, δ1 = 0, t2, δ2 = 0) = S(t1, t2)
P (t1, δ1 = 1, t2, δ2 = 0) = C1(t1, t2)λ1(t1)S(t1, t2)
P (t1, δ1 = 0, t2, δ2 = 1) = C2(t1, t2)λ2(t2)S(t1, t2)
P (t1, δ1 = 1, t2, δ2 = 1) = [C1(t1, t2)C2(t1, t2) + C(t1, t2)] λ1(t1)λ2(t2)S(t1, t2)

IBDd = 0 IBDd = 1 IBDd = 2

S(t1, t2)
(

η2

Λ∗1Λ∗2

)vd
(

η
Λ12

)vp
(

η3

Λ∗1Λ∗2Λ12

)vd/2 (
η

Λ12

)vp
(

η
Λ12

)vd+vp

C1(t1, t2) vd

Λ∗1
+ vp

Λ12

vd/2
Λ∗1

+ vd/2+vp

Λ12

vd+vp

Λ12

C2(t1, t2) vd

Λ∗2
+ vp

Λ12

vd/2
Λ∗2

+ vd/2+vp

Λ12

vd+vp

Λ12

C(t1, t2)
vp

Λ2
12

vd/2+vp

Λ2
12

vd+vp

Λ2
12

Consider a sibship with n sibs and let F be their father and M , their mother.
If the parents are independent, there are only four identical by descendent alleles
for a given locus. Let be also a region in the chromosome where exists the disease
locus. If d is a point inside this region, it is the interest to know when there is
a suspect gene at the locus d. Let (1, 2) be the father’s chromosome and (3, 4)
the mother’s one. The sibship allelic inheritance vector at locus d is the vector

Ad = (a1, a2, . . . , a2j−1, a2j , . . . , a2n−1, a2n),

where a2j−1 = 1 or 2 and a2j = 3 or 4, ie., the odd indexes represent the father’s
alleles transmitted and the even ones represent the mother’s alleles transmitted
to the sibship.

It is important to have the IBDd (Identical by descendent) definition, which
shows how many alleles a sibpair shares at locus d, as in Andrade and Pinheiro
(2002). As Figure 2.1 shows, a sibpair can share 0, 1 or 2 alleles.

The parents’ genetic frailties due to locus d are defined as
{

ZdF = Ud1 + Ud2

ZdM = Ud3 + Ud4,

where the index F means father and M mother, and Ud1 and Ud2 are the genetic
frailties due to the information contained in the father’s chromosomes; Ud3 and
Ud4 have the analogous interpretation for the mother. It’s assumed that the
mother and father’s frailties are independent.

For a given inheritance vector vd at locus d for a sibship, the frailty for the
j-th sib is defined as

Zdj = Uda2j−1 + Uda2j ; j = 1, . . . , n.
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Figure 2.1: Identical by Descendent

We assume Ud1, Ud2, Ud3 and Ud4 are independent and follow Γ(vd/2, η),
where η is the reciprocal of the scale parameter and vd is the shape parameter.
Then,

Zdj ∼ Γ(vd, η); j = 1, . . . , n.

Influent factors different from genetic contributions due to locus d are con-
sidered adding another random frailty term,Up, to the genetic frailty. Then the
genetic frailty for the j-th sib is defined as:

Zj = Zdj + Up = Uda2j−1 + Uda2j + Up,

where Up ∼ Γ(vp, η) over different sibships. Then, Zj ∼ Γ(vd + vp, η). It’s easy
to check that the means of the frailties are

E(Z1) = E(Z2) = · · · = E(Zn) =
vp + vd

η

and the variances are

V (Z1) = V (Z2) = · · · = V (Zn) =
vp + vd

η2
.

Then the parameter vd represents the frailty genetic variance proportion
explained by locus d. It’s assumed that vd +vp = η, to make the baseline hazard
λ0(t) identifiable, which sets E(Zj) = 1, ∀j and prevents arbitrary scaling in the
model. This way, the frailty variance is 1/(vd + vp).

The sibship frailties can be written in a matrix form,

Z = HU, (3)
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where

Z = (Z1, Z2, . . . , Zn)′

H =




a11 a12 a13 a14 1
...

...
...

...
...

an1 an2 an3 an4 1




U = (Ud1, Ud2, Ud3, Ud4, Up)′,

with

aj1 = I(a2j−1 = 1); aj2 = I(a2j−1 = 2)
aj3 = I(a2j = 3); aj4 = I(a2j = 4); j = 1, . . . , n,

and

Z is the vector of frailties for the n sibs,

H is the matrix which its elements indicates the alleles transmitted to the sibs,

U is the vector of frailties; and

I(A) is the indicator function of A (ie., I(A) = 1 if the event A occurs and
I(A) = 0, otherwise).

2.2.1 The Additive Genetic Gamma Frailty Model

Let be a sibship with n sibs and Tj the random variable of age at disease onset
for the j-th sib. Then, (tj , δj) is the dataset where tj is the age at onset (if
δj = 1) or age at censoring (if δj = 0). It is assumed that the hazard function of
developing the disease for the j-th sib at age tj is modeled by the proportional
hazard model with random efect Zj ,

λj(t|Zj) = λ0(t)eX
′
jβZj ; j = 1, . . . , n, (4)

where λ0 is the baseline hazard function, Xj is the vector of covariates for the
j-th sib and β is a vector of parameters, Zj is the unobserved frailty. Z1, . . . , Zn

are correlated due to the genetic segregation and shared frailty, so are T1, . . . , Tn.

2.2.2 The Baseline Logistic Hazard

The logistic hazard frailty model is built using the a baseline hazard of the form

λ∗0(t|α, γ) =
exp(tα + γ)

1 + exp(tα + γ)
, (5)
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resulting in a parametric case of (4). The cumulative hazard function , Λj(tj),
used at the survival function (2) must be replaced by the expression

Λ0(t) = ζ

∫ t

0

euα+γ

1 + euα+γ
du

= ln
(

1 + etα+γ

1 + eγ

) ζ
α

. (6)

Thus,

λj(tj |Zj) = λ0(t)eX
′
jβZj ; j = 1, . . . , n,

where

λ0(t|α, γ) = ζ
exp(tα + γ)

1 + exp(tα + γ)
,

and

S(t1, . . . , tn) =





4∏

i=1

ηvd/2

[∑n
j=1 Λj(tj)aji + η

]vd/2




×

×




ηvp

[∑n
j=1 Λj(tj) + η

]vp



 . (7)

where

Λ0(tj) = ln
(

1 + etjα+γ

1 + eγ

) ζ
α

and (8)

Λj(tj) = Λ0(tj)eX
′
jβ . (9)

Since the hazard function represents the instantaneous failure probability,
the use of a hazard function of a logistic form is justified, because the logistic
function is often used when modelling probabilities dependent on time.

2.3 Hypotheses Testing

The survival model above can be used to develop a likelihood ratio test to be
used in linkage analysis. As shown at Table 2.1, when vd = 0, the joint survival
and density function does not depend on the number of IBD alleles shared at
locus d. Thus, the linkage test between the disease and locus d can be done
testing H0 : vd = 0.

Let the i-th sibship with ni sibs and (ti, δi) = (ti1, δi1, . . . , tini , δini) the age
at onset or at censoring. Consider also a marker Mi for the i-th sibship. The
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(Mi, ti, δi) vector can be seen as the retrospective likelihood of Mi given the
phenotypes (ti, δi), as in Whittemore (1996).

The retrospective likelihood for the i-th sibship is

Li(vd, vp, Λ0(t),β) = P (Mi|ti, δi)

=

∑
ad

P (ti, δi| Ad = ad)P (Ad = ad|Mi)∑
ad

P (ti, δi|Ad = ad)P (Ad = ad)
P (Mi),

where P (ti, δi|Ad = ad) is shown in the Appendix for the bivariate case under
the notation P (ti, δi|IBD = k), P (Ad = ad) is the prior probability of the
inheritance vector Ad and P (Ad = ad|Mi) can be determined using multipoint
methods (Kruglyak et al., 1996). For sib pair data, the retrospective likelihood
is:

Li(vd, vp,Λ0(t), β) = P (Mi|ti, δi) =

=
∑2

k=0 P (ti1, δi1, ti2, δi2|IBDd = k)P (IBDd = k|Mi)∑2
k=0 P (ti1, δi1, ti2, δi2|IBDd = k)P (IBDd = k)

× P (Mi),

where P (ti1, δi1, ti2, δi2|IBDd = k) is given on Table 2.1 and P (IBDd = k) is
the prior probability of a sib pair sharing k IBD alleles.

This likelihood function depends only on the cumulative hazard function
and when vd = 0, Li(0, vp, Λ0(t)) = P (Mi), thus the likelihood ratio statistic is
given by

LRi(vd, vp,β) =

∑
ad

P (ti, δi|Ad = ad)P (Ad = ad|Mi)∑
ad

P (ti, δi|Ad = ad)P (Ad = ad)
.

Assuming there are K families, the logarithm of odds (LOD) score, (Olson
et al., 1999; Elandt-Johnson, 1971), at locus d is defined as

Lodd = max
vd,vp,β

K∑

i=1

log10 LRi(vd, vp, β). (10)

The Lod score is used at linkage analysis (Elandt-Johnson, 1971; Ott, 1991),
in order to help on the genetic mapping. Based on the likelihood tests the-
ory when the null hypothesis is on the parameter space boundary (Self and
Liang, 1987) we have that, under H0, 2Lodd ln(10) follows a mixture with equal
probability of point mass zero and chi-square with one degree of freedom.

3 Application

3.1 Description of the Simulated Data

In this work, simulated data (created using the Genometric Analysis Simulation
Program - G.A.S.P.) were analyzed. The age at onset were created based on a
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logistic density, shown at equation (11), where α = 0.1, γ = 0.1 and ζ = 0.005,
which implies in the density presented at Figure 3.1. The actual ages were
simulated using U(60,80).

f0(t|ζ, α, γ) = λ0(t|ζ, α, γ)S0(t|ζ, α, γ), (11)
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Figure 3.1: Density and Hazard Functions

For the first data set, a binary trait due to a locus with two alleles linked
to the markers 1, 2, 3, 4 and 5 was simulated. This binary trait indicates the
presence/absence of disease. Then, the age at onset and the actual age were
simulated, using the disease information. The second data set was generated in
a similar way, but there weren’t linkage evidences between the markers and the
locus.

Both data sets have one thousand nuclear families with two kids, thus four
members per family (father, mother, first son/daugther, second son/daugther).

Confidence intervals for the parameter were built using resampling tech-
niques, such as Bootstrap.

The GenHunter package adjusts the linkage analysis model using a different
point of view from the Logistic Hazard Frailty Model. GeneHunter uses the fact
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of being (or not) affected as response, forgetting all the existing survival analysis
structure. Then, we used another method in order to compare the results.

In order to o validate the Logistic Hazard Frailty Model, it was adjusted a
Cox model for each of the data sets and then the Martingale Residuals were
computed (using SAS). These residuals were used as a quantitative trait to be
analyzed by GeneHunter, using non-parametric methods, getting the Z-score,
widely used in quantitative traits linkage analysis (QTL). Then, the models are
compared and the Logistic Hazard Frailty Model purpose is validated using the
Z-score and Lod-score p-values, since Z2 ∼ χ2

1 and 2Lodd ln(10) ∼ 1
2χ2

0 + 1
2χ2

1,
as shown in Kruglyak (1996), Li and Zhong (2002) and Self and Liang (1987).

It is possible to see, as shown in Figures 3.1 and 3.2, that the proposed
method did not estimate correctly the parameters, which implied in a significant
difference between the true and estimated densities. Then, the bad parameters
estimation is reflected on the estimated hazard functions, as in Figures 3.1 and
3.2.
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Figure 3.2: Comparisons of Density and Hazard Functions
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3.2 Results

3.2.1 Under the assumption of linkage

The purpose of linkage analysis using the Logistic Hazard Frailty Model (LHFM)
shows similar results when compared to the Cox Model with Martingale Resid-
uals (CMMR) method, adjusted by SAS/GeneHunter.

The five markers were simulated with strong linkage evidences. This fact
was detected by both methods (Logistic Hazard Frailty Model and Cox Model
with Martingale Residuals), because the p-values is less than 0.05.

It is possible to verify that the LHFM is more conservative when compared
to CMMR method. It is important to say that both methods detected strong
linkage evidence at position 7.38 and its neighborhood. Inside the region that
contains the locus that causes the disease, the LHFM presents minimum signif-
icance values, rejecting the non-linkage hypotheses.

Table 3.2: Comparision between CMMR and LHFM - Linkage Case
Position P-value Position P-value Position P-value

CMMR LHFM CMMR LHFM CMMR LHFM

0.00 10−16 0 7.38 0 0 14.75 10−16 0
1.05 10−16 0 8.43 0 0 15.80 10−16 0
2.11 0 0 9.48 0 0 16.86 10−15 0
3.16 0 0 10.54 0 0 17.91 10−15 0
4.21 0 0 11.59 0 0 18.96 10−15 0
5.27 0 0 12.64 0 0 20.02 10−14 0
6.32 0 0 13.70 10−16 0 21.07 10−14 0

Table 3.3: True Parameters and their Estimates - Linkage Case
vd vp α γ ζ0 β

True 0.4000 0.0005 0.1000 0.1000 0.0050 2.0000
Lower Bound 95% 0.3346 0.0008 0.0202 0.1472 0.1311 0.6634

Estimate 0.3958 0.0010 0.0208 0.1663 0.1429 0.7837
Upper Bound 95% 0.4569 0.0011 0.0215 0.1854 0.1547 0.9039
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Although there were differences between the true values and the estimates
(as shown in Table 3.3), the LHFM was able to detected the same linkage
behavior detected by CMMR method, as shown in Figure 3.3, because there
was a (perfect) superposition of p-values through all the region analyzed.
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Figure 3.3: P-values for CMMR and LHFM - Linkage Case

As Figure 3.4 shows, it is possible to see the same linkage pattern be-
tween CMMR and LHFM, where the latter presents the linkage behavior much
stronger than the first method. The region where the maximum is located is
the disease’s cause location.
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Figure 3.4: Test Statistics for CMMR and LHFM - Linkage Case

The estimates behavior does not match the expected one when compared to
the pattern used for the generation of the simulated data on Table 3.3. This
data set was generated in such a way that there was linkage between the markers
and disease locus and, as said before, this is revealed as long as vd is greater
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then 0. It is possible to verify the matching between the true and estimated
values for vd, vp and γ, but there is a reasenable difference between the true and
estimated values for β and ζ0. This problem can be caused by the estimation
procedure, which depends on the start conditions.

3.2.2 Under the assumption of no linkage

For the data set which refers to the five simulated markers without linkage, the
LHFM presents good results. Since the dataset was created under the null hy-
pothesis, it is desired to not reject this hypothesis: this fact was observed better
when using LHFM (Table 3.4). The LHFM can detect the linkage pattern just
as CMMR, Figure 3.5, because the null hypothesis was not rejected anywhere.
It is important to say that the p-values associated to the LHFM were always
greater than those associated to the CMMR method. Thus the LHFM works
better than the CMMR model under the null hypothesis.

Table 3.4: Comparision between CMMR and LHFM - Non-Linkage Case

Position P-value Position P-value Position P-value

CMMR LHFM CMMR LHFM CMMR LHFM

0.00 0.9641 1.00 7.38 0.6191 1.00 14.75 0.6072 1.00
1.05 0.8712 1.00 8.43 0.6735 1.00 15.80 0.6187 1.00
2.11 0.7616 1.00 9.48 0.7587 1.00 16.86 0.5335 1.00
3.16 0.6719 1.00 10.54 0.8433 1.00 17.91 0.4590 1.00
4.21 0.6280 1.00 11.59 0.7582 1.00 18.96 0.4284 1.00
5.27 0.6179 1.00 12.64 0.6731 1.00 20.02 0.4504 1.00
6.32 0.6064 1.00 13.70 0.6195 1.00 21.07 0.5003 1.00

Table 3.5: True Parameters and their Estimates - Non-Linkage Case
vd vp α γ ζ0 β

True 0.0050 0.0500 0.1000 0.1000 0.0050 2.0000
Lower Bound 95% 0.0047 0.0422 0.2189 0.2621 0.9793 1.3454

Estimate 0,0061 0.0559 0.2803 0.3356 1.2618 1.5496
Upper Bound 95% 0.0076 0.0696 0.3418 0.4090 1.5463 1.7539

As shown in Figure 3.6, none of the methods detected linkage, since their
test statistics are close to zero.

There are differences between the real parameters and their estimates. But
the vd estimate (responsible for the linkage detection) is very close from the
true value; the same is valid for vp, as shown in Table 3.5. Once more, the
start condition and process stability are the possible causes of this incorrect
parameters estimation.
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Figure 3.5: P-values for CMMR and LHFM - Non-Linkage Case
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Figure 3.6: Test Statistics for CMMR and LHFM - Non-Linkage Case

Appendix

Proof: Joint Survival and Density Function - Bivariate Case
A.1 IBDd = 0

S(t1, t2|IBD = 0) =
(

η2

Λ∗1Λ
∗
2

)vd
(

η

Λ12

)vp
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Assuming non-informative censoring:

P (t1, δ1 = 1, t2, δ2 = 0|IBD = 0) ∝ −∂S(t1, t2)
∂t1

=
(

η2

Λ∗1Λ
∗
2

)vd
(

η

Λ12

)vp

λ1(t1)
(

vd

Λ∗1
+

vp

Λ12

)

= λ1(t1)S(t1, t2)
(

vd

Λ∗1
+

vp

Λ12

)

= λ1(t1)S(t1, t2)C1(t1, t2)

Similarly,

P (t1, δ1 = 0, t2, δ2 = 1|IBD = 0) ∝ λ2(t2)S(t1, t2)C2(t1, t2).

To compute P (t1, δ1 = 1, t2, δ2 = 1|IBD = 0),

P (t1, δ1 = 1, t2, δ2 = 1|IBD = 0) ∝ ∂2S(t1, t2)
∂t1∂t2

=
[(

vd

Λ∗1
+

vp

Λ12

)(
vd

Λ∗2
+

vp

Λ12

)
+

vp

Λ2
12

]
×

×λ1(t1)λ2(t2)
(

η2

Λ∗1Λ
∗
2

)vd
(

η

Λ12

)vp

= [C1(t1, t2)C2(t1, t2) + C(t1, t2)]×
×λ1(t1)λ2(t2)S(t1, t2)

A.2 IBDd = 1

S(t1, t2|IBD = 1) =
(

η3

Λ∗1Λ
∗
2Λ12

)vd/2 (
η

Λ12

)vp

Again, the non-informative censoring hypothesis is used:

P (t1, δ1 = 1, t2, δ2 = 0|IBD = 1) ∝ −∂S(t1, t2)
∂t1

=
[
vd/2
Λ∗1

+
vd/2 + vp

Λ12

]
λ1(t1)S(t1, t2)

= C1(t1, t2)λ1(t1)S(t1, t2)

In a analogous way,

P (t1, δ1 = 0, t2, δ2 = 1|IBD = 1) ∝ −∂S(t1, t2)
∂t2

=
[
vd/2
Λ∗2

+
vd/2 + vp

Λ12

]
λ2(t2)S(t1, t2)

= C2(t1, t2)λ2(t2)S(t1, t2)
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Thus,

P (t1, δ1 = 1, t2, δ2 = 1|IBD = 1) ∝ ∂2S(t1, t2)
∂t1∂t2

= λ1(t1)λ2(t2)S(t1, t2)
{[

(vd/2)
Λ∗1

+
(vd/2 + vp)

Λ12

]

×
[
(vd/2)

Λ∗2
+

(vd/2 + vp)
Λ12

]
+

(vd/2 + vp)
Λ2

12

}

= [C1(t1, t2)C2(t1, t2) + C(t1, t2)]×
×λ1(t1)λ2(t2)S(t1, t2)

A.3 IBDd = 2

S(t1, t2|IBD = 2) =
(

η

Λ12

)vd+vp

Assuming non-informative censoring:

P (t1, δ1 = 1, t2, δ2 = 0|IBD = 2) ∝ −∂S(t1, t2)
∂t1

=
vd + vp

Λ12
λ1(t1)S(t1, t2)

= C1(t1, t2)λ1(t1)S(t1, t2).

In a analogous way,

P (t1, δ1 = 0, t2, δ2 = 1|IBD = 2) ∝ −∂S(t1, t2)
∂t2

=
vd + vp

Λ12
λ2(t2)S(t1, t2)

= C2(t1, t2)λ2(t2)S(t1, t2).

Thus,

P (t1, δ1 = 1, t2, δ2 = 1|IBD = 2) ∝ ∂2S(t1, t2)
∂t1∂t2

=
1

Λ2
12

[(vp + vd)S(t1, t2)(1 + vp + vd)λ1(t1)λ2(t2)]

=

[(
vp + vd

Λ12

)2

+
vd + vp

Λ2
12

]
λ1(t1)λ2(t2)S(t1, t2)

= [C1(t1, t2)C2(t1, t2) + C(t1, t2)]×
×λ1(t1)λ2(t2)S(t1, t2)

16



Acknowledgements

This research was funded in part by FAEP 2001/13224-7, FAPESP 00/12212-2
and 01/13224-7.

References

Anderson, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993). Statistical
Model Based on Counting Process. Springer-Verlag, New York.

Andrade, M. and Pinheiro, H. P. (2002). Métodos Estat́ısticos Aplicados em
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