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Abstract

We apply the techniques developed in Comets and Popov (2003) to
present a new proof to Sinai’s theorem (Sinai, 1982) on one-dimensional
random walk in random environment (RWRE), working in a scale free way
to avoid rescaling arguments and splitting the proof in two independent
parts: a quenched one, related to the measure Pω conditioned on a fixed,
typical realization ω of the environment, and an annealed one, related to
the product measure P of the environment ω. The quenched part still holds
even if we use another measure (possibly dependent) for the environment.
Keywords: Random walk, random environment, Sinai’s Walk, moderate
deviations
MSC: 60K37 (primary) 60G50

1 Introduction

The Random Walk in Random Environment (RWRE) in Z is a jump process ξ =
{ξt; t ∈ [0,∞)} starting at z ∈ Z with law Pz such that Pz(·) =

∫
P z

ω(·)P(dω),
where P z

ω is the law of a Markovian nearest-neighbor jump process starting at
z ∈ Z with transition rates given by the fixed realization of the environment
ω = {ω±x ;x ∈ Z}, so that

P z
ω(ξt+h = x± 1|ξt = x) = ω±x h + o(h),

P z
ω(ξt+h = x|ξt = x) = 1− (ω−x + ω+

x )h + o(h),

as h ↘ 0, and P is the law of the environment ω, a product measure of the
joint distribution of ω−0 and ω+

0 , so that the pairs (ω−x , ω−x ) are i.i.d. for x ∈ Z.
Expectations under Px, P, and P x

ω will be denoted as Ex, E, and Ex
ω respectively

and Px and P x
ω will be written P and Pω when x = 0.

This model has been much studied in discrete time (see Zeitouni, 2004, for
an extensive review) and recently in continuous time Comets and Popov (2003),
although the discrete time model is embedded in the continuous time model,
so there is no qualitative difference between them as long as the transition
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rates of the latter and the transition probabilities of the first are bounded away
from 0 and ∞ and from 0 and 1 respectively. A continuous state space version
is introduced in Brox (1986) as the model of Brownian motion with random
potential. Under P, ξt is not Markovian and the rates ω are homogeneous only
at statistical level.

Solomon (1975) established recurrence-transience criteria for the indepen-
dent environment case, implying that ξt is P-a.s. recurrent if and only if

E ln
ω+

0

ω−0
= 0. (1)

Non-degenerate randomness of the environment is ensured if

0 < σ2 := E ln2 ω+
0

ω−0
< ∞, (2)

so that RWRE is not a time-change of a simple random walk. Both conditions
together are called Sinai’s regime. The existence of κ > 0 such that

P(κ−1 ≤ ω±0 ≤ κ) = 1, (3)

(ellipticity) ensures irreducibility of the RWRE and qualitative equivalence be-
tween the discrete and continuous time versions. Under these conditions, Sinai
(1982) proved ξt is of order ln2 t, characterizing the strong sub-diffusive behavior
of the RWRE.

Comets and Popov (2003) developed a new, probabilistic approach to study
the moderate deviation of ξt under P, but their techniques can be used to
address questions such as extending Sinai’s theorem to dependent laws of the
environments.

This new proof of Sinai’s theorem separates in two distinct parts what is due
to the behavior of ξt under Pω for a fixed, typical environment ω (the quenched
part) and what is due to the behavior of the typical environment ω under P (the
annealed part). In the independent case, the Sinai’s regime is enough, but, in
the dependent case, it is not sufficient. The quenched part of the proof is still
valid in the dependent case, so that one needs to adapt only the annealed part
for a dependent law for ω whose potential V (defined ahead) still satisfy some
suitable conditions. In this paper, we present the proof for independent case
and leave for a future paper the extension to dependent case.

Recently, another proof to Sinai’s theorem has been given by Andreoletti
(2005), with a powerful approach. Indeed, they strengthen the results of Sinai
(1982) for the recurrent case still within Sinai’s original conceptual framework,
which included the creation of a hierarchy of refinements of valleys (or wheels)
in the potential.

But instead of investigating further the independent environment setup, our
aim is to prove Sinai’s theorem in a way we can extend the result to dependent
environments whose potential converge to other stable Lévy processes than the
Brownian motion.
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Our approach uses the fact that the potential converges weakly to a Brownian
motion. Therefore we deal with the limiting Brownian motion coupled to the
potential and then we are able to avoid rescaling arguments and work directly
with the “limit” valleys in a scale free fashion.

In the next section, we present the statement of Sinai’s theorem; in section
3 we define the concepts and notations we use; in sections 4 and 5 we give the
proof, and in appendix we present the proofs of the intermediate results needed
in the sections 4 and 5.

2 Main result

Under Sinai’s regime and ellipticity assumption, we present an alternative proof
of Sinai’s theorem separated in two independent parts. In the quenched part,
for any fixed, typical environment ω, we prove (4) below, i.e., that ξt converges
uniformly in Pω-probability as t → ∞ to the process mt = mt(ω) function of
the environment ω only. In the annealed part, we prove (5) below, i.e., that the
P-measure of the set Γt,ε of typical environments ω converges to 1.

The theorem is rephrased as follows

Theorem 1 If (1),(2) and (3) hold, then exists a jump process m = m(ω) =
{mt; t ∈ [0,∞)} such that for any δ > 0,

lim
t→∞

inf
ω∈Γε,t

Pω

(∣∣∣∣ξt −mt

ln2 t

∣∣∣∣ < δ

)
= 1, (4)

where {Γε,t; t ∈ [0,∞), ε ∈ (0, 1)} is a family of set of realizations of the envi-
ronment ω such that

lim
t→∞

lim
ε→0

P(Γt,ε) = 1. (5)

The original formulation of the result comes by as the following

Corollary 1 For any δ > 0,

lim
t→∞

P
(∣∣∣∣ξt −mt

ln2 t

∣∣∣∣ > δ

)
= 0,

immediately from P(|ξt−mt|/ ln2 t > δ) ≤
∫
Γt,ε

Pω(|ξt−mt|/ ln2 t > δ)P(dω)+

P(Γt,ε), (4) and (5).
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3 Notation and definitions

Transitions occur only between nearest neighbors, then the detailed balance
equation θxω+

x = θx+1ω
−
x+1 can be solved, giving the reversible measure θ

θx =


∏x−1

i=0
ω+

i

ω−i+1
, x > 0,

1, x = 0∏−1
i=x

ω−i+1

ω+
i

, x > 0

that satisfies also θxP x
ω (ξt = y) = θyP y

ω(ξt = x) for every x, y ∈ Z and t > 0.
Given a realization ω, we define the potential V = V (ω) as

V (x) =


∑x

i=1 ln ω−i
ω+

i

, x > 0,

0, x = 0∑0
i=x+1 ln ω+

i

ω−i
, x > 0.

Ellipticity causes the rates to be bounded away from 0 and ∞ and renders
mutual domination between θ and V : there exist positive constants K1,K2

such that K1e
−V (x) ≤ θx ≤ K2e

−V (x) for all x. Notice that the function w(n)(t)
of Sinai (1982) is our potential V completed by linear interpolation and rescaled
to converge weakly to a Brownian motion, so that V (x) = w(n)(x/ ln2 n) ln n for
x ∈ Z.

The potential V is a sum of i.i.d.r.v.’s with zero mean and finite second
moment (for the support of their distribution is compact because of ellipticity),
therefore V behaves like a random walk. By Donsker’s Invariance Principle,
V (x ln2 n)/ lnn converges weakly as n → ∞ to a Brownian motion W (x) with
diffusion coefficient σ2 = E(ln2 ω−0 /ω+

0 ). But, rather, we will use the strong
approximation Theorem 1B of Komlós et al. (1976) to work directly with the
Brownian motion W (which possesses the self-scaling property) in substitution
of the potential V . Accordingly, W can be coupled with V so that, for all
x > 0 and every n, P(max|k|≤n |V (k)−W (k)| > K1 lnn+x) < K2e

−K3x, where
K1,K2,K3 depend only on the distribution of ω−0 /ω+

0 . Trivially, there exists
κ0 > 0 such that

P
(

lim sup
x→±∞

|V (x)−W (x)|
ln |x|

≤ κ0

)
= 1. (6)

Sinai (1982) worked the idea of refinement of the function w(n)(t) while we
will work the idea (introduced in Comets and Popov, 2003) of t-stable wells and
t-stable points on the potential V and on its substitute W .

We can define the concept of t-stability for any real function f with domain
Dom(f) (which may be either V or W with domains Z or R resp.), but we need
first some previous definitions.

We say that a finite interval I = [a, b] is a well on a function f if a =
arg maxx∈[a,c] f(x) and b = arg maxx∈[c,b] f(x), where c = arg minx∈[a,b] f(x).
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We define the depth of a well I = [a, b] on f as depth(I) := min{f(a), f(b)} −
minx∈[a,b] f(x). For t > 1, we say that a point m ∈ Dom(f) is a t-stable
point of f if m = arg min

x∈[l,r]

f(x), where l = l(t, m) := sup{x ∈ (−∞,m]; f(x) ≥

f(m) + ln t} and r = r(t, m) := inf{x ∈ [m,∞); f(x) ≥ f(m) + ln t}. In plain
words, a t-stable point is the bottom of a well with depth of at least ln t, as the
points m−

t and m+
t in figure 1. In the definitions above and whenever necessary,

we consider all maxima, minima, suprema and infima of f over a set I as over
I ∩ Dom(f) and we consider also [a, b] = [min a, b, max(a, b)] regardless of the
order between them.

h−−t

m−
t

h+
th−t

m+
t = mt

δ log t

(1 + ε) log t

(1− ε) log t

C log2 t

(1 + ε) log t

h++
t

Figure 1: A function f with two t-stable wells

Let St(f) be the set of all t-stable points of f and let S+
t (f) := St(f)∩ [0,∞)

and S−t (f) := St(f) ∩ (−∞, 0]. Between two successive t-stable points m,m′,
there exists a peak h = arg maxx∈[m,m′] f(x) of f separating two adjacent well
of depth of at least ln t, so let Ht(f) = {h ∈ Dom(f);∃m,m′ ∈ St : h =
arg maxx∈[m,m′] f(x)} be the set of peaks of f and let Pt(m) = Pt(m)(f) :=
[maxHt ∩ (−∞,m),minHt ∩ (m,∞)] be the t-stable well in f of the t-stable
point m ∈ St so that any t-stable well is formed by two successive h, h′ ∈ Ht

with only one m ∈ St between them.
Now, let

m−
t := maxS−t

h−t := arg max
x∈[m−

t ,0]

f(x)

m−−
t := maxSt ∩ (−∞, h−t )

h−−t := arg max
x∈[m−−

t ,m−
t ]

f(x)

m+
t := minS+

t

h+
t := arg max

x∈[0,m+
t ]

f(x)

m++
t := minSt ∩ (h+

t ,∞)

h++
t := arg max

x∈[m+
t ,m++

t ]

f(x).

These definitions are illustrated in figure 1, in which h−t ∈ Ht but h−t 6∈ Ht for
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it is not the maximum between m−
t and m+

t . Finally, we can define the process
m = m(ω) = {mt; t > 1}

mt :=

{
m−

t , if f(h+
t ) > f(h−t )

m+
t , if f(h+

t ) < f(h−t ).
(7)

For m ∈ St with Pt(m) = [h, h′], h, h′ ∈ Ht, and 0 < a ≤ depth(Pt(m)), we
define the a-neighborhood Da(m) of m as

Da(m) := [l(m,a), r(m,a)] ∩ Pt(m), (8)

where we have l(m,a) := inf {x ∈ [h, m] : W (x)−W (m) < a} and r(m,a) :=
sup {x ∈ [m,h′] : W (x)−W (m) < a}. Notice that W (x) − W (m) > ε ln t for
x ∈ Pt(m) r Dε ln t(m). An instance of a (ε ln t)-neighborhood Dε ln t(m) is
shown in figure 2.

Dm

a m b

C1 log2 t

ε log t

C2 log t

Figure 2: At the bottom of a t-stable well

We define the elevation (introduced in Mathieu, 1994) E(I) =
E[f ](I) of the real function f in the interval I = [a, b] as E(I) :=
maxx,y∈I maxz∈[x,y] f(z) − f(x) − f(y) + minv∈I f(v) or, equivalently in our
case, E(I) = maxx∈M(f,I) maxz∈[x,y] f(z) − f(x) where y = arg minv∈I W (v) is
the global minimum y of f over I and M(f, I) is the set of local minima of f
over I except the global minimum y. For I ⊂ J , we have E(I) ≤ E(J). The
definition is illustrated in figure 3.

We will omit f whenever it is clear from the context.
For any t > 1, both V and W will be i.o. below 0 and above ln t P-a.s. by the

LIL, therefore St(V ) and St(W ) are infinite and so are their traces St∩ (−∞, x)
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f(x)

a bz

yxE(I)

Figure 3: Elevation E(I) of a function f over the interval I = [a, b]

and St∩(x,∞) for any x. Besides, all their elements are isolated points, because
of Dom(V ) is an isolated point set and because, between its local minima, W
need to raise and fall both at least ln t before another local minimum can belong
to St(W ), so an accumulation point in St(W ) P-a.s. can not occur.

At last, in this whole paper, K1,K2, . . . denote positive constants that may
change from line to line.

4 Quenched part of the proof

Technicalities apart, the idea of this part of proof is that, for any typical en-
vironment ω, (i) the particle will leave the interval [h−t , h+

t ] before the instant
t; (ii) the particle will choose to leave [h−t , h+

t ] through the lowest of the peaks
W (h−t ),W (h+

t ) in direction of either m−
t or m+

t ; (iii) prior to instant t, the
particle will reach mt, that will be either m−

t or m+
t depending on the lowest of

W (h−t ),W (h+
t ); (iv) once reached mt before t, the particle will not leave Pt(mt)

until the instant t; (v) once within Pt(mt) until t, the particle will oscillate in-
side a narrow (ε ln t)-neighborhood Dε ln t(m) of mt (compared with Pt(mt));
(vi) the breadth of Dε ln t(m) scaled by ln2 t will be arbitrarily small for t large
enough.

Fix an instant t > 1, ε ∈ (0, 1) arbitrarily small and a typical ω in Γt,ε to be
defined in (16) below. Let τA := inf{t > 0 : ξt ∈ A} be the hitting time of ξ in
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A ⊂ Z (with τx = τ{x} for x ∈ Z) and consider the events

A1 :=
{

τ{m−
t ,m+

t }
< t
}

A±2 :=
{

τ{m−
t ,m+

t }
= τm±

t

}
A+

3 :=
{

τ{h−t ,h++
t } > t

}
A−3 :=

{
τ{h−−t ,h+

t }
> t
}

A±4 :=
{
ξt ∈ Dε ln t(m±

t )
}

.

Then we have

Pω(|ξt −m±
t | ≤ |D±

ε ln t|) = Pω(A±4 ) ≥ Pω(A1, A
±
2 , A±3 , A±4 )

≥ 1− Pω(A1)− Pω(A±2 )− Pω(A±3 |A1, A
±
2 )− Pω(A±4 |A1, A

±
2 , A±3 ),

(9)

where A denotes the complement of an event A. Such probabilities can be
bounded with the next four lemmas.

Lemma 1 For ω ∈ B1 of (17) and t large enough,

Pω(τ{m−
t ,m+

t }
> t) ≤ t−ε+

1 + t−ε−1 ≤ K1t
−ε1 , (10)

where ε±1 = 1− E(Pt(m±
t ))/ ln t and ε1 = min{ε−1 , ε+

1 }.

Lemma 2 If W (h−t ) ≶ W (h+
t ), then

Pω(τ{m−
t ,m+

t }
= τm±

t
) ≤ K2 · t−ε2 , (11)

where ε2 = |W (h−t )−W (h+
t )|/ ln t.

We state that

Pω(A±3 |A1, A
±
2 ) ≤ P

m±
t

ω (A±3 ) ≤ K3t
−ε±3 exp

{
2 max

x∈I±
|V (x)−W (x)|

}
(12)

where ε±3 = depth(Pt(m
±
t ))

ln t − 1, I+ =
{
h−t ,m+

t , h++
t

}
and I− =

{
h−−t ,m−

t , h+
t

}
,

because, for J+ =
{
h−t , h++

t

}
and J− :=

{
h−−t , h+

t

}
,

Pω(A±3 , A1, A
±
2 ) =

∫
[0,t]

Pω(τJ± < t− s|τm±
t

= s,A±2 )dPω(τm±
t
≤ s,A±2 )

=
∫

[0,t]

P
m±

t
ω (τJ± < t− s)dPω(τm±

t
≤ s,A±2 )

≤
∫

[0,t]

P
m±

t
ω (τJ± < t)dPω(τm±

t
≤ s,A±2 )

≤ P
m±

t
ω (A±3 )Pω(τm±

t
≤ t, A±2 ) = P

m±
t

ω (A±3 )Pω(A1, A
±
2 ),

since A1 ∩A±2 = {τm±
t
≤ t, τ{m−

t ,m+
t }

= τm±
t
}, and
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Lemma 3 For m ∈ St and Pt(m) = [h, h′], h, h′ ∈ Ht,

Pm
ω (τ{h,h′} < t) ≤ K3 · t−ε3 · e2 maxx=h,m,h′ |V (x)−W (x)|

where ε3 = depth(Pt(m))
ln t − 1.

Finally, we also state that

Pω(A±4 |A1, A
±
2 , A±3 ) ≤ K4t

−ε|Pt(m±
t )|. (13)

because

Pω(A±4 , A1, A
±
2 , A±3 ) = Pω(ξt 6∈ Dε ln t(m±

t ), τm±
t
≤ t, A±2 , A±3 )

=
∫

[0,t]

Pω(ξt 6∈ Dε ln t(m±
t )|τm±

t
= s,A±2 , A±3 )dPω(τm±

t
≤ s,A±2 , A±3 )

=
∫

[0,t]

P
m±

t
ω (ξt−s 6∈ Dε ln t(m±

t )|τm±
t

= s,A±2 , A±3 )dPω(τm±
t
≤ s,A±2 , A±3 )

≤
∫

[0,t]

K1t
−ε|Pt(m±

t )|dPω(τm±
t
≤ s,A±2 , A±3 )

= K1t
−ε|Pt(m±

t )| · Pω(A1, A
±
2 , A±3 ),

with the inequality due to

Lemma 4 If m ∈ St and Pt(m) = [h, h′], h, h′ ∈ Ht, then for s < t

Pm
ω (ξs 6∈ Dε ln t(m)|τ{h,h′} > t) ≤ K1t

−ε|Pt(m)|.

Gathering (10)–(13) and applying them into (9) gives

Pω(|ξt −m±
t | ≤ |D(m±

t )|) ≥ 1−K1t
−ε1 −K2t

−ε2

−K3t
−ε±3 exp

{
2 max

x∈I±
|V (x)−W (x)|

}
−K4t

−ε|Pt(m±
t )|.

(14)

So long, we have not used yet the fact that ω ∈ Γt,ε is (t, ε)-typical. Checking
the definition of Γt,ε in (17)–(22), we can reduce (14) to

Pω(|ξt −m±
t | ≤ |D(m±

t )|) ≥ 1−K1t
−ε −K2t

−ε ln2κ0M t−K3t
−ε ln3 t (15)

because exp{2 maxx∈I± |V (x)−W (x)|} ≤ e2κ0M ln ln t = ln2κ0M t by (17).
In conclusion, (4) comes from (15), |D(m±

t )| ≤ ε ln2 t by (22) and the fact
that, by definition (7), if W (h+

t ) ≶ W (h−t ) then mt = m±
t .
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5 Annealed part of the proof

In order to make the lower bound (14) useful, we need to control some of its
terms which are functional of V or W .

Fix M ≥ 2. For t > 1 and ε ∈ (0, 1), let Γε,t be the set of (t, ε)-typical
environments ω given by

Γt,ε := B1 ∩B2 ∩B−
3 ∩B−

4 ∩B−
5 ∩B−

6 ∩B+
3 ∩B+

4 ∩B+
5 ∩B+

6 , (16)

where

B1 :=
{
|V (x)−W (x)| ≤ κ0M ln ln t, |x| ≤ lnM t

}
(17)

B2 :=
{
|W (h−t )−W (h+

t )|
ln t

> ε

}
(18)

B±
3 :=

{
E(Pt(m±

t ))
ln t

< 1− ε

}
(19)

B±
4 :=

{
depth(Pt(m±

t ))
ln t

> 1 + ε

}
(20)

B±
5 :=

{
|Pt(m±

t )|
ln3 t

< 1
}

(21)

B±
6 :=

{
|Dε ln t(m±

t )|
ln2 t

< ε

}
, (22)

where κ0 in (17) comes from (6). Although not explicit in the notation, all such
sets depend on t and (except B1 and B±

5 ) also on ε. Here, W is the Brownian
motion coupled with the potential V through (6), so we will informally think of
W as the actual potential of ξ.

Now we prove that the P-measure of every set above converges to 1, so that
P(Γt,ε) → 1 as t →∞ and ε → 0.

For It = [− lnM t, lnM t], B1 = {maxx∈It |V (x)−W (x)| ≤ κ0M ln ln t} ⊃
{maxx∈It |V (x)−W (x)|/ ln |x| ≤ κ0} and (6) imply

P(B1) ≥ P
(

max
x∈It

|V (x)−W (x)|
ln |x|

≤ κ0

)
−→

x→±∞
1.

To prove the convergence for B2 to B±
6 , we use this

Proposition 1 Let W be a Brownian motion and W ′(·) = aW (·/a2) be W
rescaled. Then, for a, b > 0, t > e and m ∈ St(W )

Sta(W ′) = a2St(W ) (23)

h±ta(W ′) = a2h±t (W ) (24)

Dab(a2m)(W ′) = a2Db(m)(W ). (25)
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The proof is immediate from definitions and standard scaling arguments, so it is
omitted. As an immediate consequence, a2Ht(W ) = Hta(W ′), since W

D= −W

renders Ht(W ) D= St(−W ).
Applying the Proposition with a = 1/ ln t gives W (h±t )/ ln t

D= W (h±e ),
E(Pt(m±

t ))/ ln t
D= E(Pe(m±

e )), depth(Pt(m±
t ))/ ln t

D= depth(Pe(m±
e )), and

Dε ln t(m±
t )/ ln2 t

D= Dε(m±
e )(W ′), and therefore the distribution of the frac-

tions in (18), (19), (20), and (22) do not depend on t, just as P(B2), P(B±
3 ),

P(B±
4 ), and P(B±

6 ) themselves, depending only on ε.
But notice that the fractions inside (18), (19) and (20) are strictly positive

r.v.’s with absolute continuous distributions, thus P(B2), P(B±
3 ) and P(B±

4 )
converge to 1 as ε → 0.

For B±
6 , we have P(B±

6 ) = P(|Dε(m±
e )| < ε) ≥ P(|Pe(m±

e )| < ε), for
Dε(m±

e ) ⊂ Pe(m±
e ), but a second application of Proposition 1 with a = 1/ε

gives Pe(m±
e )/ε2 D= Peε(m±

eε), whose depth is at least ε and breadth converges
to 0 as ε → 0. Thus P(B±

6 ) ≥ P(|Peε(m±
eε)| < 1/ε) → 1 as ε → 0.

A last application of Proposition 1 with a = 1/ ln t gives Pt(m±
t )(W )/ ln2 t

D=
Pe(m±

e )(W ′), another strictly positive r.v. with absolute continuous distribu-
tions, so P(B±

5 ) = P(|Pe(m±
e )| ≤ ln t) → 1 as t →∞.

To conclude, notice that P(B1) and P(B±
5 ) converge to 1 as t → ∞ and

P(B2), P(B±
3 ), P(B±

4 ) and P(B±
6 ) as ε → 0, so we get (5).
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A Auxiliary results

A.1 Proof of Lemma 1

This an application of Lemma 3.1 in Comets and Popov (2003), whose proof
deals with the reflected version of the RWRE introduced at the end of the paper
and used in the proof of Lemma 4 ahead. It states that for ω ∈ B1 (see (17))
and for every x such that m < x < m′ for any two consecutive t-stable points
m,m′ ∈ St with the peak h ∈ Ht between

P x
ω (τ{m,m′} > t)

≤ exp
{
−t

1
2 (1−E(I+)

ln t )

(
K1 ln−2κ0 t−K2 exp

{
−λ(I+)eE(I+)t

1
2 (1−E(I+)

ln t )/2
})}

+ exp
{
−t

1
2 (1−E(I−)

ln t )

(
K1 ln−2κ0 t−K2 exp

{
−λ(I−)eE(I−)t

1
2 (1−E(I−)

ln t )/2
})}

where I+ = [h, m′] and I− = [m,h], γ = maxx∈[m,m′] V (x)−minx∈[m,m′] V (x),
λ is the spectral gap introduced in (26) and the constants K1 and K2 depend
only on ω.

Take m = m−
t , m′ = m+

t , x = 0 and h = h−t if W (h−t ) > W (h+
t ) or otherwise

h = h+
t if W (h−t ) < W (h+

t ). It is straightforward to see that K1 ln−2κ0 t is

asymptotically greater than K2 exp
{
−λ(I±)eE(I±)t

1
2 (1−E(I±)

ln t )/2
}

, since (27)

implies t−1 ≤ λ(I±)eE(I±). So, for t large enough,

exp
{
−t

1
2 (1−E(I+)

ln t )

(
K1 ln−2κ0 t−K2 exp

{
−λ(I+)eE(I+)t

1
2 (1−E(I+)

ln t )/2
})}

≤ exp
{
−K3t

1
2 (1−E(I−)

ln t ) ln−2κ0 t

}
≤ t−(1−E(I±)/ ln t).

The conclusion comes from E(I±) ≤ E(Pt(m±
t )), since I± ⊂ Pt(m±

t ).
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A.2 Proof of Lemma 2

This is a classic application of Gambler’s Ruin, done before by Solomon (1975)
and Sinai (1982). We solve it for continuous time setup.

Our conclusion (11) comes with some straightforward calculation on the next

Proposition 2 If a, z, b ∈ Z are such that a < z < b, then

P z
ω(τa ≤ τb) =

∑b−1
i=x eV (i)∑b−1
j=a eV (j)

.

To establish the proposition, we construct the Lyapunov function f(x) =∑x−1
i=1 eV (i)−V (a) such that f(ξt) is a martingale with respect to P z

ω (essentially
the same used in Comets et al., 1998). Consider the RWRE ξ∗t = ξmin(t,τ{a,b})

absorbed at the extremes of the interval [a, b]. Since f(ξt) is a martingale and
min(t, τ{a,b}) is a stopping time, we have Em

ω (f(ξ∗t )) = Em
ω (f(ξ0)) = f(m).

Besides, f(ξ∗t ) is a bounded martingale and, thus, uniformly integrable, so
Optional Stopping Theorem render f(m) = Em

ω (f(ξ∗t )) = f(a)Pm
ω (τa <

τb) + f(b)Pm
ω (τb < τa).

A.3 Proof of Lemma 3

In our case, Lemma 3.4 from Comets and Popov (2003) gives Pm
ω (τh <

s) ≤ K1(s + 1)e−V (h)+V (m) for every s ∈ (0, t], which implies
Pm

ω (τ{h,h′} < t) ≤ Pm
ω (τh < t) + Pm

ω (τh′ < t) ≤ K1(t +
1)e−V (h)+V (m) + K(t + 1)e−V (h′)+V (m) ≤ K2te

−min{V (h),V (h′)}+V (m). But
−min{V (h), V (h′)}+ V (m) ≤ −depth(Pt(m)) + 2 maxx=h,m,h′ |V (x)−W (x)|,
so Pm

ω (τ{h,h′} < t) ≤ K2t exp{−depth(Pt(m))+2maxx=h,m,h′ |V (x)−W (x)|} =

K2t
−

“
depth(Pt(m))

ln t −1
”
e2 maxx=h,m,h′ |V (x)−W (x)|, as proposed.

A.4 Proof of Lemma 4

Now we use the reflected version ξ′ of the RWRE in an interval (Pt(m) in this
case) already mentioned in the proof of Lemma 1 and defined in the sequel.
Now Pm

ω (ξt 6∈ D|τ{h,h′} > t) = Pm
ω (ξ′t 6∈ D|τ{h,h′} > t) =

∑
x∈PrD Pm

ω (ξ′t = x),
where P = Pt(m) and D = Dε ln t(m). By the reversibility of ξ′, Pm

ω (ξ′t = x) ≤
θx/θm ≤ K1e

−V (x)+V (m) ≤ K1t
−ε for x ∈ P r D by the definition of D. So,

Pm
ω (ξt 6∈ D|τ{h,h′} > t) ≤

∑
x∈PrD K1t

−ε ≤ K1t
−ε|Pt(m)|.

A.5 Reflected RWRE in an interval

We need a version ξ′t of the RWRE ξt reflected in some finite interval [a, b] and
started at y ∈ (a, b).

Let {Un;n ∈ N∗} and {Un;n ∈ N∗} be two independent sequences of
i.i.d.r.v.’s with Unif[0, 1] and Expon(1) distributions respectively. We define the
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sequences {Tn;n ∈ N∗} and {T ′n;n ∈ N∗} and the processes ξ = {ξt; t ∈ R+}
and ξ′ = {ξ′t; t ∈ R+} by

T0 := y, ξ0 := 0,

Tn := Vn/(ω−Tn−1
+ ω+

Tn−1
), ξs := ξTn−1 , ∀s < Tn,

ξTn
:= ξTn−1 − 1l

(
Un <

ω−ξTn−1

ω−ξTn−1
+ ω+

ξTn−1

)
+ 1l

(
Un >

ω−ξTn−1

ω−ξTn−1
+ ω+

ξTn−1

)

and analogously for T ′n and ξ′t with the same Un’s and Vn’s but with ω′ instead
of ω (yes, it’s a coupling), where ω′ is such that ω′±x = ω±x for x ∈ (a, b) and
reflected at the extremes a, b with ω′−a = 0, ω′+a = ω+

a = 0, ω′−b = ω−b = 0 and
ω′+b = 0 and with ω′±x arbitrary for x outside [a, b].

Let τ ′A := inf{t > 0 : ξ′t ∈ A} the hitting time of ξ′, just as τA is the
hitting time of ξ. In this construction, we can easily see that τ[a,b] = τ ′[a,b] and
ξt = ξ′t for t ≤ τ[a,b]. The solution to the detailed balance equation for ξ′ is P-
a.s. summable, so ξ′ is P-a.s. Pω-ergodic and we can find that the Pω-stationary
distribution µ = µ[a,b] of ξ′ is P-a.s. µ(A) =

∑
x∈A∩I θx/

∑
y∈I θy. The potential

V ′ for ξ′ is V ′(x) = V (x) − V (y) for x ∈ [a, b] and arbitrary outside [a, b]. As
ξ′ is P-a.s. Pω-reversible, we have the symmetry of the infinitesimal generator
L = L([a, b]) of ξ′ given by

Lf(x) := lim
t→0

Ex
ωf(ξ′t)− f(x)

t
= (f(x + 1)− f(x)) · ω+

x + (f(x− 1)− f(x)) · ω−x

and then we can define the Dirichlet form E = E([a, b]) of ξ′ as E(f, f) :=
−〈Lf, f〉L2(µ) =

∑
x∈[a,b)(f(x + 1) − f(x))2ω+

x µ(x) for any f ∈ L2(µ) and the
spectral gap λ = λ([a, b]) of ξ′ as

λ := inf{E(f, f) : f ∈ L2(µ), Eµ
ωf(ξ′0) = 0, Eµ

ωf(ξ′0)
2 = 1}. (26)

We can approximate the spectral gap λ([a, b]) with the elevation E[V ′]([a, b]) =
E[V ]([a, b]) of V ′ over [a, b] through Proposition 3.1 of Comets and Popov (2003)
or II.0 of Mathieu (1994): for M > 0,

lim
t→∞

sup
I⊂[− lnM t,lnM t]

| lnλ(I) + E(I)|
ln t

= 0. (27)

Although we do not explicitly indicate, µ, V ′, L, E , λ, and E[V ′] depend on ω
besides [a, b].
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