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Abstract

We present a numerical scheme, based on Godunov’s method (REA algorithm),
for the variance of the solution of the 1D random linear transport equation, with
homogeneous random velocity and random initial condition. We obtain the stability
conditions of the method and we also show its consistency with a deterministic
nonhomogeneous advective-diffusive equation, which means convergency. Numerical
results are considered to validate our scheme.
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1 Introduction

In this work we are concerned about the variance of the solution of the trans-
port equation,







Qt(x, t) + AQx(x, t) = 0, t > 0, x ∈ R,

Q(x, 0) = Q0(x),
(1)

with a homogeneous random transport velocity A and stochastic initial con-
dition Q0(x). The solution, Q(x, t), is a random function. For the particular
case, Riemann problem (1) with

Q(x, 0) =







Q−
0 if x < 0

Q+
0 if x > 0,

(2)
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where Q−
0 and Q+

0 are random variables, we presented in [1] the expression for
the solution:

QR(x, t) = Q−

0 + X
(

Q+
0 − Q−

0

)

, (3)

where X is a Bernoulli random variable with P (X = 0) = 1 − FA

(
x
t

)

and

P (X = 1) = FA

(
x
t

)

; here FA(x) is the cumulative probability function of the
random variable A.

Also, according to [1], considering the independence between A and both Q−
0 ,

Q+
0 , the statistical mean and variance are given by:

〈QR(x, t)〉 = 〈Q−

0 〉 + FA

(
x

t

) [

〈Q+
0 〉 − 〈Q−

0 〉
]

(4)

and

V ar[QR(x, t)] =V ar[Q−

0 ] + FA

(
x

t

) [

V ar[Q+
0 ] − V ar[Q−

0 ]
]

+

FA

(
x

t

) [

1 − FA

(
x

t

)] [

〈Q+
0 〉 − 〈Q−

0 〉
]2

. (5)

In our point of view, the special attraction of (3), (4) and (5) is their utilization
in discretizations of stochastic equations, like (1). In [2] we present an explicit
method to calculate the first statistical moment of Q(x, t), the solution of (1)
with Q(x, 0) = Q0(x). In that report we show that the Godunov method (the
finite volume discretization with random cell averages) provides a numerical
scheme for the statistical mean which is, under certain assumptions on the
discretization, stable and consistent with a diffusive equation. Therefore, be-
sides the scheme itself, the numerical approach also gives an effective equation
compatible with one published in the literature.

The aim of this paper is to improve the knowledge of the random solution
of (1) with the random function Q(x, 0) = Q0(x). We present a numerical
method to calculate the variance of Q(x, t).

In Section 2 we deduce the explicit numerical scheme using the Godunov’s
ideas. Consistency, stability and convergency are analyzed in Section 3. Fi-
nally, in Section 4, we present some numerical examples.

2 The Numerical Scheme

In this section we present the numerical scheme for the variance of the solution
of (1). We denote the spatial and the time grid points by xj = j∆x and
tn = n∆t, respectively, and the jth grid cell is Cj = (xj−1/2, xj+1/2), xj±1/2 =

2



xj ±
∆x
2

. Let Qn
j be an approximation of the cell average of Q(x, tn):

Qn
j ≃

1

∆x

∫

Cj

Q(x, tn)dx =
1

∆x

∫ xj+1/2

xj−1/2

Q(x, tn)dx. (6)

Assuming that the cell averages at time tn, Qn
j , are known, we summarize the

REA, for Reconstruct-Evolve-Average, algorithm [4,5] in three steps:

[Step 1.] Reconstruct a piecewise polynomial function, Q̃(x, tn), from the cell
averages Qn

j . In our case we use the piecewise constant function with Qn
j in

the jth cell, i.e., Q̃(x, tn) = Qn
j for all x ∈ Cj.

[Step 2.] Evolve the equation exactly, or approximately, with this initial data
to obtain Q̃(x, tn+1) a time ∆t later.

[Step 3.] Average Q̃(x, tn+1) over each grid cell to obtain the new cell averages,
i.e.,

Q n+1
j =

1

∆x

∫

Cj

Q̃(x, tn+1)dx.

At a time tn, the piecewise constant function, step 1, defines a set of Riemann
problems in each x = xj−1/2, the differential equation (1) with the initial
condition

Q(x, tn) =







Qn
j−1 if x < xj−1/2

Qn
j if x > xj−1/2.

(7)

We may use (3) to find a local solution to each Riemann problem at a time
∆t
2

later:

Q(x, tn+1/2) = Qn
j−1 + X

(

x − xj−1/2

∆t/2

)
[

Qn
j − Qn

j−1

]

, (8)

where, for a x sufficiently close to xj−1/2, X(x) is the Bernoulli random vari-
able:

X(x) =







1, P (X(x) = 1) = FA(x)

0, P (X(x) = 0) = 1 − FA(x).
(9)

Also, according with (4) and (5) and denoting Θj−1/2(x) = FA

(
x−xj−1/2

∆t/2

)

, we
have:

〈Q(x, tn+1/2)〉 = 〈Qn
j−1〉 + Θj−1/2(x)

[

〈Qn
j 〉 − 〈Qn

j−1〉
]

(10)

and

V ar[Q(x, tn+1/2)] =V ar[Qn
j−1] + Θj−1/2(x)

[

V ar[Qn
j ] − V ar[Qn

j−1]
]

+

Θj−1/2(x)
(

1 − Θj−1/2(x)
) [

〈Qn
j 〉 − 〈Qn

j−1〉
]2

. (11)

3



Therefore the variance of the solution at time tn+1/2, V ar[Q̃(x, tn+1/2)], can
be constructed by piecing together the local values of the variance, (11), pro-
vided that the half time step ∆t

2
is short enough such that adjacent Riemann

problems do not interact between themselves. This requires that ∆x and ∆t
must be chosen satisfying:

V ar[Q(xj−1, tn+1/2)] ≈ V ar[Qn
j−1] and V ar[Q(xj, tn+1/2)] ≈ V ar[Qn

j ],

where the symbol “ ≈ ” means “sufficiently near to”. Substituting these con-
ditions in (11), the following conditions must be satisfied:

FA

(

−
∆x

∆t

)

≈ 0 and FA

(
∆x

∆t

)

≈ 1. (12)

Remark 1 We may regard (12) as a kind of CFL condition for the method.

The interval
[

−∆x
∆t

, ∆x
∆t

]

must contain the “effective support” of the density

probability function of A. This means that outside
[

−∆x
∆t

, ∆x
∆t

]

the probability
of A is sufficiently near to zero, i.e., it can be disregarded. The existence of an
effective support is ensured by Chebyshev’s inequality: for all k > 0, P{|A −
〈A〉| ≥ kσA} ≤ 1

k2 , where σA is the standard variation of A. Therefore, if we
take 1

k2 sufficiently close to zero, to escape from the interaction of Riemann
problems we must take (|〈A〉| + kσA) ∆t

∆x
≤ 1.

Under the hypothesis (12), the expression (11) defines V ar[Q̃(x, tn+1/2)], x ∈
[xj−1, xj]; its cell average will be denoted by

V
n+1/2
j−1/2 =

1

∆x

∫ xj

xj−1

V ar[Q̃(x, tn+1/2)] dx.

Therefore, using (11) we have the cell average of the variance in [xj−1, xj] at
time t = tn+1/2:

V
n+1/2
j−1/2 =

1

∆x

∫ xj

xj−1

{

V n
j−1 + Θj−1/2(x)

[

V n
j − V n

j−1

]}

dx +

1

∆x

∫ xj

xj−1

Θj−1/2(x)
(

1 − Θj−1/2(x)
)

dx

︸ ︷︷ ︸

Γ

[

〈Qn
j 〉 − 〈Qn

j−1〉
]2

.

Preliminary computational tests have shown that Γ reduces excessively the

contribution of
[

〈Qn
j 〉 − 〈Qn

j−1〉
]2

to V
n+1/2
j−1/2 . The following approximation pro-

vides better results:

Γ =
1

∆x

∫ xj

xj−1

Θj−1/2(x)
[

1 − Θj−1/2(x)
]

dx ≃ Θj−1/2(ζ)
[

1 − Θj−1/2(ζ)
]

,
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where ζ ∈ [xj−1, xj] is such that

Θj−1/2(ζ)
[

1 − Θj−1/2(ζ)
]

= max
x∈[xj−1, xj ]

Θj−1/2(x)
[

1 − Θj−1/2(x)
]

.

It is straightforward to show that ζ satisfies Θj−1/2(ζ) = 1
2
.

Thus, Θj−1/2(ζ)
[

1 − Θj−1/2(ζ)
]

= 1
4

and, changing variables in the other in-
tegral, we have

V
n+1/2
j−1/2 = V n

j−1 +
∆t

2∆x

{
∫ ∆x

∆t

−
∆x
∆t

FA(x) dx

}
[

V n
j − V n

j−1

]

+
1

4

[

〈Qn
j 〉 − 〈Qn

j−1〉
]2

.

(13)

Lemma 2 Let A be a random variable and [−ξ, ξ] an effective support of the
density probability function, fA, of A, i.e., FA(−ξ) ≈ 0 and FA(ξ) ≈ 1. Then

∫ ξ

−ξ
FA (x) dx ≈ ξ − 〈A〉. (14)

(see [2] for proof)

Substituting (14) in (13) and denoting λ = ∆t
∆x

〈A〉, we have:

V
n+1/2
j−1/2 =

1

2

[

V n
j + V n

j−1

]

−
λ

2

[

V n
j − V n

j−1

]

+
1

4

[

〈Qn
j 〉 − 〈Qn

j−1〉
]2

. (15)

Now we can repeat the same procedure to obtain approximations of the solu-
tion in [xj−1/2, xj+1/2] at the time tn+1:

V n+1
j =

1

2

[

V
n+1/2
j+1/2 + V

n+1/2
j−1/2

]

−
λ

2

[

V
n+1/2
j+1/2 − V

n+1/2
j−1/2

]

+
1

4

[

〈Q
n+1/2
j+1/2 〉 − 〈Q

n−1/2
j−1/2 〉

]2
.

(16)

The ideas of the Godunov method were also used in [2] to design a scheme for
approximations of the statistical means of (1):

〈Q
n+1/2
j−1/2 〉 =

1

2

[

〈Qn
j 〉 + 〈Qn

j−1〉
]

−
λ

2

[

〈Qn
j 〉 − 〈Qn

j−1〉
]

(17)

and

〈Qn+1
j 〉 =

1

2

[

〈Q
n+1/2
j+1/2 〉 + 〈Q

n+1/2
j−1/2 〉

]

−
λ

2

[

〈Q
n+1/2
j+1/2 〉 − 〈Q

n+1/2
j−1/2 〉

]

, (18)

or, joining these expressions,

〈Qn+1
j 〉 = 〈Qn

j 〉−
λ

2

[

〈Qn
j+1〉 − 〈Qn

j−1〉
]

+
1

4

(

1 + λ2
) [

〈Qn
j+1〉 − 2〈Qn

j 〉 + 〈Qn
j−1〉

]

.

(19)
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Using (15) and (17) in (16), we can summarize the two step scheme for the
variance in the explicit form:

V n+1
j =V n

j −
λ

2

[

V n
j+1 − V n

j−1

]

+
1

4

(

1 + λ2
) [

V n
j+1 − 2V n

j + V n
j−1

]

+

1

8
(1 − λ)

[

〈Qn
j+1〉 − 〈Qn

j 〉
]2

+
1

8
(1 + λ)

[

〈Qn
j 〉 − 〈Qn

j−1〉
]2

+

1

16

{[

〈Qn
j+1〉 − 〈Qn

j−1〉
]

− λ
[

〈Qn
j+1〉 − 2〈Qn

j 〉 + 〈Qn
j−1〉

]}2
, (20)

where λ = ∆t
∆x

〈A〉.

3 Numerical analysis of the scheme

In this section we analyze some numerical aspects of the method (19)-(20),
for the mean and the variance of the solution of (1). We obtain the stability
conditions of the scheme and we also show its consistency with a deterministic
nonhomogeneous advective-diffusive system.

Proposition 3 For ∆x2

∆t
= ν fixed, the numerical scheme defined by (19)-(20)

is an O(∆x2) approximation for u(x, t) and v(x, t), solutions of the determin-
istic system of partial differential equations (PDE’s):







ut + 〈A〉ux = ν
4
uxx

vt + 〈A〉vx = ν
4
vxx + ν

2
u2

x.
(21)

PROOF. Let v(x, t) and u(x, t) be smooth functions such that v(xj, tn) = V n
j

and u(xj, tn) = 〈Qn
j 〉. From [2], taking into account that ∆x2

∆t
= ν is fixed, the

numerical scheme (19) gives an O(∆x2) approximation for u(x, t), solution of
the differential equation ut + 〈A〉ux = ν

4
uxx. Also, using the Taylor series in

(20), we obtain:

[

vt +
∆t

2
vtt + O(∆t2)

]

+ 〈A〉
[

vx + O(∆x2)
]

=
ν

4

(

1 + λ2
) [

vxx + O(∆x2)
]

+

ν

8
(1 − λ)

[

ux +
∆x

2
uxx + O(∆x2)

]2

+
ν

8
(1 + λ)

[

ux −
∆x

2
uxx + O(∆x2)

]2

+

ν

4

{
[

ux + O(∆x2)
]

−
λ

2

[

uxx + O(∆x2)
]
}2

.
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Since ∆x2

∆t
= ν is fixed, we have λ = ∆t

∆x
〈A〉 = ∆x

ν
〈A〉 = O(∆x) and ∆t =

O(∆x2). Thus, grouping the terms of the same order, we have:

vt + 〈A〉vx =
ν

4
vxx +

ν

2
u2

x + O(∆x2).

2

Remark 4 Computational tests have shown that a good choice for ν = ∆x2

∆t
, in

(21), is ν = 2Var[A]T . Therefore, the diffusive term, ν
4
, is well approximated

by 1
2
Var[A]T .

Remark 5 The modified equations in (21) constitute a decoupled determinis-
tic nonhomogeneous convective-diffusive system whose transport terms are the
mean of the velocity and the diffusive terms are the same. The source term in
the second equation involves the spatial derivative of the mean, given by the
first equation.

Remark 6 In [2] we have shown that the stability condition of (19) is (12).
On the other hand, since the terms corresponding to the mean can be consid-
ered source terms, the method for the variance, (20), has the same stability
conditions, i.e., (12). As a linear problem, we have convergence.

4 Numerical examples

To assess our method for the variance of the linear advective equation with
random data we present two numerical examples. In the Example 7 we solve a
Riemann problem in which case the exact values of 〈Q(x, t)〉 and Var[Q(x, t)]
are known. In Example 8 we apply the method in a problem with random ve-
locity and a correlated random field as the initial condition. In both examples
we use A normally and lognormally distributed.

Example 7

Let us consider the random PDE (1) with the mean and the variance of the
initial condition given by:

〈Q(x, 0)〉 =







1 if x < 0

0 if x ≥ 0
and Var[Q(x, 0)] =







0.16 if x < 0

0.25 if x ≥ 0
.

In Figures 1 - 4 we compare the approximations of the mean and the variance
calculated using (19) and (20), respectively, with the exact values given by (4)
and (5). We plot the results in T = 0.3 and T = 0.5. To observe the influence
of the velocity variation we use two models: [i] A normally distributed, A =

7



N(1.0, 0.6), in Figures 1 and 2; [ii] A lognormally distributed, A = exp (ξ),
ξ = N(0.5, 0.25), in Figures 3 and 4. The value of ∆x is presented in the
caption of the figures. The value of ∆t was chosen based on Remark 4, i.e.,
we used ν = 2Var[A]T .
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Fig. 1. ∆x = 0.02 and T = 0.3.
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Fig. 2. ∆x = 0.02 and T = 0.5.

−1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Mean of solution

Proposed method
Exact solution

−1 0 1 2 3

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Variance of solution

Fig. 3. ∆x = 0.01 and T = 0.3.
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Fig. 4. ∆x = 0.01 and T = 0.5.

Example 8

In this example we take the random PDE (1) with initial condition, Q0(x),
being the random field with mean

〈Q0(x)〉 =







1, x ∈ (1.4, 2.2),

e−20(x−0.25)2 , otherwise,
(22)

and covariance Cov(x, x̃) = σ2 exp (−β|x − x̃|), with Var[Q0(x)] = σ2 con-
stant; the parameter β > 0 governs the decay rate of the spatial correlation.
In our tests we use β = 40 and σ2 = 0.12. The numerical results are compared
with Monte Carlo simulations using suites of realizations of A and Q0(x), with
A and Q0(x) independents. As it is known, the analytical solution of each real-
ization A(ω) and Q0(x, ω) is given by Q(x, t, ω) = Q0(x−A(ω)t, ω). The 2000
realizations of the correlated random field Q0(x) are generated using the ma-
triz decomposition method, a direct method for generating correlated random
fields (for example [9], Ch. 3). As in the previous example we use two models
of velocity: [i] A normally distributed, A = N(−0.5, 0.6), in Figures 5 and 6;
[ii] A lognormally distributed, A = exp (ξ), ξ = N(0.15, 0.25), in Figures 7
and 8. The values of ∆t and ∆x are the same used in Example 7.
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Fig. 5. ∆x = 0.02 and T = 0.3.
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Fig. 6. ∆x = 0.02 and T = 0.5.
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Fig. 7. ∆x = 0.01 and T = 0.3.
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Fig. 8. ∆x = 0.01 and T = 0.5.

5 Concluding remarks

In this paper we extend the ideas presented in our previous work [2] to obtain
more information about the statistical mean of the solution to one dimensional
stochastic transport partial differential equations. We show that the ideas
of the Godunov method can also be used to design a numerical scheme to
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calculate the variance of the solution: (19) and (20). We also present the
stability conditions and the consistency of the numerical scheme with the
decoupled system of convective-diffusive equations (21). Computational results
are confronted with the exact solution, in the Riemann problem, and with
Monte Carlo simulations in a more general situation. As far as we know, this
kind of methodology has not been used to lead with differential equations
with uncertainties in the parameters. This approach can represent a gain if
compared with the Monte Carlo simulations, the effective equations, or other
usual methodologies. Extensions to more general situations, for example the
variable velocity case and 2D problems will be presented in the future.
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