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Abstract. This paper describes a new algorithm for solving nonlinear programming problems
with equality constraints. The method introduces the idea of using trust cylinders to keep the
infeasibility under control. Each time the trust cylinder is violated, a restoration step is called and
the infeasibility level is reduced. The radius of the trust cylinder has a nonincreasing update scheme,
so eventually a feasible (and optimal) point is obtained. Global convergence of the algorithm is
analyzed, as well as its numerical performance. The results suggest that the algorithm is promising.
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1. Introduction. In this article, we consider the equality constrained optimiza-
tion problem

minimize f(x)(1.1)

subject to h(x) = 0,

where f : IRn → IR and h : IRn → IRm are C2 functions.
Probably, the very first strategy devised to solve this problem was the elimination

method, a naive feasible point method that uses h(x) = 0 to eliminate some of the
variables, in order to reduce (1.1) to a minimization problem without constraints.

Algorithms for (1.1) generating feasible iterates, without solving h(x) = 0 explic-
itly, go back to the early sixties, with methods usually classified either as Generalized
Reduced Gradient (GRG) (see [32, 1, 2]), or as Projected Gradient (PG) [25, 26].

GRG algorithms have implementations which seem to be still competitive (see
[7]). Variations of the PG method, including some strategy to relax feasibility in
a controlled way, began to appear at the end of the sixties with the suggestive de-
nomination of Sequential Gradient-Restoration Algorithm (SGRA) [18, 19]. See also
[21, 23, 24]. More recently, Mart́ınez introduced a new class of algorithm called in-
exact restoration methods [13, 14, 15, 16, 17], that also controls feasibility at each
iteration.

Our approach to (1.1) has the flavour of a PG algorithm and could be character-
ized as a relaxed feasible point method, with a dynamic control of infeasibility (DCI).
We look for a compromise between allowing a step big enough towards a solution of
(1.1), in a direction approximately tangent to the restrictions h(x) = 0, and keeping
infeasibility under control.

The main idea is to force the iterates x(k) to remain in trust cylinders

C(k) = {x ∈ IRn : ‖h(x)‖ ≤ ρ(k)}.

where ‖.‖ denotes the ℓ2 norm. The dynamic control of infeasibility is kept defining
the “radii” ρ(k) of the trust cylinders in such a way that

ρ(k) = O(‖gp(x
(k))‖)(1.2)
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where gp(x) stands for the projected gradient, i.e., the orthogonal projection of the
gradient g(x) = ∇f(x) onto the null space of the Jacobian of h, namely, A = h′(x).

Given x(k−1), the k-th iteration begins with a restoration step, if necessary, in

order to obtain a point xc = x
(k)
c and a radius ρ, such that

‖h(xc)‖ ≤ ρ(k)(1.3)

and

‖xc − x(k−1)‖ = O(‖h(x(k−1)‖).(1.4)

A radius ρ = ρ(k) satisfying (1.2) may be defined as ρ = ν np(xc) ρmax, where

np(xc) =
‖gp(xc)‖
‖g(xc)‖+ 1

and 10−4 ≤ ν ≤ 1 and ρmax > 0 are constants.
Given xc in C(k), the second part of the kth iteration looks for a horizontal step, δt

that provides a sufficient decrease for a quadratic approximation of f and guarantees
that x+ = xc + δt remains in a bigger trust cylinder of radius 2ρ. An optional second
order correction δsoc may also be used to reduce the infeasibility, so x(k) = xc+δt+δsoc.

Figure 1 sketches the vertical and the horizontal steps of a typical iteration.

xk-1

xc

x+

||h(x)||=0 ||h(x)||=r ||h(x)||=2r

Fig. 1.1. The step and the trust cylinders. xc satisfies ‖h(xc)‖ < ρ, while x+ satisfies
‖h(x+)‖ < 2ρ.

One advantage of staying close to the feasible set is that one can expect the
solutions of x′ = gp(x), restricted to level sets close to the feasible one, to show a
similar behaviour, in a generic sense (see [28]). In particular, a “good horizontal
step” in a level set given by h(x) = c is likely to be close to a “good horizontal step”
in the feasible set given by h(x) = 0, if c is relatively small.

The parameter ρmax = ρ
(k)
max is non-increasing and is responsible for the trusta-

bility of the trust cylinders. It is decreased every time there is an evidence that
the reduction of the Lagrangian obtained in the horizontal steps was menaced by a
significant increase in the restoration step.

In the next section, we formalize the DCI algorithm. In section 3, a global con-
vergence result for the algorithm is presented. Section 4 contains some preliminary
numerical results. Finally, some conclusions and lines for future work are included in
section 5.

2. The DCI Algorithm. In this section, we depict a typical iteration of our
main algorithm. As usual, we use the Lagrangian function, defined as

L(x, λ) = f(x) + λT h(x),
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to evaluate the algorithm behaviour. In fact, the control of the trust cylinder radius

is based on the the variation of the Lagrangian at x
(k)
c , given by

∆L(k)
c = L(x(k)

c , λ(k))− L(x(k−1)
c , λ(k−1)).

Since our algorithm divides the step into two components, one “vertical” and one
“horizontal”, this variation is also split according to

∆L(k)
c = ∆L

(k−1)
H + ∆L

(k)
V ,(2.1)

where

∆L
(k)
H = L(x(k), λ(k))− L(x(k)

c , λ(k)),

∆L
(k)
V = L(x(k)

c , λ(k))− L(x(k−1), λ(k−1)).

In the vertical step of the algorithm, we seek for a point xc that satisfies (1.3) and
(1.4). One way to cope with this problem is to successively solve the least squares
problem

minimize ‖h(x) + A(x)d‖2

subject to ‖d‖ ≤ ∆V S ,(2.2)

until an acceptable point is found. Here, A(x) is the Jacobian of the constraints at x
and ∆V S > 0 is the trust region radius used solely to compute this step.

In the horizontal step we solve the quadratic programming problem

minimize q(δ) = g(xc)
T δ +

1

2
δT Bδ

subject to A(xc)δ = 0,(2.3)

‖δ‖ ≤ ∆,

where B is a symmetric approximation for the Hessian of the Lagrangian and ∆ > 0
is the trust region radius.

We suppose that, at the beginning of the kth iteration, the previous approximate
solution, x(k−1), and the Lagrange multipliers estimate, λ(k−1), are available. Be-
sides, we also suppose known the upper limit for the trust cylinder radius, ρmax, the

Lagrangian function at some previous iteration j, Lref = L(x
(j)
c , λ(j)), the horizontal

variation of the Lagrangian, ∆L
(k−1)
H , and the trust region radii, ∆V S ≥ ∆min > 0

and ∆ ≥ ∆min > 0.

Algorithm 2.1. The kth iteration of the DCI method.

1. Vertical step:
1.1. xc = x(k−1);
1.2. Choose an approximate value for ρ.
1.3. REPEAT
1.3.1. Find xc such that ‖h(xc)‖ ≤ ρ.
1.3.2. A← h′(xc); gp ← gp(xc); np ← ‖gp(xc)‖/(‖g(xc)‖+ 1).
1.3.3. Choose ρ ∈ [10−4npρmax, npρmax].
1.4. UNTIL ‖h(xc)‖ ≤ ρ,
1.5. Compute λ+.
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2. Convergence test:
2.1. IF (ρ = 0) OR (np = 0 AND ‖h(xc)‖ = 0),
2.1.1. QUIT (xc is a stationary point).

3. ρmax update:

3.1. ∆L
(k)
V ← L(xc, λ+)− L(x(k−1), λ(k−1)).

3.2. IF ∆L
(k)
V ≥ 1

2 [Lref − L(x(k−1), λ(k−1))],
3.2.1. ρmax ← ρmax/2.

3.3. IF ∆L
(k)
V > − 1

2∆L
(k−1)
H ,

3.3.1. Lref ← L(xc, λ+).

4. Horizontal step:
4.1. REPEAT
4.1.1. Compute the Cauchy step δCP , solution of

minimize q(µgp)
subject to ‖µgp‖ ≤ ∆, µ ∈ [0,∞).

.

4.1.2. Compute a trial step δt such that
q(δt) ≤ q(δCP ),
‖δt‖ ≤ ∆, and
Aδt = 0.

4.1.3. Optionally, compute a second order correction δsoc.
4.1.4. δ+ ← δt + δsoc; x+ ← xc + δ+.

4.1.5. ∆L
(k)
H ← L(x+, λ+)− L(xc, λ+); r ← ∆L

(k)
H /q(δt).

4.1.6. IF (‖h(x+)‖ > 2ρ) OR (r < η1),
4.1.6.1. ∆← αR∆.

4.1.7. ELSE IF ∆L
(k)
H > η2q(δt),

4.1.7.1. ∆← αI∆.
4.2. UNTIL (‖h(x+)‖ ≤ 2ρ) AND (r ≥ η1).

5. Approximate solution update:
5.1. x(k) ← x+; λ(k) ← λ+; k ← k + 1.
5.2. Choose ∆ ≥ ∆min.

In Algorithm 2.1, we suppose that the restoration step 1.3.1 will always succeed.
Obviously, this may not occur, since problem (1.1) may be infeasible. Therefore, some
termination criterion need to be defined to prevent the algorithm to get stuck on this
step.

Most of the constants used in algorithm 2.1 are explicitly shown above, so the
reader does not need to guess the meaning of several obscure greek letters. We do
prefer to write ‖h(x+)‖ > 2ρ instead of ‖h(x+)‖ > ζρ, for example, to make clear
that, in steps 4.1.6 and 4.2, we are considering a larger trust cylinder. Naturally, the
algorithm will also work if we use ζ = 3, although this modification will slightly affect
the proofs of some lemmas presented in the next section. Only four constants that
control the behaviour of the trust region method used to compute the horizontal step
were not specified: 0 < η1 ≤ 1/2, η2 ≥ η1, 0 < αR < 1 and αI ≥ 1. Possible values
for these parameters are η1 = 10−3, η2 = 0.7, αR = 0.25 and αI = 2.5.

The global convergence of DCI will be guaranteed, under reasonable assump-
tions, by a typical sufficient decrease argument for the Lagrangian function evaluated

at x
(k)
c . The variation of the Lagrangian between two successive iterations is given

by (2.1). To prevent the decrease of the Lagrangian obtained at the horizontal step
to be destroyed by the restoration, ρmax

(k) is decreased in step 3 of DCI every time
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∆L
(k)
V is larger than a fraction of the difference between the Lagrangian at the cur-

rent iteration and a reference value Lref , fixed in some previous iteration j. If the

increase in ∆L
(k)
V menaces significantly the decrease in the Lagrangian obtained since

iteration j, ρmax is divided by two and Lref is updated. Lref is also updated every

time ∆L
(k)
V > − 1

2∆L
(k−1)
H . The main argument to guarantee global convergence es-

tablishes, under suitable assumptions, the existence of enough normal space (ENS),
dynamically calibrated for horizontal steps of reasonable size, in the sense that ρmax

(k)

remains bounded away from zero, unless lim inf(‖gp(x
(k)
c )‖) = 0.

One possible choice for λ+ could be the least squares multipliers evaluated at

x
(k)
c , defined as

λLS(xc) = argmin{‖A(xc)
T λ + g(xc)‖} = −(A(xc)A(xc)

T )−1A(xc)g(xc)(2.4)

We say that x is a regular point of h if the Jacobian A(x) = h′(x) is of maximal rank,
in which case λLS can be computed. Notice that

gp(x) = g(x) + A(x)T λLS(x),(2.5)

at every regular point of h.

3. Global convergence. The global convergence analysis of the DCI algorithm
are based on the following hypothesis:
H1 (Differentiability): f and h are C2.
H2 (Compacity): The generated sequences {xc

(k)} and {x(k)}, the Hessian ap-
proximations B(k) and the multipliers {λ(k)} remain uniformly bounded.

H3 (Regularity and restoration): The restoration never fails and Z = {xc
(k)}

remains far from the singular set of h, in the sense that h is regular in
the closure of Z. Equivalently, {‖h′(xc

(k))T h′(xc
(k))−1‖} remains uniformly

bounded. Also, if the generated sequence {xc
(k)} is infinite, it satisfies

‖xc
(k+1) − x(k)‖ = O(‖h(x(k))‖).(3.1)

H4 (Second order correction): ‖δsoc
(k)‖ = O(‖δt

(k)‖2).
Supposing that H1 holds, we can assure that the remaining hypothesis will hold

if, for example, the feasible set H0 is compact, regular (i.e. h′(x) is of maximal rank

on it) and x(0) is feasible. In this case, for some initial ρ
(0)
max sufficiently small, we can

still keep h′(x) with maximal rank and standard algorithms for restoration, like the
Gauss-Newton method, will guarantee (3.1). It would also be the case if we replace
the compacity property of H0 by adequate properties on f , like asking f to satisfy
lim

x→∞

f(x) =∞. In such situations, H2-H4 can be guaranteed by construction.

From now on we assume that the sequences {x(k)
c } and {x(k)}, generated by DCI,

satisfy H1-H4. Besides, when we say that a number is a constant, we mean that it
can be used for all k, in one specific sequence generated by DCI.

The main result of this section, presented in Theorem 3.4, is based on three
lemmas. The first one establishes that, under H1-H4, each iteration succeeds, so the
Lagrangian is sufficiently decreased.

Lemma 3.1. If x
(k)
c is not a stationary point for (1.1), then x+ is eventually

accepted in step 4 of DCI. Moreover, we can define positive constants ξ1, ξ2 and ξ3

such that

−∆L
(k)
H = L(x(k)

c , λ(k))− L(x(k), λ(k))

≥ ξ1‖gp(x
(k)
c )‖min{ξ2‖gp(x

(k)
c )‖, ξ3(ρ

(k))1/2,∆min}(3.2)
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Proof. To simplify the notation we will omit here the superscript (k). Suppose xc

is not stationary for (1.1). Let x+ = xc + δ+ = xc + δt + δsoc be a candidate obtained
in step 4 of the kth iteration of the DCI algorithm, and let λ+ be the corresponding
multiplier. From H2, we can define a positive constant ξB such that ‖B‖ ≤ ξB . Since
Aδt = 0, we have q(δt) = gp(xc)

T δt + 1
2δT

t Bδt. Combining this with H1, H2 and H4,

and taking into account that q(δ) ≤ 0, we can define positive constants ξ1, ξ2 and ξ3,
such that

‖h(x+)− h(xc)‖ ≤ ξ1‖δt‖2(3.3)

and

∆L+
H = L(x+, λ+)− L(xc, λ+) ≤ gp(xc)

T δt + ξ2‖δt‖2 ≤ q(δt) + ξ3‖δt‖2.(3.4)

Because δCP , defined in step 4.1.1 of DCI, is a Cauchy step tangent to the re-
strictions, we have

‖δCP ‖ ≥ min

{‖gp(xc)‖
ξB

,∆

}

(3.5)

and

q(δCP ) ≤ 1

2
g(xc)

T δCP ≤ −
1

2
‖gp(xc)‖min

{‖gp(xc)‖
ξB

,∆

}

(3.6)

Let us define

∆ = min{ξ4‖gp(xc)‖, ξ5

√
ρ,∆min}.(3.7)

where ξ4 = min

{

1

2ξB
,

1

8ξ3

}

and ξ5 =
1

2
√

ξ1

. It is easy to deduce from (3.5) that if

∆ ≤ 2∆(3.8)

then ‖δCP ‖ = ∆. Now, using (3.8), (3.7), the step 4.1.2 of the DCI algorithm and
(3.6), we obtain

ξ3‖δt‖2 ≤ ξ3∆
2 ≤ 2ξ3ξ4‖gp(xc)‖∆ ≤

1

4
‖gp(xc)‖∆ ≤

1

2
|q(δCP )| ≤ 1

2
|q(δt)|.(3.9)

From (3.9) and (3.4), we get ∆L+
H ≤ 1

2q(δt), which implies that r = ∆L+
H/q(δt) ≥

η1. Now, from (3.3), (3.8), (3.7), the definition of ξ5 and the fact that ‖h(xc)‖ ≤ ρ,
we have

‖h(x+)‖ ≤ ρ + ξ1‖δt‖2 ≤ ρ + 4ξ1∆
2 ≤ ρ(1 + 4ξ1ξ

2

5) = 2ρ.

Therefore, whenever ∆ ≤ 2∆, both conditions stated at step 4.2 of the algorithm are
satisfied, so δ+ = δt + δsoc is accepted by DCI.

Since δt is accepted, we also have

∆L+
H ≤ η1q(δt) ≤ η1q(δCP ).(3.10)
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Combining (3.10), (3.6), (3.8) and (3.7), we obtain (3.2).
Our second lemma establishes that, between successive iterations without changes

in ρmax, the Lagrangian decreases proportionally to the descent in the corresponding
horizontal steps.

Lemma 3.2. If Lref = L
(k)
c and ρ

(k+1)
max = ρ

(k+2)
max = . . . = ρ

(k+j)
max , for j ≥ 1, then

L(k+j)
c − L(k)

c =

k+j
∑

i=k+1

∆L(i)
c ≤

1

4

k+j−1
∑

i=k

∆L
(i)
H(3.11)

Proof. Let suppose that Lref doesn’t change between iterations k+1 and k+j1−1,
where 0 < j1 ≤ j+1. In this case, by the criterion defined in step 3.3 of the algorithm,
we have

L(k+j1−1)
c − L(k)

c =

k+j1−1
∑

i=k+1

(∆L
(i)
V + ∆L

(i−1)
H ) ≤ 1

2

k+j1−2
∑

i=k

∆L
(i)
H .(3.12)

If Lref is changed at iteration (k + j1), then, by the condition in step 3.3, the suppo-
sition that ρmax stays unchanged at this iteration (so the inequality at step 3.2 is not
satisfied) and the fact that ∆LH ≤ 0, we have

L(k+j1)
c − L(k)

c = ∆L
(k+j1)
V + L(x(k+j1−1), λ(k+j1−1))− Lk

c

≤ 1

2
(L(x(k+j1−1), λ(k+j1−1))− Lk

c )

=
1

2
(∆L

(k+j1−1)
H + L(k+j1−1)

c − L(k)
c ) ≤ 1

4

k+j1−1
∑

i=k

∆L
(i)
H .(3.13)

If j1 = j, then (3.12) and (3.13) imply (3.11). On the other hand, if Lref is also
updated at iterations k+j2, . . . , k+js, where js ≤ j, then applying the same procedure
described above several times and defining j0 = 0 we obtain

L(k+j)
c − L(k)

c =

s
∑

i=1

[L(k+ji)
c − L(k+ji−1)

c ] + L(k+j)
c − L(k+js)

c ≤ 1

4

k+j−1
∑

i=k

∆L
(i)
H .

Our third lemma establishes the existence of enough normal space in the trust
cylinders C(k) to guarantee that the Lagrangian can be sufficiently decreased.

Lemma 3.3. If DCI generates an infinite sequence {x(k)}, then
i) There are positive constants ξ5 and ξρ such that, whenever

ρ(k)
max ≤ min{ξρ‖gp(xc)

k‖, ξ5},(3.14)

ρ
(k)
max don’t change in the kth iteration. Furthermore, if lim inf ‖gp(x

(k)
c )‖ > 0

then there exists k0 > 0 such that, for every k,

ρ(k)
max ≥ ρ(k0)

max.(3.15)

ii) If the horizontal step and the vector of Lagrange multipliers satisfy

‖x(k) − x(k)
c ‖ = O(‖gp(x

(k)
c )‖)(3.16)

‖λ(k) − λLS(x(k)
c )‖ = O(‖gp(x

(k)
c ))‖)(3.17)
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then (3.15) is satisfied, no matter what is the value of lim inf ‖gp(x
(k)
c )‖. In

other words, ρ
(k)
max remain bounded away from zero.

Proof. In the proof of the first part of this lemma, we will show that, for ρ
(k)
max

sufficiently small, if lim inf ‖gp(x
(k)
c )‖ > 0, then |∆L

(k)
H | is bigger than a fraction of

√

ρ(k), while, in a restoration, the Lagrangian can’t grow asymptotically that fast

because ∆L
(k+1)
V = O(ρ(k)).

From Lemma 3.1 and the choice of ρ(k) in step 1.3.3 of the algorithm, there exist
positive constants ξ1, ξ2, ξ3, such that

−∆L
(k)
H = |L(x(k), λ(k))− L(x(k)

c , λ(k))|

≥ ‖gp(x
(k)
c )‖min{ξ1‖gp(x

(k)
c )‖, ξ2ρ

(k)
max

1/2‖gp(x
(k)
c )‖1/2, ξ3∆min}(3.18)

Assumptions H1 and H2 together ensure that L is Lipschitz on the iterates. In
particular, we have

|L(x(k+1)
c , λ(k+1))− L(x(k), λ(k+1))| = O(x(k+1)

c − x(k)).(3.19)

Combining (3.19) with H3, we obtain

|∆L
(k+1)
V | = |L(x(k+1)

c , λ(k+1))− L(x(k), λ(k))|
≤ |L(x(k+1)

c , λ(k+1))− L(x(k), λ(k+1))|+ |(λ(k+1) − λ(k))T h(x(k))|
= O(‖h(x(k))‖) = O(ρ(k)).

Now, supposing that the vertical step succeeds, so x
(k+1)
c satisfies

‖h(x(x+1)
c )‖ ≤ ρ(k+1) ≤ ‖gp(x

(k)
c )‖ρ(k)

max,(3.20)

then there exists ξ4 > 0 such that

|∆L
(k+1)
V | ≤ ξ4ρ

(k)
max‖gp(x

(k)
c )‖.(3.21)

Let us define ξρ = 1
2 min{ξ1/ξ4, (ξ2/ξ4)

2} and ξ5 = ∆minξ3/(2ξ4). If ρ
(k)
max satisfies

(3.14) for these values of ξρ and ξ5, then

|∆L
(k+1)
V | < −1

2
∆L

(k)
H .(3.22)

Therefore, ρmax is not updated in step 3.2 of DCI, i.e. ρ
(k+1)
max = ρ

(k)
max. This proves

the first part of the lemma.
To prove the second part of the lemma we will begin observing that H1-H3 imply

that λLS(x) and gp(x) are well defined and of class C1 in a compact neighbourhood
of Z, the closure of Z = {xc

k}. Therefore, λLS(x) and gp(x) are Lipschitz in Z, so
we have

‖λLS(x(k+1)
c )− λLS(x(k)

c )‖ = O(‖x(k+1)
c − x(k)

c ‖)(3.23)

and

‖gp(x
(k+1)
c )− gp(x

(k)
c )‖ = O(‖x(k+1)

c − x(k)
c ‖).(3.24)
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From (3.20), (3.1), (3.16) and (3.24) we get

‖x(k+1)
c − x(k)

c ‖ = O(‖gp(x
(k)
c )‖)(3.25)

and

‖gp(x
(k+1)
c )‖ = O(‖gp(x

(k)
c )‖).(3.26)

Let us now decompose ∆L
(k+1)
V into a sum of four terms:

∆L
(k+1)
V = L(x(k+1)

c , λ(k+1))− L(x(k), λ(k))

= [L(x(k+1)
c , λLS(x(k+1)

c ))− L(x(k), λLS(x(k+1)
c ))] +

[λ(k+1) − λLS(x(k+1)
c )]T h(x(k+1)

c ) +

[λLS(x(k+1)
c )− λLS(x(k)

c )]T h(x(k)) +

[λLS(x(k)
c )− λ(k)]T h(x(k)).

By doing a Taylor series expansion and using H2, (3.20), (3.1) and (3.26), we
obtain

L(x(k+1)
c , λLS(x(k+1)

c ))− L(x(k), λLS(x(k+1)
c )) =

gp(x
(k+1)
c )T (x(k+1)

c − x(k)) + O(‖x(k+1)
c − x(k)‖2) =

O(‖gp(x
(k)
c )‖ρ(k)).

Thus, the first term of (3.27) is O(‖gp(x
(k)
c )‖ρ(k)). From (3.1), (3.16), (3.17), (3.23)

and (3.26), we can also prove that the remaining three terms are O(‖gp(x
(k)
c )‖ρ(k)).

Therefore, (3.20) implies that there exists a positive constant ξ5 such that

∆L
(k+1)
V ≤ ξ5ρ

(k)
max‖gp(x

(k)
c )‖2.

Using this inequality together with (3.18), we can ensure that ρ
(k)
max will not change

anymore if

ρ(k)
max < min{ξ1/(2ξ5), ξ2

2
/(2ξ2

5G), ξ3∆min/(2ξ5G}),

where G = sup{‖∇f(x(k))‖2 : 1 ≤ k ≤ ∞}. This completes the proof of the Lemma.

We say that a point x is stationary for (1.1), i.e. it satisfies the KKT conditions
for the problem, if h(x) = 0 and gp(x) = 0. The next theorem states that, under
H1-H4, the sequence {xc

(k)} generated by the DCI algorithm has stationary points
for (1.1) in its accumulation set. Some additional conditions are defined to ensure
that every accumulation point results stationary for (1.1).

Theorem 3.4. Under H1-H4, either DCI stops in a stationary point for (1.1),
in a finite number of iterations, or generates a sequence with stationary points in
its accumulation set. Besides, if we impose the horizontal step and the Lagrange
multipliers to satisfy (3.16) and (3.17), then every accumulation point of xc

(k) is
stationary for (1.1).

Proof. We begin claiming that if there is a k0 such that ρmax
(k) ≥ ρmax

(k0) for
every k ≥ k0, then

lim
k→∞

gp(x
(k)
c ) = 0.(3.27)
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To prove this result, let’s suppose, by contradiction, that ρ
(k)
max ≥ ρ

(k0)
max but

‖gp(xc)
(kℓ))‖ ≥ b > 0 for some infinite subsequence {kℓ}. In this case, from (3.11)

and (3.18), we have, for k > k0,

L(x(k)
c , λ(k))− L(x(k0)

c , λ(k0)) =

k
∑

i=k0+1

∆L(i)
c ≤

1

4

k−1
∑

i=k0

∆L
(i)
H ≤ −nkξ1,

where

ξ1 =
1

4
ξ1bmin{ξ2b, ξ3(ρ

(k0)
max)1/2,∆min} > 0

and nk is the number of iterations, between k0 and k−1, for which ‖gp(x
(kℓ)
c )‖ ≥ b > 0.

Because we are supposing that there is an infinite number of such indices, we obtain

lim
k→∞

L(x(k)
c , λ(k)) = −∞,

which contradicts H1-H2, validating our claim.
Let us suppose now, for the purpose of obtaining another contradiction, that

lim inf(‖gp(x
(k)
c )‖) 6= 0. In this case, Lemma 3.3 together with our claim above imply

(3.27). This proves lim inf(‖g(k)
p ‖) = 0.

For the second part of the theorem, let us assume that (3.16) and (3.17) apply.
In this case, Lemma 3.3 ensures that ρmax

(k) remains bounded away from zero. As
we saw above, this implies (3.27), completing the proof.

4. Numerical experience. The success of an algorithm is based not only on its
theoretical convergence results, but also on its practical behaviour. In this section, we
present one possible implementation for the DCI algorithm, along with the numerical
results obtained applying it to some problems from the CUTEr collection [10].

We do not claim we have implemented the ultimate version of the algorithm. On
the contrary, our implementation is quite simple and should be improved in order
to compete with modern commercial codes. Our only purpose is to show that the
algorithm can successfully solve medium-sized equality constrained problems. Some
hints on how to improve the code are given in the next section.

4.1. A practical implementation of the algorithm. We begin the detailed
description of algorithm explaining how the vertical and the horizontal steps can be
implemented. After that, we discuss how to solve the linear systems that appear when
computing these steps. Finally, we present a second order correction used to reduce
the infeasibility after applying the horizontal step.

4.1.1. Vertical step. Whenever ‖h(xc)‖ > ρ at the beginning of an iteration,
we need to reduce the infeasibility. This is done applying Powell’s dogleg method [22]
to the box constrained linear least squares problem (2.2), replacing x by xc.

To find an approximate solution for this trust region problem, the dogleg method
uses a path consisting of two line segments. The first connects the origin to the
Cauchy point, defined as

sCS = −γAT (xc)h(xc),

where

γ = min

{

∆V S

‖AT (xc)h(xc)‖
,
‖AT (xc)h(xc)‖2

‖A(xc)AT (xc)h(xc)‖2
}

.
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The second line runs from the Cauchy point to the Newton point

sNS = −AT (xc)(A(xc)A
T (xc))

−1h(xc).(4.1)

If ‖sNS‖ ≤ ∆V S , then the Newton point is the solution of the problem. Otherwise,
the point of intersection of the dogleg path and the trust region boundary is chosen.

The trust region radius ∆V S used to compute the vertical step is updated using
rules similar to those defined for the horizontal step.

Let Pred denote the predicted reduction and Ared the actual reduction of the
infeasibility. The step is rejected if Ared/Pred < 10−3. In this case, ∆V S is divided
by four. On the other hand, if Ared/Pred ≥ 0.5, we double ∆V S .

Sometimes, it is necessary to apply the dogleg method several times in order to
obtain the desired level of infeasibility. To avoid recomputing A frequently, we try to
take a new step using the same matrix whenever the dogleg method is able to reduce
‖h(xc)‖ by at least 10%. This expedient is used up to four times in a row, after what
A is recalculated.

Another way to avoid frequent recalculations of A is to choose the trust cylinder
radius ρ carefully. Unfortunately, ρ depends on np(xc), and this term, on its turn,
depends on matrix A(xc). Naturally, it would not be wise to compute A just before
calling the restoration, as we will need to update this matrix after this step. For this
reason, in step 1.2 of Algorithm 2.1, we define an approximate value for ρ, replacing
np by

na
p =

|∆LH |
|f(x(k−1))− f(x

(k−1)
c )|+ ‖δ(k−1)

t ‖
.

After the restoration, A(xc) is available and we need to choose ρ satisfying the
conditions stated at step 1.3.3 of Algorithm 2.1. These conditions are quite loose, so a
good scheme for defining the trust cylinder radius can be devised, taking into account
some problem characteristics and the values of ρmax and np. In our implementation,
however, a naive rule was used. If the approximate ρ computed at step 1.2 satisfies
10−4np ρmax ≤ ρnp ≤ ρmax, we keep this value. Otherwise, we simply define

ρ = min{ρmaxng, max{0.75ρmax, 10−4ρmaxng}}.(4.2)

The reduction obtained by the dogleg method may be small depending on the
curvature of h. When this happens, we abandon the box constrained linear least
squares problem and try to apply the Moré and Thuente line search algorithm [20] to
the unconstrained nonlinear least squares problem

minimize ‖h(x)‖2,(4.3)

using a BFGS approximation for the Hessian of the objective function.
Since this last approach is more time consuming than the dogleg method, it is

applied only if ‖h(xc)‖/‖h(xk−1)‖ < 0.95 for 3 successive dogleg steps. Fortunately,
this is unlikely to occur, as the dogleg method usually works well.

4.1.2. Horizontal step. The horizontal step of the method consists in solv-
ing the quadratic programming problem (2.3). If Z is a matrix that spans the null
space of A(xc), then it is possible to rewrite (2.3) as the box constrained nonlinear
programming problem

minimize g(xc)
T Zv +

1

2
vT ZT BZv

subject to ‖Zv‖ ≤ ∆,(4.4)
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where δ was replaced by Zv.
One should notice that B need not to be positive definite, so we cannot use the

dogleg method to solve (4.4), as we did in the vertical step. Instead of that, we use
the Steihaug-Toint method [29, 30], that is an extension of the conjugate gradient
(CG) method for nonconvex problems.

Since computing the product of Z times a vector several times would be too costly,
we write the Steihaug-Toint algorithm using δ directly, as described by Lalee, Nocedal
and Plantenga in [11].

The method starts by computing the Cauchy step defined in step 4.1.1 of Al-
gorithm 2.1. If this point falls inside the trust region, it is improved by applying
successive CG iterations until q(δ) ≤ 0.01q(δCP ), or a direction of negative curvature
is found, or the trust region boundary is violated. In the last two cases, a point over
the boundary of the trust region is chosen.

4.1.3. Linear systems. In the core of both the vertical and the horizontal
step, we have linear systems involving AAT . Such systems need to be solved when
we compute

• the Newton step (4.1), in the dogleg method;
• the Lagrange multipliers (2.4) and, consequently, the projected gradient (2.5);
• the second order correction (see (4.5) in the next subsection);
• the projection of the residual vector onto N(A), in the Steihaug-Toint method.

Two routines are provided for solving these systems. One is based on the sparse
Cholesky decomposition of AAT . The second uses the conjugate gradient method to
generate an approximate solution.

If we choose to work with the Cholesky decomposition, the approximate minimum
degree algorithm of Amestoy, Davis and Duff [3] is used to reorder the rows and
columns of AAT , so the fill-in created during the factorization is minimized. For the
CG method, a band preconditioner has been implemented to accelerate the method.

4.1.4. Second order correction. In DCI, a second order correction (SOC) can
be used to reduce the infeasibility after the horizontal step, as the acceptance of this
compound step is more probable to happen. Clearly, δsoc = 0 would be a possibility
for the SOC term. In fact, any δsoc = O(‖δt‖2) is acceptable for global convergence
purposes. The non-zero natural candidate corresponds to

δsoc = argmin{‖Akδ + h(xc + δt)‖}
= −AT

k (AkAT
k )−1h(xc + δt).(4.5)

If we find gp with a Cholesky factorization of AAT , δsoc results computationally
cheap. On the other hand, if we use iterative methods to compute gp = g +AT λLS =
argmin{‖AT λ+g‖}, it looks reasonable to relax the convergence to gp so we can save
some time for computing the second order correction.

The second order correction is called if, after computing the horizontal step, we
have

‖h(xc + δt)‖ > min{2ρ, 2‖h(xc)‖+ 0.5ρ}

or

‖h(xc)‖ ≤ 10−5 and ‖h(xc + δt)‖ > max{10−5, 2‖h(xc)‖},

If the second order correction is refused, it is not calculated again at the same global
iteration of Algorithm 2.1.



DYNAMIC CONTROL OF INFEASIBILITY 13

4.2. Algorithm performance. To analyze the behavior of the algorithm just
described, we used a set of 53 medium-size equality constrained problems extracted
from the CUTEr collection [10]. The selected problems are presented in Table 4.1.
The number of variables of the problem is given by n, while m is the number of
constraints.

Table 4.1

Selected medium-size problems from the CUTEr collection.

Problem n m Problem n m
AUG2D 20200 10000 HAGER1 10001 5000
AUG2DC 20200 10000 HAGER2 10001 5000
AUG3D 27543 8000 HAGER3 10001 5000
AUG3DC 27543 8000 LCH 3000 1
CATENA 3003 1000 LUKVLE1 10000 9998
CATENARY 501 166 LUKVLE10 10000 9998
CHAIN 802 401 LUKVLE11 9998 6664
DTOC1L 14995 9990 LUKVLE13 9998 6664
DTOC1NA 7495 4990 LUKVLE14 998 664
DTOC1NB 7495 4990 LUKVLE15 997 747
DTOC1NC 7495 4990 LUKVLE16 9997 7497
DTOC1ND 7495 4990 LUKVLE3 10000 2
DTOC2 5998 3996 LUKVLE4 10000 4999
DTOC3 14999 9998 LUKVLE5 10002 9996
DTOC4 14999 9998 LUKVLE6 9999 4999
DTOC5 9999 4999 LUKVLE7 10000 4
DTOC6 10001 5000 LUKVLE8 10000 9998
EIGENA2 2550 1275 LUKVLE9 10000 6
EIGENACO 1640 820 OPTCTRL3 4502 3000
EIGENB2 2550 1275 ORTHRDM2 4003 2000
EIGENBCO 1640 820 ORTHRDS2 1003 500
EIGENC2 2652 1326 ORTHREGA 2053 1024
EIGENCCO 1722 861 ORTHREGC 1005 500
ELEC 600 200 ORTHREGD 1003 500
GRIDNETB 3444 1764 ORTHRGDM 2003 1000
GRIDNETE 7564 3844 ORTHRGDS 1003 500
GRIDNETH 7564 2844

Originally, all of the equality constrained problems of the CUTEr library were
selected to compose the test set. However, at this moment, the DCI algorithm is not
prepared to handle singular Jacobian matrices, so some of the problems needed to be
excluded from the list.

The DCI algorithm was implemented in FORTRAN 77 and the executable pro-
gram was generated using the ifort 9.0 compiler, under the Fedora 4 Linux operating
system. To evaluate the performance of the new method, it was compared to Lancelot
(release B), the well known nonlinear programming package distributed along with
the Galahad library [9]. Although Lancelot is outperformed by most nonlinear pro-
gramming codes available nowadays, we decided to use it because it is freely available
and includes a good interface for solving CUTEr problems.

The tests were performed on a Dell Optiplex GX280 computer, using an Intel
Pentium 4 540 processor, with a clock speed of 3.2GHz, 1MB of cache memory, a
800MHz front side bus and the Intel 915G chipset. The Lancelot default parameters
were adopted, except for the maximum number of iterations that was increased to
10000. Exact first and second derivatives were computed by both methods.

The DCI algorithm was designed to declare convergence when both ‖h(x)‖ < ǫh

and np < ǫg, as well as when ρmax < ǫr. However, since Lancelot uses the infinity
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norm in its convergence criteria, we decided to change the first criterion, stopping the
algorithm when ‖h(x)‖∞ < ǫh and one of ‖gp‖∞ < ǫg or np < ǫp occurs. Besides, it
also terminates if ‖δt‖ < ǫd‖x‖ for 10 successive iterations or if the restoration fails
to obtain a feasible point. The constants ǫh = 10−5, ǫg = 10−5, ǫp = 10−7, ǫr = 10−7

and ǫd = 10−8 were adopted, so the stopping tolerances are compatible with those
used in Lancelot.

Other parameters used in the algorithm are

ρ0
max = max{10−5, 5.1‖h(x(0))‖, 50np(x

(0))},(4.6)

∆0 = ∆0
V S = max{10‖x(0)‖, 105},

and ∆min = 10−5.
The comparison of the methods were done using the performance profiles defined

by Dolan and Moré [5]. To draw the performance profiles for a set S of solvers on
a set P of problems, we need to compute, for each problem p ∈ P and each solver
s ∈ S, the performance ratio defined by

rp,s =
tp,s

min{tp,s : s ∈ S} .

where tp,s is the time spent by the solver s to solve problem p. The overall performance
of solver s is represented by function

P (t) =
1

np
size{p ∈ P : rp,s ≤ t},

where np is the number of problems considered. In words, P (t) is the fraction of the
number of problems that are solved by s within a factor t of the time spent by the
fastest solver (for each problem). Plotting P (t), we get a performance profile for a
particular solver.

For the 53 equality constrained problems selected, the performance profiles of
DCI and Lancelot are shown in Figure 4.2

One can deduce from Figure 4.2 that the DCI algorithm took less time than
Lancelot to obtain the solution of almost three quarters of the problems. Besides,
DCI solved 90% of the problems within a factor 8.1 of the best solver, while it was
necessary to increase the factor to more than 40 in order for Lancelot to solve the
same 90% of the problems.

Both method obtained an optimal solution (i.e. an stationary point for (1.1)) for
all of the problems. However, the performance of DCI was never worse than a factor
50 of the performance of Lancelot, while Lancelot took more than 200 times the time
spent by DCI to solve the CHAIN problem.

The experiments with these CUTEr problems revealed also that the choice of an
initial value for ρmax is still an open problem. For several problems, a particular
value of ρ0

max has led to a much better performance of the algorithm, if compared to
(4.6). One possible way to circumvent this problem is to use a few iterations of the
algorithm only to calibrate this parameter, prior to use the rules for updating it. This
modification will be investigated in the near future.

The choice of the linear systems solver also affects the performance of the algo-
rithm. For all of the problems presented here, we used the Cholesky decomposition
to compute the solution of (AAT )s = b, although, for many of them, it would be
preferable to use the preconditioned conjugate gradient method.
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Fig. 4.1. Performance profiles for 53 CUTEr problems.

5. Conclusions. In this paper, we have presented a new algorithm for solving
nonlinear programming problems with equality constraints. The method uses the idea
of a trust cylinder to keep the infeasibility under control. The radius of this cylinder
is reduced as the algorithm approaches the optimal point. The algorithm is globally
convergent in the sense that its accumulation set has stationary points for (1.1).

Our current implementation of the algorithm works well when applied to medium-
sized problems, so we believe that it is worth investigating its performance for larger
problems. Some of the improvements that are to be made to the code after solving
large-scale problems include:

• reformulating the algorithm so inexact solutions for the linear subroutines are
admitted;

• using BFGS approximations to the Hessian of the Lagrangian when comput-
ing the horizontal step;

• devising a rule to define the initial value of ρmax;
• allowing the code to deal with rank deficient Jacobians.

Besides, we also have plans to extend the algorithm to solve inequality constrained
problems.
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