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Abstract

Using recent results on the occurrence times of a string of symbols in a stochastic process with
mixing properties, we present a new method for the search of rare words in biological sequences
generally modelled by a Markov chain. We obtain a bound of the error between the law of
the number of occurrences of a word in a sequence (under a Markov model) and its Poisson
approximation. A global bound is already given by a Chen-Stein method. Our method, the ψ-
mixing method, gives local bounds. We search a number of occurrences from which we can regard
the studied word as a rare word. If the word appears more often than this number in the biological
sequence, we conclude that it is an overrepresented word and then we suppose a biological role.
Our method always give a limit number, while it was impossible with the Chen-Stein method.
Comparing the methods, we observe a better accuracy for the ψ-mixing method for the bound of
the tails of distribution. We also present the software PANOW

1 dedicated to the computation of the
error term and the limit number of occurrences for a studied word.
Keywords Poisson approximation, Chen-Stein method, mixing processes, Markov chains, rare
words, DNA sequences

1 Introduction

Mathematics are widely used in the context of the analysis of biological sequences (such as DNA
sequences or protein sequences). In particular, Markov chains are commonly used to model the depen-
dancies between the letters (nucleotides, amino-acids) in these sequences (see Almagor [6], Blaisdell
[10], Phillips et al. [23], Gelfand et al. [16]). We can then study the properties of a sequence through
those of a Markov chain. In particular, we can compare the number of occurrences of a word in an
observed sequence with its number of occurrences expected in a Markov model (see Schbath et al.
[30] on DNA sequences). Hence, the number of occurences is a statistic to find significantly over or
underrepresented words and then assess a biological relevance. Examples of these biologically relevant
words are given in an abundant litterature. Nicodème et al. [20] discuss about this relevance of finding
over or underrepresented words. See for example the paper about the Chi site of Escherischia coli
(Smith et al. [31]). More information about this Chi site and its repartition along the genome appears
in El Karoui et al. [14]. Uptake sequences are other examples of rare words (see a sample in Smith
et al. [32]). Few examples of rare words are given in Nuel [21]. Other applications on the relevance of
finding over or underrepresentated words are given in Stückle et al. [34], Robin [27] or Bodman and
Ward [12].

The exact law of the number of a word occurences under the Markovian model is known (Robin
and Daudin [28], Régnier [24]) but, because of numerical complexity, it is not used in practice so that
we use approximations. The reader can see Nuel [22] to have an overview of the different approaches.
In this paper we focus on the Poisson approximation (Godbole [17]). We approximate P(N(A) = k)

by e−tP(A)(tP(A))k

k! where P(N(A) = k) is the stationary probability under the Markov model that the
number of occurrencesN(A) of a word A is equal to k, P(A) is the probability of a wordA occurrence in
a given position, and t is the length of the sequence. Our aim is to bound the error between the law of

1available at http://stat.genopole.cnrs.fr/software/panowdir/
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the number of occurrences of the word A and its Poisson approximation. The common method in this
purpose is the Chen-Stein method, developped by Chen on Poisson approximations (Chen [13]) after
a work of Stein on normal approximations Stein [33]. Its principle is to bound the difference between
the two laws in total variation distance for all subset of the definition domain. But this method gives
us too large an error because we are only interested in this difference for the tails of the distributions.
We give here a new method, based on the property of mixing processes. It offers an error term ǫ, for
the number of occurrences k, of the word A:

∣

∣

∣

∣

∣

P(N(A) = k) −
e−tP(A)(tP(A))k

k!

∣

∣

∣

∣

∣

≤ ǫ(A, k).

ǫ(A, k) decays factorially fast in k. This result is complementary to the results of Abadi [3, 1] and also
Abadi and Vergne [5, 4]. As Markov chains are mixing-processes, we can apply this result for biological
applications. In order to use this new method for these biological applications, we determine all the
constants of the results of the above papers which are necessary for our proof.

This paper is organized in the following way. In section 2, we introduce the Chen-Stein method. In
section 3, we present the new method on the Poisson approximation. In section 4, we state preliminary
results. In section 5, we establish the proof of this result. We end the paper presenting some examples
of biological applications, and some conclusions and perspectives of future works.

2 The Chen-Stein method

2.1 Total variation distance

Definition 1 For any two random variables X and Y with values in the same discrete space E, the
total variation distance between their probability laws is defined by

dTV(L(X),L(Y )) =
1

2

∑

i∈E

|P(X = i) − P(Y = i)| .

We remark that for any subset S of E

|P(X ∈ S) − P(Y ∈ S)| ≤ dTV(L(X),L(Y )).

2.2 The Chen-Stein method

The Chen-Stein method is used to bound the error between the law of the number of occurrences
of a word A in a sequence X and the Poisson law of parameter tP(A) where t is the length of the
sequence and P(A) the stationary measure of A. There is an abundant literature about the Chen-Stein
method (see Chen [13], Arratia et al. [7, 8], Barbour et al. [9]).

First, we will fix a few notations. Let A be a finite set (for example, in the DNA case A = {a, c, g, t}).
Put Ω = AZ. For each x = (xm)m∈Z

∈ Ω, we denote by Xm the m-th coordinate of the sequence x:
Xm(x) = xm. We denote by T : Ω → Ω the one-step-left shift operator: so we will have T (xm) = xm+1.
We denote by F the σ-algebra over Ω generated by strings and by FI the σ-algebra generated by strings
with coordinates in I with I ⊆ Z. We consider an invariant probability measure P over F . Then, we
work on a sequence X = (X1, . . . , Xt) where each Xi belongs to A. Let us fix a word A = (a1, . . . , an).
For i ∈ {1, 2, · · · , t− n+ 1}, let Yi be the following random variable

Yi = Yi(A) = 1{the word A appears in position i in the sequence}

= 1{(Xi, . . . , Xi+n−1) = (a1, . . . , an)}.

We put Y =
∑t−n+1
i=1 Yi, the random variable corresponding to the number of occurrences of a word,

E(Yi) = mi and
∑t−n+1

i=1 mi = m. Then, E(Y ) = m. Let Z be a Poisson random variable with
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parameter m: Z ∼ P(m). For each i, we arbitrarily define a set V (i) ⊂ {1, 2, · · · , t − n + 1} with
i ∈ V (i). V (i) is a neighborood of i. The Chen-Stein method gives the following bound (see Arratia
et al. [8]):

dTV(L(Y ),L(Z)) ≤ b1 + b2 + b3

where
b1 =

∑

i

∑

j∈V (i)

E(Yi)E(Yj),

b2 =
∑

i

∑

j∈V (i), j 6=i

E(YiYj),

b3 =
∑

i

E |E(Yi − pi |Yj , j /∈ V (i))| .

3 Preliminary notations and Poisson law

3.1 Preliminary notations

We focus in this study on Markov processes. The theorem given in the following subsection is
established for more general mixing processes: the so called ψ-mixing processes.

Definition 2 Let ψ = (ψ(ℓ))ℓ≥0 be a sequence decreasing to zero. We say that (Xm)m∈Z
is a ψ-mixing

process if for all integers ℓ ≥ 0, the following holds

sup
n∈N,B∈F{0,.,n},C∈F{n≥0}

|P(B ∩ T−(n+ℓ+1)C) − P(B)P(C)|

P(B)P(C)
= ψ(ℓ),

where the supremum is taken over the sets B and C, such that P(B)P(C) > 0.

For a word A of Ω we say that A ∈ Cn if its length is equal to n. For A ∈ Cn, we define the hitting
time τA : Ω → N ∪ {∞}, as the random variable defined on the probability space (Ω,F ,P):

∀x ∈ Ω, τA(x) = inf{k ≥ 1 : T k(x) ∈ A}.

τA is the first time that the process hits a given measurable A. We also use the classic probabilistic
shorthand notations. We write {τA = m} instead of {x ∈ Ω : τA(x) = m}, T−k(A) instead of
{x ∈ Ω : T k(x) ∈ A} and {Xs

r = xsr} instead of {Xr = xr, ..., Xs = xs}. For A = {Xn−1
0 = xn−1

0 } and
1 ≤ w ≤ n, we write A(w) = {Xn−1

n−w = xn−1
n−w} for the event consisting of the last w symbols of A. We

define the periodicity of A ∈ Cn as the number pA defined as follows:

pA = inf {x ∈ N
∗|A ∩ T−x(A) 6= ∅}.

pA is called the principal period of the word A. Then, we denote by Rp = Rp(n) the set of these
A ∈ Cn of periodicity p and we also define Bn as the set of those A ∈ Cn with periodicity less than

[

n
2

]

:

Rp = {A ∈ Cn|pA = p}, Bn =

[n2 ]
⋃

p=1

Rp.

Bn is the set of words which are self-overlaping before half their length (see Example 1). We define
R(A) the set of return times of A which are not a multiple of its periodicity pA:

R(A) =
{

k ∈ {[n/pA]pA + 1, . . . , n− 1}|A ∩ T−k(A) 6= ∅
}

.

Let us note rA = #R(A). Define also nA = minR(A) if R(A) 6= ∅ and nA = n otherwise.R(A) is
called the set of secondary periods of A. Then, nA is the smallest secondary period of A. Finally, we
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introduce the following notation. For 0 ≤ s < t integer, let N t
s =

t
∑

i=s

1T−iA. So, N t
s counts the number

of occurrences of A between s and t. For the sake of simplicity, we also put Nt = N t
0.

Example 1 Consider the word A = aaataaataaa. As pA = 4, A ∈ Bn. See the following figure to
note that R(A) = {9; 10}, rA = 2 and nA = 9.

0 1 2 3 4 5 6 7 8 9 10

a a a t a a a t a a a
a a a t a a a t a a a

a a a t a a a t a a a
a a a t a a a t a a a

a a a t a a a t a a a

3.2 The mixing method

We present a theorem that gives an error bound for the Poisson approximation. Compared to the
Chen-Stein method, it has the advantage to present non uniform bounds that strongly control the
decay of the tail of distribution of Nt.

Theorem 1 (ψ-mixing approximation) Let (Xm)m∈Z
be a ψ-mixing process. There exists a con-

stant Cψ > 0, such that for all A ∈ Cn \ Bn and all non negative integers k and t, the following
inequality holds:

∣

∣

∣

∣

∣

P(Nt = k) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

≤ Cψeψ(A)e−(t−(3k+1)n)P(A)gψ(A, k)

where gψ(A, k) =























(2λ)k−1

(k − 1)!
k /∈ { λ

eψ(A) , ...,
2t
n }

(2λ)k−1

(

λ
eψ(A)

)

!
(

1
eψ(A)

)k− λ
eψ(A)−1

k ∈ { λ
eψ(A) , ...,

2t
n }

,

eψ(A) = inf
1≤w≤nA

[

(rA + n)P
(

A(w)
)

(1 + ψ (nA − w))
]

,

and λ = tP(A)(1 + ψ(n)).

4 Compute of constants¡

Our goal is to compute a bound as small as possible to control the error between the Poisson law
and the law of the number of occurrences of a word. Thus, we determine the global constant Cψ by
means of intermediary bounds met in the proof. General bounds are interesting asymptotically in n,
but for biological applications, n approx 10 or 20, it is not enough. Then along the proof, we will
indicate the intermediary bounds that we compute. Before establishing the proof of this theorem, we
point out here, for easy references, some results of Abadi [3], and some other useful results. In this
paper, these results are given only in the φ-mixing context. Moreover the exact values of the constants
are not given, while they are necessary for practical use of these methods. We give the values of all
the constants met in the proofs of these results.

Proposition 1 (Proposition 11 in Abadi [3]) Let (Xm)m∈Z
be a ψ-mixing process. There exist

two finite constants Ca > 0 and Cb > 0, such that for any n, A ∈ Cn, and any f ∈
[

4n, 1
2P(A)

]

such

that
ψ (f/4) ≤ P

(

τA ≤ f/4 ∩ τA ◦ T f/4 > f/2
)

,
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there exists ∆, with n < ∆ ≤ f/4, such that for all positive integers k, the following inequalities hold:
∣

∣

∣P (τA > kf) − P (τA > f − 2∆)
k
∣

∣

∣ ≤ Caε (A) kP (τA > f − 2∆)
k
, (1)

∣

∣

∣P (τA > kf) − P (τA > f)k
∣

∣

∣ ≤ Cbε (A) kP (τA > f − 2∆)k , (2)

with ε(A) = inf
n≤ℓ≤ 1

P(A)

[ℓP(A) + ψ(ℓ)].

Remark 1 Both inequalities provide an approximation between the hitting time law and a geometric
law for t = kf . The difference between them is that in the first one, the geometric inside the modulus
is the same as in the upper bound, while in the second one, the geometric inside the modulus is larger
than the one in the upper bound. That is, the second one gives a larger error. We will use both in the
proof of Theorem 2.

We denote N i
j =

{

τA ◦ T if+j∆ > f − j∆
}

and N = {τA > f − 2∆} for the sake of simplicity.
Proof. For the details of the proof, we refer to Proposition 11 in Abadi [3]. We only determine

the values of constants Ca and Cb.

For k ≥ 2,
∣

∣

∣P (τA > kf) − P (N )
k
∣

∣

∣ ≤ (a) + (b) + (c), with

(a) =

k−2
∑

j=0

P (N )
j
∣

∣

∣P (τA > (k − j) f) − P

(

τA > (k − j − 1) f ;N k−j−1
2

)∣

∣

∣,

(b) =

k−2
∑

j=0

P (N )
j
∣

∣

∣P

(

τA > (k − j − 1) f ;N k−j−1
2

)

− P (τA > (k − j − 1) f) P
(

N 0
2

)

∣

∣

∣,

(c) = P (N )
(k−1) |P (τA > f) − P (N )|.

First, for any measurable B ∈ F{(ℓ+1)f,(ℓ+2)f+n−1}, we have P (B) + ψ (∆) ≤ 3ψ (∆) ≤ 3
2ε (A). We

can also remark that P (N ) ≥ 1/2. Then, by iteration of the mixing property, we have the following
inequality for all ℓ ∈ N:

P

(

l
⋂

i=0

N i
1 ;B

)

≤ 6P (N )
l+1

ε (A) .

We apply this inequality in the inequalities (14) and (15) of [3] to get

(a) ≤
k−2
∑

j=0

P (N )
j
(

6P (N )
k−j−2+1

ε (A)
)

= 6(k − 1)ε (A) P (N )
(k−1)

,

(b) ≤
k−2
∑

j=0

P (N )
j
(

6P (N )
k−j−2+1

ε (A)
)

= 6(k − 1)ε (A) P (N )
(k−1)

.

We also have (c) ≤ P (N )
k−1

P
(

N ; τA ◦ T f−2∆ ≤ 2∆
)

≤ ε (A) P (N )
k−1

.

We obtain (1):
∣

∣

∣P (τA > kf) − P (N )
k
∣

∣

∣ ≤ 24kε (A) P (N )
k
.

We deduce (2):
∣

∣

∣
P (τA > kf) − P (τA > f)k

∣

∣

∣
≤ 25kε (A) P (N )k.

Then, Ca = 24 and Cb = 25. ✷

Theorem 2 (Theorem 1 in Abadi [3]) Let (Xm)m∈Z
be a ψ-mixing process. Then, there exist

constants Ch > 0, 0 < Ξ1 < 1 ≤ Ξ2 < ∞, such that for all n ∈ N and A ∈ Cn, there exists
ξA ∈ [Ξ1,Ξ2], for which the following inequality holds for all t > 0:

∣

∣

∣

∣

P

(

τA >
t

ξA

)

− e−tP(A)

∣

∣

∣

∣

≤ Chε(A)f1(A, t),

with ε(A) = inf
n≤ℓ≤ 1

P(A)

[ℓP(A) + ψ(ℓ)] and f1(A, t) = (tP(A) ∨ 1)e−tP(A).

5



We prove an upper bound between the rescaled hitting time and the mean one exponential law. The
factor ε(A) in the upper bound shows that the rate of convergence to the exponential law is given by
a trade off between the length of this time and the velocity of loosing memory of the process.

Proof. We fix f = 1
2P(A) and ∆ given by Proposition 1. We define

ξA =
− log P(τA > f − 2∆)

fP(A)
.

There are three steps in the proof of the theorem. First, we consider t of the form t = kf with k a
positive integer. Secondly, we prove the theorem for t of the form t = (k + p/q)f with k, p positive
integers and 1 ≤ p ≤ q with q = 1

2ε(A) . We also put r = (p/q)f . Finally, we consider the remaining t.

Here, we do not detail the two first steps (for that, see Abadi [3]), but only the last one. Let t be any
positive real. We write t = kf + r, with k a positive integer and r such that 0 ≤ r < f . We can choose
a t̄ such that t̄ < t and t̄ = (k + p/q)f with p, q as before. We have

∣

∣

∣P (τA > t) − e−ξAP(A)t
∣

∣

∣ ≤ |P (τA > t) − P (τA > t̄)|

+
∣

∣

∣P (τA > t̄) − e−ξAP(A)t̄
∣

∣

∣

+
∣

∣

∣e−ξAP(A)t̄ − e−ξAP(A)t
∣

∣

∣ .

The first term of the triangular inequality is bounded in the following way:

|P (τA > t) − P (τA > t̄)| = P

(

τA > t̄; τA ◦ T t̄ ≤ t− t̄
)

≤ P

(

τA > kf ; τA ◦ T t̄ ≤ ∆
)

≤ P (N )
k−2

(∆P(A) + ψ(∆)))

≤ 4P (N )
k
ε(A)

≤ 4ε(A)e−ξAP(A)t.

The second term is bounded as in the two first steps of the proof. We apply inequalities (1) and (2)
to obtain ∣

∣

∣P (τA > t̄) − e−ξAP(A)t̄
∣

∣

∣ ≤ (3 + CatP(A) + Ca + 2Cb)ε(A)e−ξAP(A)t.

Finally, the third term is bounded using the Mean Value Theorem:

∣

∣

∣e−ξAP(A)t̄ − e−ξAP(A)t
∣

∣

∣ ≤ ξAP(A)

(

r −
p

q
f

)

e−ξAP(A)t̄ ≤ ε(A)e−ξAP(A)t.

Thus we have
∣

∣P (τA > t) − e−ξAP(A)t
∣

∣ ≤ 105ε(A)f1(A, ξAt) and the theorem follows by the exchange

of variables t̃ = ξAt. Then Ch = 105. ✷

Lemma 1 (Xm)m∈Z
be a ψ-mixing process. Suppose that B ⊆ A ∈ F{0,...,b}, C ∈ F{b+g,...,∞} with

b, g ∈ N. The following inequality holds:

PA(B ∩ C) ≤ PA(B)P(C)(1 + ψ(g)).

Proof. Since B ⊆ A, obviously P(A ∩B ∩C) = P(B ∩C). By the ψ-mixing property P(B ∩C) ≤
P(B)(P(C) + ψ(g)). Dividing the above inequality by P(A) and the lemma follows. ✷

Proposition 2 Let (Xm)m∈Z
be a ψ-mixing process. Let A ∈ Rp(n). Then the following holds:
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(a) For all M,M ′ ≥ g ≥ n,

|PA (τA > M +M ′) − PA (τA > M)P (τA > M ′)|

≤ PA (τA > M − g) 2gP(A) [1 + ψ(g)] ,

and similarly

|PA (τA > M +M ′) − PA (τA > M)P (τA > M ′ − g)|

≤ PA (τA > M − g) [gP(A) + 2ψ(g)] .

(b) For all t ≥ p ∈ N, with ζA = PA(τA > pA)

|PA (τA > t) − ζAP (τA > t)| ≤ 2eψ(A).

Remark 2 The above proposition establishes a relation between hitting and return times with an error
uniform in t. In particular, (b) says that they coincide if and only if ζA = 1, namely, the string A is
non-self-repeating.

Proof. To simplify notation, for t ∈ Z we write τ
[t]
A to mean τA ◦T t. We introduce a gap of length

g after coordinate M to construct the following triangular inequality

|PA (τA > M +M ′) − PA (τA > M)P (τA > M ′)|

≤
∣

∣

∣PA (τA > M +M ′) − PA

(

τA > M ; τ
[M+g]
A > M ′ − g

)∣

∣

∣

+
∣

∣

∣PA

(

τA > M ; τ
[M+g]
A > M ′ − g

)

− PA (τA > M) P (τA > M ′ − g)
∣

∣

∣

+ PA (τA > M) |P (τA > M ′ − g) − P (τA > M ′)| .

Term (3) is bounded with Lemma 1 by

PA

(

τA > M ; τ
[M ]
A ≤ g

)

≤ PA (τA > M − g) gP(A) [1 + ψ(g)] .

Term (3) is bounded using the ψ-mixing property by PA (τA > M)ψ(g). The modulus in (3) is bounded
using stationarity by P (τA ≤ g) ≤ gP(A). This ends the proof of both inequalities of item (a).
Item (b) for t ≥ 2n is proven similarly to item (a) with t = M + M ′, M = p, and g = w with
1 ≤ w ≤ nA. Consider now p ≤ t < 2n.

ζA − PA (τA > t) = PA (p < τA ≤ t) = PA (τA ∈ R(A) ∪ (n ≤ τA ≤ t)) ≤ eψ(A).

First and second equalities follow by definition of τA and R(A). The inequality follows by Lemma 1.
✷

Let ζA = PA(τA > pA) and h = 1/(2P(A)) − 2∆, then ξA = −2 log P(τA > h).

Lemma 2 Let (Xm)m∈Z
be a ψ-mixing process. Then the following inequality holds:

|ξA − ζA| ≤ 11eψ(A).

Hence, we have
ζA − 11eψ(A) ≤ ξA ≤ ζA + 11eψ(A).

Proof.

P (τA > h) =

h
∏

i=1

P (τA > i|τA > i− 1)

=

h
∏

i=1

(1 − P
(

T−iA|τA > i− 1
)

)

=

h
∏

i=1

(1 − ρiP(A)) ,
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where ρi
def
=

PA (τA > i− 1)

P (τA > i− 1)
. Therefore

∣

∣

∣

∣

∣

∣

ξA + 2

pA
∑

i=1

log(1 − ρiP(A)) − 2

h
∑

i=pA+1

ζAP(A)

∣

∣

∣

∣

∣

∣

≤ 2

h
∑

i=pA+1

|− log(1 − ρiP(A)) − ζAP(A)| .

The above modulus is bounded by

|− log(1 − ρiP(A)) − ρiP(A)| + |ρi − ζA|P(A).

Now note that |y− (1−e−y)| ≤ (1−e−y)2 for y > 0 small enough. Apply it with y = − log(1−ρiP(A))
to bound the most left term of the above expression by (ρiP(A))2. Further by Proposition 2 (b) and
the fact that P (τA > h) ≥ 1/2 we have

|ρi − ζA| ≤
2e1(A)

P (τA > h)
≤ 4eψ(A).

for all i = pA + 1, . . . , h. Yet as before

−

pA
∑

i=1

log(1 − ρiP(A)) ≤ pA
(

ρiP(A) + (ρiP(A))2
)

≤ eψ(A).

Finally, by definition of h
∣

∣

∣

∣

∣

∣

2

h
∑

i=pA+1

ζAP(A) − ζA

∣

∣

∣

∣

∣

∣

≤ 4∆P(A) + 2pAP(A) ≤ 6eψ(A).

This ends the proof of the lemma. ✷

Proposition 3 Let (Xm)m∈Z
be a ψ-mixing process. Then the following inequality holds:

|P(τA > t) − e−tP(A)| ≤ Cpeψ(A)(tP(A) ∨ 1)e−(ζA−11eψ(A))tP(A).

Proof. We bound the first term with Theorem 2 and the second with Lemma 2 :

|P(τA > t) − e−tP(A)| ≤ |P(τA > t) − e−ξAtP(A)| + |e−ξAtP(A) − e−tP(A)|
|P(τA > t) − e−ξAtP(A)| ≤ Chε(A)e−ξAtP(A) ≤ Cheψ(A)e−(ζA−11eψ(A))tP(A)

|e−ξAtP(A) − e−tP(A)| ≤ tP(A)|ξA − 1|e−min {1,ξA}tP(A)

≤ 11tP(A)e∗(A)e−(ζA−11eψ(A))tP(A).

This ends the proof of the proposition with Cp = Ch + 11. ✷

Definition 3 Given A ∈ Cn, we define for j ∈ N, the j-occurrence time of A as the random variable

τ
(j)
A : Ω → N ∪ {∞}, defined on the probability space (Ω,F ,P) as follows: for any x ∈ Ω, τ

(1)
A (x) =

τA(x) and for j ≥ 2,

τ
(j)
A (x) = inf {k > τ

(j−1)
A (ω) : T k(x) ∈ A}.

Proposition 4 Let (Xm)m∈Z
be a ψ-mixing. Then, for all A /∈ Bn, all k ∈ N, and all 0 ≤ t1 < t2 <

... < tk ≤ t for which min
2≤j≤k

{tj − tj−1} > 2n, there exists a positive constant C1 independent of A, n,

t and k such that
∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

(

τ
(j)
A = tj

)

; τ
(k+1)
A > t



− P(A)
k
k+1
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

≤ C1k(P(A)(1 + ψ(n)))
k
eψ(A)e−(t−(3k+1)n)P(A).
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Proof. We will show this proposition by induction on k. We put Pj = P(τA > (tj − tj−1) − 2n).
We also put ∆j = tj − tj−1 for j = 2, ..., k, ∆1 = t1 and ∆k+1 = t − tk. Firstly, we note that by
stationarity

P(τA = t) = P(A ; τA > t− 1).

For k = 1, by a triangular inequality we obtain

∣

∣

∣

∣

∣

∣

P

(

τA = t1 ; τ
(2)
A > t

)

− P(A)

2
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣P

(

τA = t1 ; τ
(2)
A > t

)

− P
(

τA = t1 ; N t
t1+2n = 0

)

∣

∣

∣ (3)

+
∣

∣P
(

τA = t1 ; N t
t1+2n = 0

)

− P (τA = t1)P2

∣

∣ (4)

+
∣

∣P(A ; τ > t1 − 1) − P
(

A ; N t1−1
2n = 0

)∣

∣P2 (5)

+

∣

∣

∣

∣

∣

∣

P
(

A ; N t1−1
2n = 0

)

P2 − P(A)

2
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

. (6)

Term (3) is equal to P

(

τA = t1;
⋃t1+2n
i=t1+1 T

−iA;N t
t1+2n = 0

)

. For 1 ≤ i ≤ pA, the leading term of the

above sum is zero. Thus, using mixing property

(3) = P



τA = t1;

t1+2n
⋃

i∈R(A)∪i=t1+pA

T−iA;N t
t1+2n = 0





≤ 2P(A)P(A)(rA + n)(1 + ψ(n))P
(

N t
t1+2n = 0

)

≤ 2P(A)eψ(A)e−(t−(3k+1)n)P(A)

Term (4) is bounded using ψ-mixing property

(4) ≤ ψ(n)(1 + ψ(n))P(A)P1P2

≤ ψ(n)P(A)eψ(A)e−(t−(3k+1)n)P(A).

Analogous computations are used to bound terms (5) and (6).
Now, let us suppose that the proposition holds for k − 1 and let us prove it for k. We put

Si = {τ
(i)
A = ti}. We use a triangular inequality again to bound the term in the left hand side of the

inequality of the proposition by a sum of five terms:
∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

(

τ
(j)
A = tj

)

; τ
(k+1)
A > t



− P(A)
k
k+1
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

≤ I + II + III + IV + V.

I =

∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

Sj ; τ
(k+1)
A > t





− P





k−1
⋂

j=1

Sj ; N tk−2n
tk−1+1 = 0 ; T−tkA ; N t

tk+1 = 0





∣

∣

∣

∣

∣

∣

= P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0;

tk−1
⋃

i=tk−2n+1

T−iA;T−tkA;N t
tk+1 = 0





≤ (P(A)(1 + ψ(n)))
k
(1 − ψ(n))

(

npA + (rA + n)P(A(w))
)

e−(t−(3k+1)n)P(A),
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II =

∣

∣

∣

∣

∣

∣

P





k−1
⋂

j=1

Sj ; N tk−2n
tk−1+1 = 0 ; T−tkA ; N t

tk+1 = 0





− P





k−1
⋂

j=1

Sj ; N tk−2n
tk−1+1 = 0



P
(

A ; N t−tk
1 = 0

)

∣

∣

∣

∣

∣

∣

≤ P





k−1
⋂

j=1

;N tk−2n
tk−1+1 = 0



P
(

A;N t−tk
1 = 0

)

ψ(n)

≤ (P(A)(1 + ψ(n)))kψ(n)e−(t−(3k+1)n)P(A),

III =

∣

∣

∣

∣

∣

∣

P





k−1
⋂

j=1

Sj ; N tk−2n
tk−1+1 = 0





− P





k−1
⋂

j=1

Sj ; N tk−1
tk−1+1 = 0





∣

∣

∣

∣

∣

∣

× P
(

A ; N t−tk
1 = 0

)

≤ P





k−1
⋂

j=1

Sj ;N
tk−2n
tk−1+1 = 0;

tk−1
⋃

tk−2n+1

T−iA



P(A)

≤ 2P(A)(P(A)(1 + ψ(n)))ke−(t−(3k+1)n)P(A).
We use the inductive hypothesis for the term IV and the case with k = 1 for the term V

IV =

∣

∣

∣

∣

∣

∣

P





k−1
⋂

j=1

Sj ;N
tk−1
tk−1+1 = 0



− P(A)
k−1

k
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

P
(

A;N t−tk
1 = 0

)

≤ C1(k − 1)(P(A)(1 + ψ(n)))
k
eψ(A)e−(t−(3k+1)n)P(A),

V = P(A)k−1
k
∏

j=1

Pj
∣

∣P
(

A ; N t−tk
1 = 0

)

− P(A)Pk+1

∣

∣

≤ 2(P(A)(1 + ψ(n)))
k
eψ(A)e−(t−(3k+1)n)P(A).

Finally, we obtain

I + II + III + IV + V ≤ (3 + C1(k − 1) + 2)(P(A) + ψ(n))keψ(A).

To conclude the proof, it is sufficient that C1k = 3 + C1(k − 1) + 2, therefore C1 = 5. This ends the
proof of the Proposition. ✷

5 PROOF of Theorem 1

For k = 0, the result comes from Proposition 3 (P(Nt = 0) = P(τA > t)).
For k > 2t/n, as A /∈ Bn, we have P(Nt = k) = 0. Hence,

∣

∣

∣

∣

∣

P(Nt = k) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

=
e−tP(A)(tP(A))

k

k!

≤
(tP(A))k−1

(k − 1)!

tP(A)

k

≤
1

2

(tP(A))k−1

(k − 1)!
eψ(A).

Indeed, since t
k <

n
2 then tP(A)

k < nP(A)
2 ≤ eψ(A)

2 .
Now, let us consider 1 ≤ k ≤ 2t/n. We consider a sequence which contains exactly k occurrences
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of A. These occurrences can be isolated or can be in clumps. We define the following set:

T = T (t1, t2, ..., tk) =







k
⋂

j=1

(τ
(j)
A = tj) ; τ

(k+1)
A > t







.

We recall that we put Pj = P(τA > (tj − tj−1) − 2n), ∆j = tj − tj−1 for j = 2, ..., k, ∆1 = t1 and
∆k+1 = t− tk. Define I(T ) = min

2≤j≤k
{∆j}. We say that the occurrences of A are isolated if I(T ) ≥ 2n

and we say that there exists at least one clump if I(T ) < 2n. We also denote

Bk = {T | I(T ) < 2n} and Gk = {T | I(T ) ≥ 2n} .

The set {Nt = k} is the disjoint union between Bk and Gk, then

P(Nt = k) = P(Bk) + P(Gk),

∣

∣

∣

∣

∣

P(Nt = k) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

≤ P(Bk) +

∣

∣

∣

∣

∣

P(Gk) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

.

We will upper bound the two quantities on the right hand side of the above inequality to conclude the
theorem.

We will prove an upper bound for P(Bk). Define C(T ) =
∑k
j=2 1{∆j>2n}+1. C(T ) computes

how many clusters there are in a given T . Suppose that T is such that C(T ) = 1 and fix the position
t1 of the first occurrence of A. Further, each occurrence inside the cluster (with the exception of the
most left one which is fixed at t1) can appear at distance d of the previous one, with pA ≤ d ≤ 2n.
Therefore, the ψ-mixing property leads to the bound

P

(

⋃

t2,...,tk

T (t1, t2, . . . , tk)

)

≤ P















k
⋂

j=1

⋃

n/2≤ti+1−ti≤2n;

i=2,...,k

T−tjA















(7)

≤ P(A)eψ(A)k−1eψ(A)e−(t−(3k+1)n)P(A).

Suppose now that T is such that C(T ) = i. Assume also that the most left occurrence of the i clusters
of T occurs at t(1), . . . , t(i), with 1 ≤ t(1) < . . . < t(i) ≤ t fixed. By the same argument used above,
we have the inequalities

P





⋃

{t1,...,tk}\{t(1),...,t(i)}

T (t1, . . . , tk)



 ≤ (P(A)(1 + ψ(n)))
i−1

eψ(A)k−ie−(t−(3k+1)n)P(A)

To obtain an upper bound for P (Bk) we must sum the above bound over all T such that C(T ) = i
with i that runs from 1 to k − 1. Fixed C(T ) = i, the locations of the most left occurrences of A of
each one of the i clusters can be chosen at most in

(

t
i

)

many ways. The cardinality of each one of the

i clusters can be arranged in
(

k−1
i−1

)

many ways. (This corresponds to break the interval (1/2, k+ 1/2)
in i intervals at points chosen from {1 + 1/2, . . . , k − 1/2}.) Collecting these informations, we have
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that P (Bk) is bounded by

k−1
∑

i=1

CitC
i−1
k−1(P(A)(1 + ψ(n)))

i
eψ(A)k−ie−(t−(3k+1)n)P(A)

≤ e−(t−(3k+1)n)P(A)eψ(A)k max
1≤i≤k−1

(λ/eψ(A))
i

i!

k−1
∑

i=1

Ci−1
k−1

≤ e−(t−(3k+1)n)P(A)eψ(A)























(2λ)k−1

(k − 1)!
k < λ

eψ(A)

(2λ)
k−1

(

λ
eψ(A)

)

!
(

λ
eψ(A)

)k−1− λ
eψ(A)

k ≥ λ
eψ(A)

.

This ends the proof of the bound for P (Bk).

We compute P(Bk) ≤
k−1
∑

i=1

CitC
i−1
k−1(P(A)(1 + ψ(n)))ieψ(A)k−ie−(t−(3k+1)n)P(A).

We will prove an upper bound for the second quantity

∣

∣

∣

∣

∣

P(Gk) −
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

. It is

bounded by four terms by the triangular inequality

∑

T∈Gk

∣

∣

∣

∣

∣

∣

P





k
⋂

j=1

(

τ
(j)
A = tj

)

; τ
(k+1)
A > t



− P(A)
k
k+1
∏

j=1

Pj

∣

∣

∣

∣

∣

∣

(8)

+
∑

T∈Gk

P(A)
k

∣

∣

∣

∣

∣

∣

k+1
∏

j=1

Pj −
k+1
∏

j=1

e−(∆j−2n)P(A)

∣

∣

∣

∣

∣

∣

(9)

+
∑

T∈Gk

P(A)
k
∣

∣

∣e−(t−2(k+1)n)P(A) − e−tP(A)
∣

∣

∣ (10)

+

∣

∣

∣

∣

∣

#Gk k!

tk
e−tP(A)(tP(A))

k

k!
−
e−tP(A)(tP(A))

k

k!

∣

∣

∣

∣

∣

. (11)

We will bound these terms to obtain Theorem 1.
First, we bound the cardinal of Gk

#Gk ≤ Ckt ≤
tk

k!
.

Term (8) is bounded with Proposition 4

(8) ≤ C1
tk

(k − 1)!
(P(A)(1 + ψ(n))keψ(A)e−(t−(3k+1)n)P(A).

Term (9) is bounded with Proposition 3

(9) ≤
tk

k!
P(A)k

k+1
∑

j=1

j−1
∏

i=1

Pi

∣

∣

∣Pj − e−(∆j−2n)P(A)
∣

∣

∣

k+1
∏

i=j+1

e−(∆i−2n)P(A)

≤
tk

k!
P(A)

k
(k + 1)Cpeψ(A)e−(ζA−11e∗(A))tP(A)

≤ 2Cp
(tP(A))

k

(k − 1)!
eψ(A)e−(ζA−11e∗(A))tP(A)
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where Cp is defined in Proposition 3.
We compute

(9) ≤
(tP(A))

k

(k − 1)!

k + 1

k
[(8 + CatP(A) + Ca + 2Cb)ε(A) + 11tP(A)e∗(A)] e−(ζA−11e∗(A))tP(A).

Term (10) is bounded by

(10) ≤
tk

k!
P(A)

k
(k + 1)2nP(A)e−tP(A)e2(k+1)nP(A).

To bound term (11), we bound the following difference

∣

∣

∣

∣

#Gk k!

tk
− 1

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(t− k − 4n)
k

tk
− 1

∣

∣

∣

∣

∣

≤ k (k + 4n) /t.

Then, we have

(11) ≤
k (k + 4n)

t

e−tP(A)(tP(A))k

k!
.

Now, we just have to add the five bounds to obtain the theorems with the constante Cψ = 1 +
C1 + 2Cp + 8 + 8. Proposition 4 shows that C1 = 5 and Theorem 2 that Cp = 116 . Then, we obtain
Cψ = 254. ✷

6 Biological applications

With the explicit value of the constant Cψ of Theorem 1, and more particulary thanks to all the
intermediary bounds given in the proof of this theorem, we can develop the program to apply this
formula to the study of rare words in biological sequences. In order to compare different methods, we
also compute the bound for a φ-mixing, for which a proof of Poisson approximation is given in Abadi
and Vergne [4]. Let us recall the definition of such a mixing.

Definition 4 Let φ = (φ(ℓ))ℓ≥0 be a sequence decreasing to zero. We say that (Xm)m∈Z
is a φ-mixing

process if for all integers ℓ ≥ 0, the following holds

sup
n∈N,B∈F{0,.,n},C∈F{n≥0}

|P(B ∩ T−(n+ℓ+1)C) − P(B)P(C)|

P(B)
= φ(ℓ),

where the supremum is taken over the sets B and C, such that P(B) > 0.

Note that obviously, ψ-mixing implies φ-mixing. Then, we obtain two new methods for the detection
of over or underrepresented words in biological sequences and we compare them to the Chen-Stein
metod.

In order to apply our formulas, we note that DNA sequences are very often modelled by Markov
chains (Almagor [6], Blaisdell [10]), particulary for the identification of over or underrepresented words
(Phillips et al. [23], Nuel [22], Régnier [24], Reinert et al. [26], Reinert and Schbath [25], Schbath et al.
[30]). Many other models, based or not on Markov chains, are used to find rare words (Karlin et al.
[18], Stückle et al. [34], Bodman and Ward [12], Roth et al. [29]).

We recall that Markov models are ψ-mixing processes and then also φ-mixing processes. Then, we
first need to know the functions ψ and φ for a Markov model. For a Markov model, it turns out that
we can use

ψ(ℓ) = φ(ℓ) = Kνℓ with K > 0 and 0 < ν < 1.
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where K and ν have to be estimated. There are several estimations of K and ν. We choose ν equal
to the second eigenvalue of the transition matrix of the model and K = 1

inf
j∈{1,...,|A|k}

µj
where |A| is

the alphabet size, k the order of the Markov model and µ the stationary distribution of the Markov
Model.

We recall that we aim to guess an relevant biological role of a word in a sequence using its number
of occurrences. Thus we compare the number of occurrences expected in the Markov chain that
models the sequence and the observed number of occurrences. It is recommended to choose a degree
of significance s to quantify this relevance. We fix arbitrarily a degree of significance and we have to
calculate the smallest number of occurrences u necessary to P(N > u) < s, where N is the number of
occurrences of the word to study. If the number of occurrences counted in the sequence is larger than
this u, we can consider the word to be relevant with a degree of significance s. We have

P(N > u) ≤
+∞
∑

k=u

(PP(N = k) + Error(k))

where PP(N = k) is the probability under the Poisson model that N is equal to k and Error(k) is
the error between the exact law and its Poisson approximation, bounded using Theorem 1. Then, we
search the smallest u such that

+∞
∑

k=u

(PP(N = k) + Error(k)) < s.

Then, we have P(N > u) < s and we consider the word relevant with a degree of significance s if it
appears more than u times in the sequence.

6.1 Software availability

We developed PANOW, dedicated to the determination of u for given words. This software is written
in ANSI C++ and developed on x86 GNU/Linux systems with GCC 3.4, and successfully tested with
GCC latest versions on Sun and Apple Mac OSX systems. It relies on seq++ library (Miele et al. [19]).

Compilation and installation are compliant with the GNU standard procedure. It is available
at http://stat.genopole.cnrs.fr/software/panowdir/. On-line documentation is also available.
PANOW is licensed under the GNU General Public License
(http://www.gnu.org/licenses/licenses.html).

6.2 Comparaisons between the three different methods

6.2.1 Theorical tests

We can compare the mixing methods and the Chen-Stein method through the values of u obtained
with PANOW using Abadi and Vergne [5] in the first case and Reinert and Schbath [25] in the second
one. In order to study the different possiblities of results of all the methods, Table 1 offers a good
outline of the possibilities and limits of each method to us. It displays some results on different words
randomly selected (no biological sense for any of these words). Table 1 has been obtained with an
order one Markov model with a random transition matrix (once again, there is no biological sense with
this model. It does not model a real biological sequence) and for a degree of significance of 0.1 and
0.01. IMP means that the method can not return a result. There are several reasons for that and we
explain them in the following paragraph. Analysing many results, we notice some differences between
the methods.

Firstly, none of the methods give us a result in all the cases. For the Chen-Stein method, the
bound we obtain can be higher than the significance degree we fix and so we can not find u. Therefore
there are many examples that we can not study with this method. Moreover, it is interesting to have
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Table 1: Table of the u obtained by the three methods (sequence length equal to 106). For each one

of the three methods and for each word, we compute the limit number of occurrences so that we can consider

the word as a rare word. IMP means that the method can not return a result.
t = 106

Words s = 0.1 s = 0.01
CS φ ψ CS φ ψ

cccg IMP IMP IMP IMP IMP IMP
aagcgc IMP 1301 378 IMP 1304 392

cgagcttc 18 38 18 IMP 40 22
ttgggctg 14 27 14 18 29 17
gtgcggag 16 32 16 22 34 20
agcaaata 19 39 19 IMP 41 23

a small s and because of this restriction of the Chen-Stein method, we can not have it. For example,
this problem appears for the words aagcgc and cgagcttc in Table 1. For this second word, we notice
that we have a Chen-Stein bound for a s equal to 0.1, but not for a s equal to 0.01. Indeed, for this
word, the Chen-Stein bound is equal to 0.0107954. The same thing appears for the word agcaaata

(the Chen-Stein bound is equal to 0.0120193). For the φ- or ψ-mixing method, the two only difficult
cases arise for an error function (eψ in the ψ-mixing case) greater than 1 or for a “high” parameter
of the Poisson law (“high” means greater than 500). Note that the first case does not appear very
frequently (in any case in Table 1). The reason why the error function has to be greater than 1 is that
the error term has to be decreasing with the number of occurrences k and without this condition we
are not sure about this fact. The second problem is just a computational difficulty and once again it
does not appear very frequently (only for the word cccg in Table 1 for instance). We would like to
insist on the main advantage of our methods: we can fix any s and we will find a u, contrary to the
Chen-Stein method. Also, we can use our methods for any Markov chains order. Indeed, PANOW runs
fast enough contrary to the R program used to compute the Chen-Stein bound of Reinert and Schbath
[25]. Note that we compute another way to calculate the Chen-Stein bound (see Abadi [2]) and this
way gives approximately the same Chen-Stein bound.

Secondly we notice that the ψ-mixing method is always better than the φ-mixing one. Obviously,
this result was expected by the theorems because of the extra factor e−(t−(3k+1)n)P(A) (see Theorem 1),
but we were interested in the real impact of this factor on the limit number of occurrences u.

The third main observation we can make is that, when it works, the Chen-Stein method and the
ψ-mixing method gives very similar u.

6.2.2 Biological tests

Now, we present a few results obtained on real biological examples. There are many categories
of words which have relevant biological functions (promoters, terminators, repeat sequences, chi sites,
uptake sequences, bend sites, signal peptides, binding sites, restriction sites, . . . ). Some of them are
highly present in the sequence, some others are almost absent. Then, it turns out to consider the over
or the underrepresentation of words to find words biologically relevant.

In this section, we test our methods on words already known to be relevant. We focus our study to
Chi sites or uptake sequences. Chi sites of bacterias protect their genome by stopping its degradation
performed by a particular enzyme. The function of this enzyme is to cancel virus which could appear
into the bacteria. Virus do not contain Chi sites and then are exterminated. It turns out that Chi
sites are highly present in the bacterial genome. Uptake sequences are abundant sequence motifs, often
located downstream of ORFs, that are used to facilitate the within-species horizontal transfer of DNA.

Exemple 1
Firstly, we consider the Chi of Escherichia coli (see Table 2), for different degrees of significance.
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We use complete sequence of Escherichia coli K12 (Blattner et al. [11]). We can conclude that the

Table 2: Chi of Escherichia coli : gctggtgg

s Chen-Stein φ-mixing ψ-mixing counts

0.1 88 194 83 499
0.01 IMP 196 92 499

0.0001 IMP 198 99 499

ψ-mixing method gives the most interesting results. The word could be considered as a rare word from
99 occurrences for a s of 0.0001. The Chi of E. coli is biologically very relevant and that explains
the significance of the results. In another way, we note that u increases slowly while s decreases. It
could be surprising but it is due to the error term which decreases very fast from a certain number of
occurrences.

Exemple 2
Secondly, we consider the Chi of Haemophilus influenzae and its uptake sequence (see Table 3), for a
s of 0.01. We use complete sequence of Haemophilus influenzae (Fleischmann et al. [15]). We observe

Table 3: The Chi and the uptake sequence of Haemophilus influenzae
Words Chen-Stein φ-mixing ψ-mixing counts

gatggtgg (chi) 23 39 22 20
gctggtgg (chi) 21 34 20 44
ggtggtgg (chi) 16 IMP IMP 57
gttggtgg (chi) 30 48 27 37

aagtgcggt (uptake) 13 19 13 737

that in all the cases the ψ-mixing method is the best one because it gives the smallest u, except for the
word ggtggtgg which has a periodicity less than

[

n
2

]

(and then we can not study it: see assumptions
on Theorem 1). We can not assume the good significance of the first Chi (gatggtgg) because we
count only 20 occurrences in the sequence, whereas 23 occurrences are necessary to consider this word
as exceptional. On the other hand, the uptake sequence is very significant (and then very relevant)
because it is counted 737 times in the sequence. We could give a very small degree of significance s.

7 Conclusions and perspectives

To conclude this paper, we recall the advantages of our new methods. Thanks to an error holding
for all the values of k, contrary to the Chen-Stein error which is based on the total variation distance,
we can find a number of occurencies minimal to consider a word as biologically relevant for almost all
words and for all degrees of significance. Results of our method and the Chen-Stein method remain
similar but our method has less limitations. Note that our method provides performing results for
general modelling processes such as Markov chains as well as every φ and ψ mixing.

In term of perspectives, we plan to adapt PANOW to the study of words which are underrepresented
(there are in the sequence significantly fewer of these words than expected by the model). Secondly,
as we expected more significant results, we hope to improve these methods adapting them directly
to Markov chains instead of ψ or φ-mixing. Moreover, it is well-known that a compound Poisson
approximation is better for self-overlapping words (see Reinert et al. [26] and Reinert and Schbath
[25]). An error term for the compound Poisson approximation for self-overlapping words can be easily
derived from our results.
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