
THE STRUCTURE OF ALGEBRAS ADMITTING
WELL AGREEING NEAR WEIGHTS

CARLOS MUNUERA AND FERNANDO TORRES

Abstract. We characterize algebras admitting two well agreeing near weights ρ and
σ. We show that such an algebra R is an integral domain whose quotient field K is
an algebraic function field of one variable. It contains two places P,Q ∈ P(K) such
that ρ and σ are derived from the valuations associated to P and Q. Furthermore
R̄ = ∩S∈P(K)\{P,Q}OS .

1. Introduction

Algebraic Geometric codes (or AG codes, for short) were constructed by Goppa [6], [7],

based on a curve X over a finite field F and two rational divisors D and G on X , where

D is a sum of pairwise distinct points and G = α1P1 + · · · + αmPm, with Pi 6∈ SuppD.

Soon after its introduction, AG codes became a very important tool in Coding Theory;

for example, Tsfasman, Vladut and Zink [18] showed that the Varshamov-Gilbert bound

can be attained by using these codes. However, the study of AG codes relies on the use

of algebraic geometric tools, which is difficult for non specialists in Algebraic Geometry.

In 1998, Høholdt, Pellikaan and van Lint presented a construction of AG codes ‘without

Algebraic Geometry’; that is, by using elementary methods only [8] (see also [4]). These

methods include order and weight functions over an F-algebra and Semigroup Theory

mainly. From that paper, order domains and order functions and the corresponding

obtained codes have been studied by many authors; to mention a few of them: Pellikaan

[15], Geil and Pellikaan [5] and Matsumoto [11].

The approach given by Høholdt, Pellikaan and van Lint allows us to do with the so called

‘one point’ AG codes; that is, when the divisor G is a multiple of a single point, G = αP .

A generalization of the same idea to arbitrary AG codes (m ≥ 1) was given in [1]. To

that end, variations of order and weight functions over an F-algebra R –the so called near

order and near weight functions– are introduced.

In the present paper, we characterize algebras R admitting two well agreeing near weights

(see Section 2 for explanation of this concept), ρ and σ, as being certain subalgebras of
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the regular function ring of an affine variety of type X \ {P, Q}, where X is a projective,

geometrically irreducible, non-singular algebraic curve and P and Q are two different

points of X . We will also show that ρ and σ are defined by the valuations at P and Q

respectively (see Theorem 5.5 in Section 5). This result is essentially analogous to the

characterization of algebras admitting a weight function given by Matsumoto [11].

For simplicity, throughout this paper we shall use the language in terms of algebraic

function fields instead of algebraic curves.

2. Near weights

In this section we recall the concept of near weight and discuss some of its properties.

Throughout, let R be an algebra over a field F. We always assume that R is commutative

and F ( R. For a function ρ : R → N0 ∪ {−∞}, let us consider the sets

U∗ = U∗
ρ := {r ∈ R \ {0} : ρ(r) ≤ ρ(1)};

M = Mρ := {r ∈ R : ρ(r) > ρ(1)}

and U = Uρ := U∗ ∪ {0}. The function ρ is called a near weight (or a n-weight, for short)

if the following conditions are satisfied. Let f, g, h ∈ R;

(N0) ρ(f) = −∞ if and only if f = 0;

(N1) ρ(λf) = ρ(f) for λ ∈ F∗ := F \ {0};
(N2) ρ(f + g) ≤ ρ(f) + ρ(g);

(N3) If ρ(f) < ρ(g), then ρ(fh) ≤ ρ(gh). Furthermore, if h ∈M then ρ(fh) < ρ(gh);

(N4) If ρ(f) = ρ(g) with f, g ∈M, then there exists λ ∈ F∗ such that ρ(f−λg) < ρ(f);

(N5) ρ(fg) ≤ ρ(f) + ρ(g) and equality holds if f, g ∈M.

Near weights were introduced in [1] in connection with an elementary construction of

algebraic geometric codes. After a normalization, we can assume ρ(f) = 0 for f ∈ U∗

and gcd{ρ(f) : f ∈M} = 1; see [1, Sect. 3.2]. A n-weight becomes a weight function, as

defined in Høholdt, van Lint and Pellikaan if and only if U = F [1, Lemma 3.3].

For given two n-weights ρ and σ over the F-algebra R, set

H = H(R) := {(ρ(f), σ(f) : f ∈ R∗} ,

where R∗ = R\{0}. We say that ρ and σ agree well if #(N2 \H) is finite and Uρ∩Uσ = F.

In the next section we will prove that H is a semigroup so that this definition will in fact

be compatible with the one given in [1]. As said before, our purpose in this paper is to

characterize the algebras R admitting well agreeing n-weights. These algebras exist, as

the next example shows.

Example 2.1. Let K be an algebraic function field of one variable over F, such that F is

the full constant field of K. For a place S of K, let OS be the local ring at S and vS its
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corresponding valuation. Let P, Q be two different places of K. Consider an F-algebra

R ⊆ K and define

%(f) :=


−∞ if f = 0,

0 if vP (f) ≥ 0,

−vP (f) if vP (f) < 0,

and ς(f) :=


−∞ if f = 0,

0 if vQ(f) ≥ 0,

−vQ(f) if vQ(f) < 0 .

If R = R(P, Q) :=
⋂

S 6=P,QOS, then % and ς are well agreeing n-weights over R.

To end this section, we state a property of n-weights that we shall need later.

Lemma 2.2. Let f, g ∈ R∗ such that ρ(f) > 0 and ρ(g) = 0. Then there exists λ ∈ F
such that ρ(f(g − λ)) < ρ(f).

Proof. According to (N5), ρ(fg) ≤ ρ(f). If ρ(fg) = ρ(f), by (N4) there exists λ ∈ F such

that ρ(f(g − λ)) = ρ(fg − λf) < ρ(f). �

3. The semigroup structure

Let ρ and σ be two well agreeing n-weights defined on an F-algebra R. We generalize the

definition of the set H = H(R) stated in Section 2 to any S ⊆ R by setting

H(S) := {(ρ(f), σ(f)) : f ∈ S∗} ⊆ N2
0 ,

where S∗ := S \ {0}. We shall see that H is a semigroup. To that end, we need some

preliminary results. For given a = (a1, a2) and b = (b1, b2) elements of N2
0, the least upper

bound of a and b is defined as (cf. [13], [14])

lub(a,b) := (max{a1, b1}, max{a2, b2}) .

Lemma 3.1. Let f, g ∈ R∗. Set a := (ρ(f), σ(f)) and b := (ρ(g), σ(g)). Then there exist

λ, µ ∈ {0, 1} such that

lub(a,b) = (ρ(λf + µg), σ(λf + µg)) .

In particular, if f, g ∈ S ⊆ R and S is closed under sum, then lub(a,b) ∈ H(S).

Proof. If a = b the result is obvious. Otherwise, we can assume ρ(f) < ρ(g). If σ(f) ≤
σ(g), then lub(a,b) = b. On the contrary, if σ(f) > σ(g) then

max{ρ(f), ρ(g)} = ρ(f + g) and max{σ(f), σ(g)} = σ(f + g)

and hence lub(a,b) = (ρ(f + g), σ(f + g)). The second part of the lemma is clear. �

Proposition 3.2. Let S ⊆ R be a closed subset under sum and product. Then H(S) is

closed for the sum; that is, if a,b ∈ H(S), then a + b ∈ H(S).



4 C. MUNUERA AND F. TORRES

Proof. Let a = (ρ(f), σ(f)) and b = (ρ(g), σ(g)) with f, g ∈ S∗. If a = 0, the result is

clear. If the integers ρ(f), σ(f), ρ(g), σ(g) are all positive; that is, f, g ∈ Mρ ∩Mσ, the

result follows from property (N5) of n-weights. Then assume ρ(f) > 0 and σ(f) = 0.

There are three possibilities:

• If ρ(g) = 0 and σ(g) > 0, then a+b = lub(a,b) ∈ H(S) according to Lemma 3.1;

• If ρ(g) > 0 and σ(g) = 0, then a + b = (ρ(fg), σ(fg)) ∈ H(S) by (N5);

• If ρ(g) > 0 and σ(g) > 0, then ρ(fg) = ρ(f) + ρ(g) and σ(fg) ≤ σ(g) and hence

a + b = lub(a, c) ∈ H(S), where c = (ρ(fg), σ(fg)).

�

Corollary 3.3. Let R′ be a F-subalgebra of R. Then H(R′) is a semigroup.

Next we consider the following sets associated to the semigroup H = H(R):

Hx := {(m, 0) ∈ H} , Hy := {(0, n) ∈ H} ,

and their projections

H̄x := {m : (m, 0) ∈ H} , H̄y := {n : (0, n) ∈ H} .

Clearly H̄x and H̄y are numerical semigroups of finite genus. For n ∈ N0, set

xH(n) := min{m ∈ N0 : (m,n) ∈ H} and yH(n) := min{m ∈ N0 : (n, m) ∈ H} .

Lemma 3.4. If yH(n) > 0, then xH(yH(n)) = n > 0.

Proof. Let f ∈ R∗ such that ρ(f) = n and σ(f) = yH(n). By definition, xH(yH(n)) ≤ n.

If ρ(g) < n and σ(g) = yH(n) for some g ∈ R, then there exists λ ∈ F such that

σ(f − λg) < yH(n). Since ρ(f − λg) = ρ(f), this is a contradiction. �

Corollary 3.5. (cf. [10], [1, Cor. 4.8]) It holds that n ∈ Gaps(H̄x) if and only if yH(n) ∈
Gaps(H̄y). In particular, the semigroups H̄x and H̄y have equal genus.

We consider now the following subsets of H:

Γ̃ = Γ̃(H) := {(m, yH(m)) : m ∈ Gaps(H̄x)} = {(xH(n), n) : n ∈ Gaps(H̄y)},

Γ = Γ(H) := {(m, yH(m)), (xH(m), m) : m ∈ N0} = Γ̃ ∪Hx ∪Hy.

Note that Γ̃ is well defined according to Lemma 3.4. The result below allows a nice

description of the semigroup H.

Proposition 3.6. (cf. [10], [13])

H = {lub(a,b) : a,b ∈ Γ} .

Proof. According to Lemma 3.1, lub(a,b) ∈ H for all a,b ∈ H. Conversely, each a =

(a1, a2) can be written as a = lub((a1, yH(a1)), (xH(a2), a2)). �



ALGEBRAS ADMITTING WELL AGREEING N-WEIGHTS 5

For every a ∈ H take an element φa ∈ R∗ such that (ρ(φa), σ(φa)) = a, and set

B := {φa : a ∈ Γ} .

Proposition 3.7. The set B is a basis of R as a F-vector space.

Proof. Since every two points a 6= b ∈ Γ lie in different row and column, the set B is

linearly independent, according to property (N2) of n-weights. To see that B generate R

take an element f ∈ R∗. Let us assume first that σ(f) = 0 and use induction on ρ(f). If

ρ(f) = 0 the result follows from the fact that Uρ ∩ Uσ = F. If ρ(f) = k > 0, take φa ∈ Γ

with a = (k, 0). There exists λ ∈ F such that either λφa = f or ρ(f − λφa) < k and

σ(f − λφa) = 0. By induction hypothesis, all elements g with σ(g) = 0 and ρ(g) < k are

generated by B and hence f is generated by B. According to Lemma 3.1 and Proposition

3.6, the general case σ(f) > 0 follows now by induction on σ(f). �

For (m, n) ∈ N2
0 write

∆(m, n) := {(m, `) : ` < n} ∪ {(`, n) : ` < m} .

Let Gaps(H) denotes the set of gaps of H.

Corollary 3.8. (cf. [2]) We have

Gaps(H) =
⋃
a∈Γ̃

∆(a) .

Proof. If (m, n) ∈ ∆(a) for some a ∈ Γ̃, then m < xH(n) = a1 or n < yH(m) = a2; hence

(m, n) 6∈ H. If (m, n) 6∈ ∆(a) for every a ∈ Γ̃, then n ≥ yH(m) and m ≥ xH(n) and hence

(m, n) = lub((m, yH(m)), (xH(n), n)) ∈ H. �

Remark 3.9. In the case of Example 2.1, H is the Weierstrass semigroup at P and Q.

A point (m, n) ∈ N2
0, is a gap of H if and only if `(mP + nQ) = `((m − 1)P + nQ) or

`(mP +nQ) = `(mP +(n− 1)Q). Homma and Kim [9] noticed that AG codes associated

to gaps (m, n) where both equalities above hold true, have quite good parameters; such

gaps are called pure. Let Gaps0(H) denotes the set of pure gaps of H. Then

Gaps0(H) =
⋃

a 6=b∈Γ̃

(∆(a) ∩∆(b)) .

Remark 3.10. For m,n ∈ N0, we can consider the subset of R

R(m, n) := {f ∈ R : ρ(f) ≤ m and σ(f) ≤ n} .

In [1], subsets of this form were used to construct codes. Clearly H(R(m,n)) = H(m,n) =

{a = (a1, a2) ∈ H : a1 ≤ m and a2 ≤ n}. Again in the case of Example 2.1, if R =

R(P, Q), then H(m, n) = L(mP + nQ). As a consequence of the Proposition 3.7, the set

{φa : a ∈ Γ ∩H(m,n)} is a basis of H(m, n).
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4. The structure of the algebra R

By keeping the notation of the previous sections, let R be an F-algebra and ρ and σ two

well agreeing n-weights on R. The semigroups H̄x and H̄y are finitely generated since

they have finite genus. Write

H̄x = 〈m1, . . . ,mr〉 , and H̄y = 〈n1, . . . , ns〉

and define

Γ+ = Γ+(H) := Γ̃ ∪ {(m1, 0), . . . , (mr, 0), (0, n1), . . . , (0, ns)} ⊆ H .

Lemma 4.1. Let R′ = F[{φa : a ∈ Γ+}] ⊆ R. Then H(R′) = H(R).

Proof. Clearly H(R′) ⊆ H(R). To see the equality, according to Proposition 3.6 and

Lemma 3.1, it suffices to show that Γ ⊆ H(R′). Let (m, 0) ∈ Hx. There exist α1, . . . , αr ∈
N0 such that α =

∑
αimi. Thus the element

φ =
∏

φαi

(mi,0)

belongs to R′ and verifies

ρ(φ) =
∑

αiρ(φ(mi,0)) =
∑

αimi = m and σ(φ) ≤ max{σ(φ(mi,0))} = 0

(because mi > 0 and hence φ(mi,0) ∈ Mρ). Then (m, 0) ∈ H(R′). Analogously Hy ⊆
H(R′). �

Lemma 4.2. Let R′ be a F-subalgebra of R. If H(R′) = H(R), then R′ = R.

Proof. Take f ∈ R and let us see that f ∈ R′. We first consider the case σ(f) = 0. Let

us write H̄x = {`0 = 0 < `1 < `2 < . . . } and proceed by induction on ρ(f). If ρ(f) = 0

then f ∈ Uρ ∩ Uσ = F and hence f ∈ F ⊆ R′. By induction hypothesis assume that

f ∈ R′ whenever ρ(f) < `k+1, k > 0. If ρ(f) = `k, take f ′ ∈ R′ such that ρ(f ′) = `k and

σ(f ′) = 0. Thus, there exists λ ∈ F such that ρ(f − λf ′) < `k. Since σ(f − λf ′) = 0, we

get f − λf ′ ∈ R′ and thus f ∈ R′.

Let us prove now the general case by induction on σ(f). Assume the result true when

σ(f) < k + 1. If σ(f) = k take f ′′ ∈ R′ such that σ(f ′′) = k. Again there exists λ ∈ F
such that σ(f−λf ′′) < k; hence, by induction hypothesis, f−λf ′′ ∈ R′ and so f ∈ R′. �

Theorem 4.3. The F-algebra R is finitely generated over F, namely

R = F[{φa : a ∈ Γ+}] .

Proof. It is a direct consequence of Lemmas 4.1 and 4.2. �

Proposition 4.4. The F-algebra R is an integral domain.

Proof. By [1, Lemma 3.4] the set of zero divisors of R is contained in Uρ ∩ Uσ = F; the

proof now follows as ρ and σ are well agreeing by hypothesis. �
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In particular, R is isomorphic to an affine F-algebra,

R ∼= F[X1, . . . , Xn]/q ,

where q is a prime ideal. As an integral domain, R admits a field of quotients which we

denote by K.

Theorem 4.5. The transcendence degree of K over F is one.

In order to prove this theorem, we need some auxiliary results.

Lemma 4.6. Let f ∈ R∗ and I = (f) be the ideal generated by f. The sets Hx∩(N2
0\H(I))

and Hy ∩ (N2
0 \H(I)) are both finite.

Proof. If f ∈ F there is nothing to prove. In other case, by applying iteratively Lemma

2.2, there exists g ∈ R∗ such that ρ(fg) = 0 and hence σ(fg) > 0. Let `σ be the largest

gap of H̄y. Then, for all m > σ(fg) + `σ it holds that a = (0, m) ∈ H(I). Indeed,

let a φ ∈ R be a function such that (ρ(φ), σ(φ)) = (0, m − σ(fg)); then fgφ ∈ I and

(ρ(fgφ), σ(fgφ)) = a. The proof for Hx is analogous. �

Proposition 4.7. Let I ⊆ R be a proper ideal of R. Then, as a vector space over F,

dimF(R/I) ≤ #{a ∈ Γ : a /∈ H(I)}. In particular, this dimension is finite.

Proof. Let f ∈ I, f 6= 0, and let J = (f). For every a ∈ Γ take an element φa ∈ B; that

is, (ρ(φa), σ(φa)) = a. If a ∈ H(J) (resp. a ∈ H(I)) take φa ∈ J (resp. φa ∈ I). As we

have seen in Proposition 3.7, the set B is a basis of R; hence the set of residual classes

{φa + I : a ∈ Γ} form a generator system of R/I. Now, according to Lemma 4.6 only

finitely many of these classes are not in J ⊆ I. �

Proof of Theorem 4.5. According to Theorem 4.3, the F-algebra R is finitely generated

over F. Thus the transcendence degree of K over F is equal to the Krull dimension of R;

see Eisenbud [3, Thm. A p.221] or Matsumura [12, Ch. 5, Sect. 14]. Take f ∈ R∗ such

that f is not invertible. Such an f exists: it is enough to take f ∈ R \ F. Let p be a

minimal prime ideal containing f . Then height(p) = 1 by Krull’s Hauptidealsatz; see [3,

Thm. 10.2]. Since (see e.g. [3, Cor. 13.4] or [12, Thm. 14.H]),

height(p) + dim(R/p) = dim(R) ,

where ‘dim’ means Krull dimension, and dim(R/p) = 0 according to Proposition 4.7, we

get dim(R) = 1.

Remark 4.8. Let f ∈ R∗ and I = (f) be the ideal generated by f . Let a and b be two

different points in Γ and φa, φb ∈ B. Note that φa − φb ∈ I implies lub(a,b) ∈ H(I) (as

the points a,b lie in different row and column). On the other hand, as we have seen in

Proposition 3.6, H = {lub(a,b) : a,b ∈ Γ}. Since we can take φa ∈ I except for finitely

many a ∈ Γ, we deduce that almost all elements in H belong to H(I). Thus H(I) ∪ {0}
is also a semigroup of finite genus.
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5. The Main result

Let R be an F-algebra equipped with two well agreeing n-weights ρ and σ.

Lemma 5.1. Let f ∈ R∗. There exists g ∈Mρ such that fg ∈Mρ.

Proof. If ρ(fg) = 0 for all g ∈ Mρ then, by property (N3), the same happens for all

g ∈ R∗. Thus I ⊆ Uρ, where I = (f) is the ideal generated by f . This contradicts the

fact that H(I) ∪ {0} is a semigroup of finite genus. �

Define the map ρ̃ : R → Z ∪ {−∞} as follows: ρ̃(0) := −∞ and for f 6= 0,

ρ̃(f) := min{ρ(fg)− ρ(g) : g ∈Mρ} .

The following Lemma subsume some relevant properties of ρ̃.

Lemma 5.2. (1) ρ̃(f) = ρ(fg)− ρ(g) for all g ∈Mρ such that fg ∈Mρ;

(2) If f ∈Mρ, then ρ̃(f) = ρ(f) > 0; if f ∈ Uρ, then ρ̃(f) ≤ 0;

(3) ρ̃(f) = 0 for all f ∈ F∗;

(4) ρ̃(fg) = ρ̃(f) + ρ̃(g);

(5) ρ̃(f + g) ≤ max{ρ̃(f), ρ̃(g)}.

Proof. (1) Let g1, g2 ∈ Mρ such that fg1 ∈ Mρ. Then ρ(fg1) + ρ(g2) = ρ(fg1g2) ≤
ρ(fg2) + ρ(g1), and the right hand inequality is an equality when fg2 ∈Mρ. (2) and (3)

are immediate. (4) By Lemma 5.1, there exists h ∈ Mρ such that fgh, gh ∈ Mρ. Then

ρ̃(fg) = (ρ(fgh) − ρ(gh)) + (ρ(gh) − ρ(h)) = ρ̃(f) + ρ̃(g). (5) Let h ∈ Mρ such that

fh, gh ∈Mρ. Then ρ̃(f + g) ≤ ρ((f + g)h)− ρ(h) ≤ max{ρ̃(f), ρ̃(g)}. �

The additive inverse of ρ̃ can be extended to the whole field K in the usual way, so that

we obtain a function vρ:

vρ(f/g) :=

{
∞ if f = 0,

ρ̃(g)− ρ̃(f) if f 6= 0.

Properties in Lemma 5.2 implies the following.

Proposition 5.3. The map vρ is well defined and gives a discrete valuation of K over F.

Analogously we can define the valuation vσ associated to the n-weight σ. Denote by P(K)

the set of places of K over F. For a place S ∈ P(K), let vS and OS be the corresponding

valuation and valuation ring in K. Set

S(R) := {S ∈ P(K) : R ⊆ OS} .

Proposition 5.4. (cf. [11, p.2009]) Let P and Q be the places of K corresponding to vρ

and vσ (see Proposition 5.3). Then

S(R) = P(K) \ {P, Q} .
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Proof. If R ⊆ OP then Uρ = R hence Mρ = ∅ and the semigroup H(R) cannot have a

finite genus. Thus P, Q 6∈ S(R). Conversely, if S(R) ∪ {P, Q} 6= P(K), we can apply

to S(R) ∪ {P, Q} the Strong Approximation Theorem (see e.g. Stichtenoth [17, I.6.4])

to conclude that there exists a infinite sequence (h1, h2, . . .) of functions in K such that

vρ(hi) = vσ(hi) = i and vS(hi) ≥ 0 for each S ∈ S(R). In particular, hi ∈ ∩S∈S(R)OS

and this ring is precisely R̄, the integral closure of R in K (see e.g. [17, III.2.6]). The

sequence (h1, h2, . . .) is F-linearly independent and contained in the F-vector space

W := {x ∈ R̄ : vρ(x) > 0 and vσ(x) > 0} .

As the n-orders ρ and σ are well agreeing, we have W ∪ R ⊆ Uρ ∩ Uσ = F, and thus

W ∪ R = {0}. Then dimF(W ) ≤ dimF(W + R)/R) ≤ dimF(R̄/R). But, according to the

Finiteness of Integral Closure Theorem (see e.g. [3, Cor. 13.13] or Zariski-Samuel [16,

Ch. V, Thm. 9]), this last dimension is finite and we get a contradiction. �

Thus, we have proved the following.

Theorem 5.5. Let R be an F-algebra admitting two well agreeing n-weights ρ and σ.

Then

(1) R is an integral domain and its quotient field K is an algebraic function field of

one variable over F;

(2) There exist two places P, Q ∈ P(K) such that ρ and σ are derived from the valua-

tions associated to P and Q by the procedure stated in Example 2.1; and

(3) R̄ = ∩S∈P(K)\{P,Q}OS.

Remark 5.6. Let R be an integral domain F-algebra having Krull dimension 1, and let K

be its field of quotients. Let P, Q ∈ P(K). By using the procedure of Example 2.1, the

valuations at P and Q define two n-weights, ρ and σ, over R.

Let us note that condition (3) in Theorem 5.5 can be stated also as S(R) = P(K)\{P, Q}.
In this case Uρ ∩ Uσ = F. In fact, if f ∈ R is such that vP (f) ≥ 0 and vQ(f) ≥ 0, then

f ∈ ∩S∈P(K)OS = F by [17, III.2.6]. Thus ρ and σ agree well iff #(N2 \ H(R)) is finite.

This observation leads to the following

Question. Does condition (3) imply #(N2 \H(R)) < ∞?

So far we do not have an answer to this question.
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