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Abstract. In this article we present an explicit expression to the solu-
tion of the random Riemann problem for the 1D random linear transport
equation. We show that the random solution is a similarity solution and
the statistical moments have very simple expressions. We show that the
mean, the variance, and the 3rd central moment agree quite well with
Monte Carlo simulations. We guess that our approach can be useful in
designing numerical methods for random transport equation, as in the
deterministic case.

Introduction

Conservation laws are differential equations arising from physical prin-
ciples of the conservation of mass, energy or momentum. The simplest of
these equations is the one-dimensional advective equation and its solution
plays a role in more complex problems such the numerical solution for non-
linear conservation laws. This linear initial value problem can, for instance,
model the concentration, or density, of a chemical substance transported by
a one dimensional fluid that flows with a known velocity. The deterministic
problem is to find u(x, t) such that

(1)
{

ut + a(x)ux = 0, t > 0, x ∈ R,

u(x, 0) = u0(x).

It is well known that the solution to (1) is the initial condition transported
along the characteristic curves. The characteristic system associated to (1)
is defined by the ordinary differential equations:

(2)





dx

dt
= a(x), x(0) = x0,

d[u(x(t), t)]
dt

= 0, u(x, 0) = u0(x),

where the last equation is along the characteristic curve, x(t), given by the
first equation. If a is constant, the characteristics are straight lines and the
analytic solution is u(x, t) = u0(x− at).
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The complexity of natural phenomena compel us to study partial differ-
ential equations (PDE) with random data. For example, (1) may model the
flux of a two phase equal viscosity miscible fluid in a porous media. The
total velocity is obtained from Darcy’s law and it depends on the geology of
the porous media. Thus, the external velocity is defined by a given statistic.
Also, the prediction of the initial state of the process is obtained from data
acquired with a few number of exploratory wells using geological methods.

Our aim in this paper is to study the solution to the random version of
the problem (1):

(3)
{

Ut + AUx = 0, t > 0, x ∈ R,

U(x, 0) = U0(x),

with a homogeneous random transport velocity, A, and stochastic initial
condition, U0(x).

A mathematical basis for the solution of stochastic, or random, PDE has
not been complete yet. Besides the well developed theoretical methods such
as Ito integrals, Martingales and Wiener measure [5, 6], two types of methods
are normally used in the construction of solutions for random PDE. The
first method is based on Monte Carlo simulations which in general demands
massive numerical simulations (see [4]), and the second is based on effective
equations (see [2]), deterministic differential equations whose solutions are
the statistical means of (3).

Is fact that for each realization A(ω) and U0(x, ω), of A and U0(x) re-
spectively, we have a deterministic problem that can be solved analytically
using the characteristics method. Under this point of view, if the probability
of the realizations is known by the statistics of the data, and the analyti-
cal solution of the deterministic problem can be find, we have the random
solution, U(x, t, ω), and its probability.

In a first step let us assume that we have precise information of the
velocity. In this case we may consider a mix deterministic-random version
for (2):

(4)





dx

dt
= a, x(0) = x0,

d[U(x(t), t)]
dt

= 0, U(x, 0) = U0(x).

This mix formulation gives the characteristic straight lines x(t) = x0 + at
and a random ordinary differential equation along these straight lines. The
formulation (4) is convenient to our future arguments because, for each
realization U0(x, ω) of U0(x), the random function (x, t) 7→ U(x, t, ω) =
U0(x− at, ω) solves (4). This means that, for precise values of the velocity,
the random initial conditions are “transported” along the straight lines.
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The basic idea in this paper is to use (4) to solve the random Riemann
problem to (3). The procedure and the theoretical consequences are pre-
sented in Section 1. In Section 2 we assess our results by comparing them
with Monte Carlo simulations.

1. The Riemann Problem

In this section we study the random Riemann initial value problem:

(5)





dX

dt
= A, X(0) = x0,

d[U(X, t)]
dt

= 0, U(x, 0) =
{

U+
0 , x > 0,

U−
0 , x < 0,

where A, U−
0 and U+

0 are random variables. We assume the statistical in-
dependence between A and both U−

0 , U+
0 , and that their cumulative prob-

ability functions, FA, FU− and FU+ , respectively, are known. Riemann
problems have played a role in analytical and numerical solutions of deter-
ministic nonlinear conservation laws, ut + (f(u))x = 0 (see, for example,
[3]).

In our approach, we focus partial realizations in (5), i.e., we consider only
A(ω), letting the data U−

0 and U+
0 out of the realizations. This kind of

decoupling the system (5) allow us to use the solution of (4). To simplify,
let us consider A continuously varying in some interval [am, aM ], am < aM .

We recall that for each realization A(ω) we have the random function
(x, t) 7→ U0(x−A(ω)t), the initial condition at x0 = x−A(ω)t. As illustrated
in Figure 1, for a fixed (x̄, t̄) we have x̄− aM t̄ ≤ x0 ≤ x̄− amt̄.

x − aM t = constant

x̄ − amt̄ xx̄ − aM t̄ 0

1

β
1

aM

1

am

(x̄, t̄)

x − amt = constant

Figure 1. Interval of dependence

Hence the solution at (x̄, t̄) depends upon the initial data in the interval
[ x̄− aM t̄, x̄− amt̄ ]. As shown in Figure 1, this interval is cut out by two
characteristics x − aM t = constant and x − amt = constant, both passing
through (x̄, t̄). The interval [ x̄− aM t̄, x̄− amt̄ ] will be called the inter-
val of dependence of the point (x̄, t̄), an imitation of the wave equations
denomination.
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To separate the contributions of the left state, U−
0 , and right state, U+

0 ,
to the solution at (x̄, t̄), we shall call β = x̄

t̄ and define the following disjoint
subsets of [am, aM ]:

M− = {a; xa = x̄− at̄ < 0} and M+ = {a; xa = x̄− at̄ > 0} .

Comparing the inclinations of the characteristics, we can rewrite these
sets as

M− =
{

a;
1

aM
≤ 1

a
<

1
β

}
= {a; β < a ≤ aM}

and

M+ =
{

a;
1
β

<
1
a
≤ 1

am

}
= {a; am ≤ a < β} .

Thus, we conclude that the probability of occurrence of the sets M+

and M− can be calculated using the cumulative probability function of the
velocity:

(6) P (M+) = FA(β) = θ and P (M−) = 1− FA(β) = 1− θ.

The solution to the problem (5) is given by the following:

Proposition 1. Let (x̄, t̄), t̄ > 0, be an arbitrary point and β = x̄
t̄ . The

solution to (5) at (x̄, t̄) is the random variable

(7) U(x̄, t̄) = (1−X)U−
0 + XU+

0 = U−
0 + X

(
U+

0 − U+
0

)
,

where X is the Bernoulli random variable with P (X = 0) = 1− FA(β) and
P (X = 1) = FA(β).

Proof. In our arguments we use the characteristics x−amt = 0 and x−aM t =
0 to divide the semi-plane t ≥ 0 in the three regions: R1 = {(x, t); x < amt},
R2 = {(x, t); amt ≤ x ≤ aM t}, and R3 = {(x, t); x > aM t}.
If (x̄, t̄) ∈ R2, we may divide the interval of dependence into two sub-
intervals: I− = [ x̄− aM t̄, 0 ) and I+ = [ 0, x̄− amt̄ ]. In a realization
such that x0 = x̄−A(ω)t̄ ∈ I−, only the left state will contribute to the so-
lution. On the other hand, we also conclude that x0 = x̄ − A(ω)t̄ ∈ I−
if and only if A(ω) ∈ M−, and therefore the probability of occurrence
of I− is equal to the probability of occurrence of M−. Thus, from (6)
it follows that P (I−) = P (M−) = 1 − FA(β). Otherwise, in a realiza-
tion such that x0 = x̄ − A(ω)t̄ ∈ I+, the contribution will be due only
to the right state and we use the same arguments above to conclude that
P (I+) = P (M+) = FA(β). Finally, taking in account the probability of oc-
currence of U−

0 and U+
0 , the solution is obtained “weighting” their respective

probabilities, i.e., U(x̄, t̄) = (1 − X)U−
0 + XU+

0 , where X is the Bernoulli
random variable with P (X = 1) = FA(β) and P (X = 0) = 1− FA(β).

If (x̄, t̄) ∈ R1 then x̄ − amt̄ < 0 and all the points of the interval of de-
pendence, [ x̄− aM t̄, x̄− amt̄ ], are negatives. Therefore, only the left state
contributes to the solution, i.e., U(x̄, t̄) = U−

0 with probability one. In this
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case the solution is (7) with FA(β) = 0. On the other hand, if (x̄, t̄) ∈ R3

only the right state contributes to the solution and we have U(x̄, t̄) = U+
0

with probability one, i.e., (7) with FA(β) = 1. ¤

Corollary 1. The solution of (5) is constant along the rays x
t = constant,

i.e., the random solution is a similarity solution.

Proof. This result follows directly from (7) since if x
t = constant then

FA

(
x
t

)
= constant. ¤

Proposition 2. If (x, t) is fixed and if we consider the independence between
X and both U−

0 and U+
0 , then

(8) 〈Un(x, t)〉 =
〈
(U−

0 )n
〉

+ FA

(x

t

){〈
(U+

0 )n
〉− 〈

(U−
0 )n

〉}
.

Proof. From Proposition 1,

U(x, t) = U−
0 + X

(
U+

0 − U−
0

)
= (1−X)U−

0 + XU+
0 ,

where X = X(x, t) is the Bernoulli random variable:

X =

{
1, P (X = 1) = FA

(
x
t

)
= θ

0, P (X = 0) = 1− FA

(
x
t

)
= 1− θ.

It is easy to see that
〈
Xj

〉
= FA

(
x
t

)
= θ, for all j = 1, 2, 3, ....

To prove (8) we first need the following results:

• For all n ≥ 1,

(9)
n∑

j=0

(−1)j

(
n

j

)
= 0,

where
(

n

j

)
is the binomial coefficient.

• For n ≥ 1 and 1 ≤ j ≤ n− 1,
〈
(1−X)n−j Xj

〉
=(10)

=

〈
Xj

n−j∑

m=0

(−1)m

(
n− j

m

)
Xm

〉
=

〈
n−j∑

m=0

(−1)m

(
n− j

m

)
Xm+j

〉
=

=
n−j∑

m=0

(−1)m

(
n− j

m

) 〈
Xm+j

〉
︸ ︷︷ ︸

θ

= θ

n−j∑

m=0

(−1)m

(
n− j

m

)

︸ ︷︷ ︸
zero by (9)

= 0.
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• For n ≥ 1,

〈(1−X)n〉 =

〈
n∑

j=0

(−1)j

(
n

j

)
Xj

〉
=(11)

= 1 +
n∑

j=1

(−1)j

(
n

j

)〈
Xj

〉
︸ ︷︷ ︸

θ

= 1 + θ
n∑

j=1

(−1)j

(
n

j

)

︸ ︷︷ ︸
−1 by (9)

= 1− θ.

Now, assuming the independence between X and both U−
0 and U+

0 , we have:

〈Un(x, t)〉 =
〈[

(1−X)U−
0 + XU+

0

]n〉
=

=

〈
n∑

j=0

(
n

j

)
(1−X)n−jXj

(
U−

0

)n−j (
U+

0

)j

〉
=

= 〈(1−X)n〉︸ ︷︷ ︸
1−θ by (11)

〈(
U−

0

)n〉
+ 〈Xn〉︸ ︷︷ ︸

θ

〈(
U+

0

)n〉
+

+
n−1∑

j=1

(
n

j

)〈
(1−X)n−jXj

〉
︸ ︷︷ ︸

zero by (10)

〈(
U−

0

)n−j (
U+

0

)j
〉

=

= (1− θ)
〈(

U−
0

)n〉
+ θ

〈(
U+

0

)n〉
.

¤

Corollary 2. For a fixed (x, t), θ = FA

(
x
t

)
, and considering the indepen-

dence between X and both U−
0 and U+

0 , the mean of the solution (5) is

(12) 〈U(x, t)〉 = (1− θ)〈U−
0 〉+ θ〈U+

0 〉 = 〈U−
0 〉+ θ

[〈U+
0 〉 − 〈U−

0 〉
]
,

and the variance is
(13)
V ar[U(x, t)] = V ar[U−

0 ]+θ
{
V ar[U+

0 ]− V ar[U−
0 ]

}
+θ(1−θ)

[〈U+
0 〉 − 〈U−

0 〉
]2

.
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Proof. The expression in (12) follows directly from (8) with n = 1. On the
other hand,

V ar[U(x, t)] =
〈
U2(x, t)

〉− 〈U(x, t)〉2 =

=
{〈

(U−
0 )2

〉
+ θ

[〈
(U+

0 )2
〉− 〈

(U−
0 )2

〉]}− {〈
U−

0

〉
+ θ

[〈
U+

0

〉− 〈
U−

0

〉]}2 =

=
〈
(U−

0 )2
〉

+ θ
[
V ar[U+

0 ] +
〈
U+

0

〉2 − V ar[U−
0 ]− 〈

U−
0

〉2
]
− 〈

U−
0

〉2−

− 2θ
〈
U−

0

〉 [〈
U+

0

〉− 〈
U−

0

〉]− θ2
[〈

U+
0

〉2 − 2
〈
U−

0

〉 〈
U+

0

〉
+

〈
U−

0

〉2
]

=

= V ar[U−
0 ] + θ

{
V ar[U+

0 ]− V ar[U−
0 ]

}
+ θ

〈
U+

0

〉2 − θ
〈
U−

0

〉2 +

+ 2θ
〈
U−

0

〉2 − θ2
〈
U+

0

〉2 − θ2
〈
U−

0

〉2 − 2θ
〈
U−

0

〉 〈
U+

0

〉
+ 2θ2

〈
U−

0

〉 〈
U+

0

〉
=

= V ar[U−
0 ] + θ

{
V ar[U+

0 ]− V ar[U−
0 ]

}
+

+ (θ − θ2)
〈
U+

0

〉2 + (θ − θ2)
〈
U−

0

〉2 − 2(θ − θ2)
〈
U−

0

〉 〈
U+

0

〉
=

= V ar[U−
0 ] + θ

{
V ar[U+

0 ]− V ar[U−
0 ]

}
+ θ(1− θ)

[〈U+
0 〉 − 〈U−

0 〉
]2

.

¤

As illustration we plot in Figure 2 the mean of the solution at a time t = T ,
〈U(x, T )〉, using (12). We can observe a diffusive behavior in the interval
[amT, aMT ] called by some authors the mixing zone. In this mixing zone, by
the second expression in (12), 〈U(x, T )〉 is the mean of the left state added
to the product between the cumulative probability function of the velocity
and the jump between the means of right and left states.

〈U−
0
〉

amT 0 aMT x

〈U+

0
〉

Figure 2. 〈U(x, T )〉, T fixo

The length of this mixing zone is studied by some authors (see, for exam-
ple, [2, 1, 7, 8]) using the effective equation methodology. For example, the
effective equation for the linear transport with random velocity is

∂〈c〉
∂t

+ 〈ν〉 ∂〈c〉
∂x

−D(t)
∂2〈c〉
∂x2

= 0,

with the dissipation coefficient given by

D(t) =
∫ t

0
〈δν(x− st)δν(x)〉ds.
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If the random velocity is constant then

D(t) =
∫ t

0
〈δν2〉ds = σ2t,

where σ is the standard deviation of ν.
Now, let us confront a particular solution of the effective equation method-

ology with our expression for the mean, (12). If we take the initial condition

〈c(x, 0)〉 = U0(x) =
{

1, x < 0,
0, x > 0,

for the effective equation and also for the problem (5), we can show that the
analytical expressions for the mean are, respectively,

〈c(x, t)〉 =
1
2

{
1− 2√

π

∫ x−〈ν〉t
l(t)

0
e−ω2

dω

}
,

where l(t) = 2
[∫ t

0
D(ω) dω

] 1
2

is the mixing length, and

〈U(x, t)〉 =
1
2

{
1− 2√

π

∫ x−〈ν〉t√
2σt

0
e−ω2

dω

}
.

To obtain the last expression we use a normally distributed random ve-
locity, A = N(〈ν〉, σ), and the expression (12). Therefore, confronting these
expressions they will be equal if the mixing length satisfies l(t) =

√
2σt or,

equivalently, if the diffusion coefficient of the effective equation is D(t) = σ2t,
i.e., the same dissipation coefficient for the constant velocity case.

2. Monte Carlo Simulations

To assess our results we compare the expressions for the mean, variance
and 3rd central moment with Monte Carlo simulations. We use suites of
realizations of A, U−

0 and U+
0 . In this case we consider: the indepen-

dence between A and both U−
0 and U+

0 ; U−
0 and U+

0 normally distrib-
uted with 〈U−

0 〉 = 1, 〈U+
0 〉 = 0, V ar

[
U−

0

]
= 0.16, V ar

[
U+

0

]
= 0.25 and

Cov
(
U−

0 , U+
0

)
= 0.12. We plot the results in T = 0.4 and T = 0.8. To

observe the influence of the velocity variation we use two models: (i) A
normally distributed, A = N(1, 0.6), in Figures 3 and 4; (ii) A lognormally
distributed, A = exp (ξ), ξ = N(0.5, 0.15), in Figures 5 and 6. All the Monte
Carlo simulations were done with 1500 realizations and recalling that the
solution of (5), in (x, t), for a single realization

(
A(ω), U−

0 (ω), U+
0 (ω)

)
of(

A, U−
0 , U+

0

)
, is

U(x, t) = U0(x−A(ω)t) =
{

U−
0 (ω), x−A(ω)t < 0,

U+
0 (ω), x−A(ω)t > 0.
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All the numerical experiments presented in this section were computed in
double precision with some MATLAB codes on a 3.0Ghz Pentium 4 with
512Mb of memory.

−2 0 2 4 6
−0.5

0

0.5

1

1.5
mean of solution

Monte Carlo
proposed

−2 0 2 4 6
0.1

0.2

0.3

0.4

0.5
variance of solution

−2 0 2 4 6
−0.2

−0.1

0

0.1

0.2
3rd central moment of solution

Figure 3. A is normal, A = N(1, 0.6), T = 0.4.

−2 0 2 4 6
−0.5

0

0.5

1

1.5
mean of solution
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−2 0 2 4 6
0.1
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0.4
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−2 0 2 4 6
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−0.1

0

0.1

0.2
3rd central moment of solution

Figure 4. A is normal, A = N(1, 0.6), T = 0.8.
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0.4
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−0.1

0

0.1

0.2
3rd central moment of solution

Figure 5. A is lognormal, A = exp (ξ), ξ = N(0.5, 0.15), T = 0.4.
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Figure 6. A is lognormal, A = exp (ξ), ξ = N(0.5, 0.15), T = 0.8.

Concluding remarks

In this article we present an explicit expression to the solution of the Rie-
mann problem for the random linear transport equation. As far as we know
this approach does not appear in the literature and we believe that it can be
useful in numerical procedures for the nonlinear case as in the deterministic
partial differential equations. Expression (7) show us that, once known the
local statistic of the velocity, the local behavior of the solution is independent
of the physical mechanisms governing the process. The procedure also shows
agreement with the effective equations methodology; however it seems to us
that the random expression to the solution gives more information about
the process.
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