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Abstract

Optimality (or KKT) systems arise as primal-dual stationarity con-
ditions for constrained optimization problems. Under suitable con-
straint qualifications, local minimizers satisfy KKT equations but,
unfortunately, many other stationary points (including, perhaps, max-
imizers) may solve these nonlinear systems too. For this reason,
nonlinear-programming solvers make strong use of the minimization
structure and the naive use of nonlinear-system solvers in optimization
may lead to spurious solutions. Nevertheless, in the basin of attraction
of a minimizer, nonlinear-system solvers may be quite efficient. In this
paper quasi-Newton methods for solving nonlinear systems are used as
accelerators of nonlinear-programming (augmented Lagrangian) algo-
rithms, with equality constraints. A periodically-restarted memoryless
symmetric rank-one (SR1) correction method is introduced for that
purpose. Convergence results are given and numerical experiments
that confirm that the acceleration is effective are presented.
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1 Introduction

If a local minimizer z∗ of a nonlinear-programming problem satisfies a con-
straint qualification, then the KKT conditions hold at this point [1, 3, 4,
18, 36]. The KKT conditions may be formulated as nonlinear systems in
many ways. Different (perhaps nonsmooth) formulations occur due to the
presence of inequality constraints in the original optimization problem. If
inequality constraints are not present, the KKT conditions coincide with the
classical Lagrange optimality conditions and the corresponding nonlinear sys-
tem is differentiable, provided that the functions that define the nonlinear-
programming problem are twice smooth. In this work we deal only with
problems which have equality constraints. Many nonlinear-programming
problems may be solved applying a nonlinear-system solver to the optimal-
ity conditions, but this approach is far from being robust, since the set of
points that satisfy the optimality conditions possibly includes undesirable
candidates, such as saddle points and maximizers.

Many specific methods for nonlinear programming are available. Mod-
ern nonlinear optimization algorithms include a variety of theoretical and
numerical tools: interior-point technology, sequential quadratic program-
ming, trust regions, restoration, advanced line-search procedures and filters
[19, 20, 22, 31]. The KKT system is implicit in most of these approaches. On
the other hand, Augmented Lagrangian methods [1, 2, 5, 11, 12, 25, 27, 34, 37]
are usually considered as complementary alternatives to sequential quadratic
programming and interior-point techniques for nonlinear programming [20].
They are especially attractive for large-scale problems in which the Jacobian
structure of the constraints is very complicate and sparse factorizations are
not easily affordable. Contemporary research in Augmented Lagrangians for
nonconvex problems includes global convergence with weak constraint qual-
ifications [1, 2], theory and practice on smooth Augmented Lagrangians [5]
and adaptive procedures that link feasibility to the tolerance on the resolu-
tion of subproblems [14, 15, 16].

In this paper we employ the default version of the Augmented Lagrangian
method formulated in [1, 2]. This algorithm is available in the web-page of
the Tango project www.ime.usp.br/∼egbirgin/tango. We observed that,
in many cases, after very few outer iterations, the solution of the Augmented
Lagrangian subproblem is in the attraction basin of a minimizer of the nonlin-
ear programming problem, in the sense that the application of a Newton-like
method to the KKT system produces quick convergence to the global solu-
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tion. With this observation in mind, we defined a quasi-Newton method for
solving the Lagrangian optimality system. In principle, we focus problems
where Newton’s method may be applied (second derivatives are available or
may be suitable approximated by sparse finite differences [13, 21]). However,
due to the possible expensiveness of the Newtonian iteration, we combine
Newton with a cheap low-memory quasi-Newton algorithm. Since we want
to take advantage of symmetry, we use the inverse form of the Symmetric
Rank-One correction formula (SR1). The quasi-Newton algorithm so far ob-
tained is equipped with a nonmonotone line search strategy, by means of
which global convergence is enhanced. Under suitable local assumptions the
convergence is superlinear.

This work is organized as follows: in Section 2 we define the problem to
be solved and describe the SR1 algorithm with a nonmonotone line search.
We also prove convergence results. Section 3 describes the Augmented La-
grangian method with quasi-Newton acceleration. In Section 4 we report
numerical results. We finish this work making some comments and present-
ing some ideas for future works in Section 5.

Notation

• ‖ · ‖ denotes an arbitrary norm.

• IN = {0, 1, 2, . . .}.

2 Periodically restarted SR1 method

Let h : IRn → IRm, h = (h1, . . . , hm)T and f : IRn → IR be nonlinear
functions as smooth as needed, and let Jh(z) be the Jacobian matrix of h
evaluated in z.

The optimality (Lagrange, KKT) system

∇f(z) + Jh(z)T λ = 0, h(z) = 0 (1)

corresponds to the minimization problem

Minimize f(z) subject to h(z) = 0. (2)

Define N = n + m and F : IRN → IRN by:
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F (z, λ) =

(∇f(z) + Jh(z)T λ
h(z)

)
.

The system (1) can be written as F (z, λ) = 0. If we call x =

(
z
λ

)
, the KKT

system is:

F (x) = 0. (3)

In this case the Jacobian of F is symmetric and is given by

JF (z, λ) =


∇2f(z) +

m∑
i=1

λi∇2hi(z) Jh(z)T

Jh(z) O


 (4)

At each iteration of Newton’s method [17] for solving (3), the search
direction dk comes from solving

J(xk)dk = −F (xk). (5)

(From now on, J(x) denotes the Jacobian of F (x).) The new iterate is
xk+1 = xk + αkdk, where αk > 0 is computed in order to obtain global
convergence properties. In a neighborhood of a solution where the Jacobian
is nonsingular, one has that αk = 1 and the convergence is quadratic.

The expensiveness of the Newton iteration motivated, in the sixties, the
introduction of quasi-Newton methods. In quasi-Newton methods [17, 30]
one solves

Bkdk = −F (xk) (6)

and computes, as in Newton, xk+1 = xk + αkdk. Usually, Bk is an approxi-
mation of J(xk). Secant methods are characterized by the secant equation:

Bk+1sk = yk where sk = xk+1 − xk, yk = F (xk+1)− F (xk). (7)

In most secant methods, a recursive formula for computing B−1
k+1 is available.

In these cases, one has

Hk = B−1
k , Hk+1 = U(Hk, sk, yk),
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where U is an updating function and the inverse secant equation Hk+1yk = sk

holds for all k.
In [6] and [30] the alternative of using Newton’s iteration when k is a

multiple of a fixed integer p and an inverse quasi-Newton update in the
remaining iterations is preconized. With such combination, one can preserve
the quick convergence of Newton with a substantial decrease of the average
work per iteration. This procedure is in the tradition of Shamanski’s idea
[38] that consists of using Newton every p iterations, repeating the Jacobian
in the remaining steps and optimizing p in order to maximize the efficiency.

In our case, the Jacobian J(x) is symmetric (but not positive definite).
This fact encourages the use of the Symmetric Rank-one secant update (SR1),
given by:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk

.

It is easy to see that, if Bk is nonsingular and Bk+1 6= Bk is well defined,
then Bk+1 is nonsingular if, and only if, (sk − B−1

k yk)
T yk 6= 0. Moreover, in

this case:

B−1
k+1 = B−1

k +
(sk −B−1

k yk)(sk −B−1
k yk)

T

(sk −B−1
k yk)T yk

.

Accordingly, we define

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)T yk

. (8)

If sk = Hkyk we define Hk+1 = Hk. If sk 6= Hkyk and the denominator of (8)
is null, we say that Hk+1 is not well defined.

The SR1 formula has been known for many years and it is used for defining
search directions or quadratic trust-region models in the context of uncon-
strained minimization (see [33], Section 8.2).

In spite of its lack of stability, the SR1 formula enjoys some reputation
due to the fulfillment of the following theorem.

Theorem 2.1. Assume that A ∈ IRN×N is symmetric, nonsingular and
Ax∗ = b. Suppose that, for all k = 0, 1, . . . , N − 1, Hk is well-defined.
Define, for all k, xk+1 = xk −Hk(Axk − b). Then, xj = x∗ for some j ≤ N .

This theorem is proved for the case in which A is positive definite in many
places (see [33], Theorem 8.1). Its proof without the positive definiteness
assumption follows using identical arguments.
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Now we have enough motivation to define the main nonlinear-system
solver.

From now on, we assume that F : IRN → IRN admits continuous partial
derivatives. Let {ηk} be such that ηk > 0 ∀k ∈ IN and

∞∑

k=0

ηk = η < ∞. (9)

Assume also that γ ∈ (0, 1), c1 ∈ (0, 1), 0 < τmin < τmax < 1. Let x0 ∈ IRN

be the initial approximation to the solution of the system.
Assume that xk ∈ IRN is the k−th iterate and Hk is the current approx-

imation to J(xk)
−1, computed in the way that will be specified below. The

algorithm for obtaining xk+1 is the following:

Algorithm 2.1.
Step 1. Compute dk = −Hk F (xk).
Step 2. (Backtracking)

Step 2.1. Let α ← 1.
Step 2.2. If

‖F (xk + αdk)‖ ≤ (1− αγ)‖F (xk)‖+ ηk, (10)

define αk = α, xk+1 = xk + αkdk, define Hk+1 and finish iteration k. Other-
wise,

Step 3. Find αnew ∈ [τminα, τmaxα] , take α ← αnew and return to Step
2.2.

Let us explain now the way in which the matrices Hk are defined in
Algorithm 2.1. When k is a multiple of a fixed integer p, we define Hk =
J(xk)

−1. In this case, if J(xk) is singular we define Hk = IN×N . If k + 1 is
not a multiple of p, and

|yT
k (sk −Hkyk)| ≤ c1‖sk −Hkyk‖2 max{‖sk −Hkyk‖2, ‖yk‖2}

we define Hk+1 = Hk. Otherwise, we define Hk+1 using (8).
The matrices Hk do not need to be computed explicitly. If k is a multiple

of p we define a permutation matrix P , a lower-triangular matrix L and an
upper-triangular matrix U such that

PJ(xk) = LU,
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and we store the sparse structure of these matrices. Otherwise, we store the
vectors uk = sk − Hkyk and the scalars uT

k sk and we compute the matrix-
vector products Hkv using

Hk0+`v = U−1L−1Pv +
∑

`∈IC

uT
k0+`v

uT
k0+`sk0+`

uk0+`

whenever k0 is a multiple of p and IC = {` < p | Hk+1 6= Hk}.

2.1 Convergence results

Let us observe first that Algorithm 2.1 is well defined. This follows from the
fact that ηk > 0 for all k. Therefore, given k, the condition (10) is fulfilled
if α is small enough. This is the main idea of the line search proposed by Li
and Fukushima [28] for proving global convergence of Broyden’s method.

The first theorem presented here follows as a direct consequence of The-
orem 1 of [6].

Theorem 2.2. Assume that {xk} is generated by Algorithm 2.1. Define K1

as the set of multiples of p. Suppose that, for all k ∈ K1, J(xk) is nonsin-
gular and ‖J(xk)

−1‖ ≤ c. Then, any limit point of {xk}k∈K1 is a solution of
the system (3). Moreover, if a limit point of {xk}k∈K1 exists, then ‖F (xk)‖
converges to 0 and every limit point of {xk}k∈IN is a solution.

Proof. Consider Algorithm 1 of [6] with θ = 0. By the definition of the
algorithm we have that ‖F (xk)‖ ≤ ‖F (x0)‖+η para todo k. Therefore, since
{J(xk)

−1} is bounded for k ∈ K1, we have that ‖dk‖ is bounded whenever k
is multiple of N . Thus, the thesis follows from Theorem 1 of [6].

The following theorem gives sufficient conditions under which the whole
sequence converges to a solution.

Theorem 2.3. Assume that {xk} is generated by Algorithm 2.1, the level set
L ≡ {x ∈ IRn | ‖F (x)‖ ≤ ‖F (x0)‖ + η} is bounded and J(x) is nonsingular
for all x ∈ L. Then, there exists a solution x∗ of (3) such that

lim
k→∞

xk = x∗.
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Proof. Since J(x) is continuous and nonsingular for all x ∈ L and L is com-
pact, there exists c > 0 such that ‖J(x)−1‖ ≤ c for all x ∈ L. But, as observed
before, xk ∈ L for all k, so, {xk} admits limit points. By Theorem 2.2 all
the limit points are solutions of the system.

For proving that the whole sequence converges to one of its limit points,
we need first to prove that the sequence {‖Hk‖} is bounded. This is obviously
true if k ≡ 0 (mod p) since ‖J(x)−1‖ ≤ c for all x ∈ L. For a general k we
have that, either Hk+1 = Hk or

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)T yk

.

Therefore, by the rule used for computing Hk+1,

‖Hk+1‖2 ≤ ‖Hk‖2 + 1/c1.

Therefore, if k is a multiple of p and ` ∈ {1, . . . , p− 1},

‖Hk+`‖2 ≤ c + `/c1.

This implies that ‖Hk‖2 ≤ c + (p− 1)/c1 for all k ∈ IN .
Now, since dk = −HkF (xk), and F (xk) → 0, we have that ‖dk‖ → 0.

Since αk ≤ 1 for all k, this implies that ‖xk+1 − xk‖ → 0. Then the thesis
follows from Lemma 2 of [6].

The last theorem states that, under the assumptions of Theorem 2.3, the
algorithm converges superlinearly to a solution of the system.

Theorem 2.4. Assume the hypotheses of Theorem 2.3. Moreover, assume
that J(x) is Lipschitz-continuous on a convex set that contains the level set
L. Then, αk = 1 for k large enough and {xk} converges superlinearly to x∗.

Proof. As in Theorem 2.3, we obtain that the matrices Hk are bounded, say:

‖Hk‖2 ≤ M

for all k ∈ IN .
Consider the case in which Hk+1 6= Hk. Define

bk = (sk −Hkyk)
T yk.
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By the updating rule of Hk, we have:

|bk| ≥ c1‖yk‖2 ‖sk −Hkyk‖2. (11)

Then,

Hk+1 − J(xk+1)
−1

= Hk − J(xk)
−1 + J(xk)

−1 − J(xk+1)
−1 +

(sk −Hkyk) (sk −Hkyk)
T

bk

= J(xk)
−1 − J(xk+1)

−1 + Hk − J(xk)
−1

+
(J(xk)

−1yk −Hkyk) (sk −Hkyk)
T

bk

+
(sk − J(xk)

−1yk) (sk −Hkyk)
T

bk

= J(xk)
−1 − J(xk+1)

−1

+
(
Hk − J(xk)

−1
) [

I − yk (sk −Hkyk)
T

bk

]
+

(sk − J(xk)
−1yk) (sk −Hkyk)

T

bk

.

Hence,

‖Hk+1 − J(xk+1)
−1‖2 ≤ ‖J(xk)

−1 − J(xk+1)
−1‖2

+
∥∥Hk − J(xk)

−1
∥∥

2

[
1 +

‖yk‖2 ‖sk −Hkyk‖2

|bk|
]

+
‖sk − J(xk)

−1yk‖2 ‖sk −Hkyk‖2

|bk|
≤ ‖J(xk)

−1 − J(xk+1)
−1‖2

+
∥∥Hk − J(xk)

−1
∥∥

2

[
1 +

1

c1

]
+
‖sk − J(xk)

−1yk‖2 ‖sk −Hkyk‖2

|bk|

Since J(x) is Lipschitz continuous and J(x)−1 is bounded, J(x)−1 is
Lipschitz-continuous too. Thus, there exists c2 > 0 such that

‖J(x)−1 − J(y)−1‖2 ≤ c2‖x− y‖2, (12)

for all x, y ∈ L. This implies that

‖sk − J(xk)
−1yk‖2 ≤ c2

2
‖sk‖2

2, (13)
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for all k = 0, 1, . . . . Then, by (11), (12) and (13),

‖Hk+1 − J(xk+1)
−1‖2 ≤ c2‖sk‖2 +

∥∥Hk − J(xk)
−1

∥∥
2

[
1 +

1

c1

]
+

c2

2c1

‖sk‖2
2

‖yk‖2

.

Since ‖Hk‖2 ≤ M and Hk+1yk = sk, we have that ‖sk‖2 ≤ M‖yk‖2. Then

‖Hk+1 − J(xk+1)
−1‖2 ≤ c2‖sk‖2 +

∥∥Hk − J(xk)
−1

∥∥
2

[
1 +

1

c1

]
+

c2

2c1

M‖sk‖2.

Therefore, there exist d1, d2 > 0 such that for all k such that Hk+1 6= Hk,

‖Hk+1 − J(xk+1)
−1‖ ≤ d1‖Hk − J(xk)

−1‖+ d2‖sk‖.
Since ‖sk‖ → 0 and Hk = J(xk)

−1 whenever k is a multiple of p, this implies
that

lim
k→∞

Hk = J(x∗).

Therefore, Hk = B−1
k , Bk → J(x∗) and xk+1 = xk − αkB

−1
k F (xk) for all k.

Thus, the thesis follows as in Theorem 3 of [6].

3 Accelerated Augmented Lagrangian Method

The algorithm that we propose here combines the Augmented Lagrangian
method for the nonlinear programming problem with the SR1 quasi-Newton
method introduced in the previous section. Our version of the Augmented
Lagrangian method is the one presented in [1, 2] with its default algorithmic
parameters. Generally speaking, we can put these ideas together in the
following very compact algorithm:

Algorithm 3.1. - Accelerated Augmented Lagrangian:

Step 1 - Perform one iteration of the Augmented Lagrangian method for
the minimization problem. Use this point as a starting point for the next
step.

Step 2 - Perform a specified number of iterations of SR1 for the optimal-
ity system. If the norm of the KKT system decreased enough, repeat this
step. Otherwise return to Step 1, after doing the default modifications of the
multipliers and penalty parameters.
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The convergence properties of this algorithm are rather obvious. If the
algorithm eventually stays computing iterations at Step 2, the sufficient-
decrease criterion for the KKT norm guarantees that KKT points are com-
puted with an arbitrary precision. Otherwise, the algorithm shares the global
convergence properties of the Augmented Lagrangian Method [1, 2].

In what follows, we present a very simple numerical example which shows
the acceleration result of the proposed combined SR1 and Augmented La-
grangian algorithm. Consider the problem of solving

min ((x− 2)2 + (y − 1)2) sin ((x− 2)2 + (y − 1)2)

s.t. x ≥ 0

y ≥ 0

x− 2y + 2 ≥ 0

x− 3y − 4 ≤ 0

2x + 5y − 12.73 ≤ 0.

In the next figure, we can see:

• the feasibility region (the shaded pentagon);

• the level curves;

• the initial vector: v0 = (5; 1)T (black square);

• a local maximizer (black triangle);

• the global minimizer (black circle).

These results correspond to the Augmented Lagrangian working alone
(AL), the SR1 working alone and the combined Augmented Lagrangian-SR1
algorithm called the Accelerated Augmented Lagrangian (AAL). We observe
that we started all the algorithms with the vector v0. The SR1 alone con-
verged to the maximizer shown in the figure (black triangle). The Augmented
Lagrangian and also the Combined Algorithm converged to the global mini-
mizer. Table 1 presents the values of the number of outer iterations (iterout),
of inner iterations (iterin) and of function evaluations (feval) for both algo-
rithms.
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iterout iterin feval

AL 6 23 913

AAL 1 14 530

Table 1: Comparison of the algorithms AL and AAL.
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Figure 1: Numerical convergence example.

3.1 Implementation features

In the implementation of Algorithm 3.1 we proceeded as follows:

1. We used the Euclidian norm in the test (10) (‖ · ‖ = ‖ · ‖2).

2. We chose γ = 10−4, τmin = τmax = 0.5, p = 10.

3. Newton iterations were performed using the sparse technique of [13, 21].

4. The sequence ηk was taken as ηk =
ftip

(k + 1)1.1 , where ftip is given by

ftip = ‖F (x0)‖ , if k = 0,

ftip = min {‖F (xk)‖ , ftip} , if k is a multiple of 10.
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If k is not a multiple of 10, ftip does not change.

5. The sufficient decrease test ‖F (xk)‖ ≤ 0.1‖F (xk−10)‖ is performed ev-
ery 10 iterations. If it is not satisfied, we declare that SR1 failed and
we return to the Augmented Lagrangian. We also consider that the
quasi-Newton method fails if the number of iterations exceeds 200.

6. The convergence stopping criterion for SR1 was ‖F (xk)‖∞ ≤ 10−6.
When this criterion holds we declare that an approximate KKT point
was found.

Figure 1 shows more clearly what is done.
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Figure 2: The Proposed Algorithm.

4 Numerical Experiments

All experiments were done in a Pentium IV, 2.3 Ghz Intel, 1 Gb of RAM
memory. The codes were written in FORTRAN 77 and compiled with De-
veloper Studio Power Station 4.0 Fortran 95.

We tested our algorithm with 18 optimization test problems taken from
Lukšan and Vlček in [29]:
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1. Chained Rosenbrock function with trigonometric-exponential constraints;

2. Chained Wood function with Broyden banded constraints;

3. Chained Powell singular function with simplified trigonometric-exponential
constraints;

4. Chained Cragg-Levy function with tridiagonal constraints;

5. Generalized Broyden tridiagonal function with five diagonal constraints;

6. Generalized Broyden banded function with exponential constraints;

7. Trigonometric tridiagonal function with simplified five-diagonal con-
straints;

8. Augmented Lagrangian function with discrete boundary value con-
straints;

9. Modified Brown function with simplified seven-diagonal constraints;

10. Generalized Brown function with Broyden tridiagonal constraints;

11. Chained HS46 problem;

12. Chained HS47 problem;

13. Chained modified HS48 problem;

14. Chained modified HS49 problem;

15. Chained modified HS50 problem;

16. Chained modified HS51 problem;

17. Chained modified HS52 problem;

18. Chained modified HS53 problem.

All the problems of the type HS were proposed by Hock and Schittkowski
[26]. The number which appears after HS corresponds to the number of the
proposed problem. These problems were “modified” in such a way than a
variable number of n and m may be used. In our tests we take n = 250, 500.
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We have also tested our algorithm with low-dimensional problems taken
from [26] with equality, inequality or box-type constraints. Inequality and
box-type constraints were changed into equality constraints by the introduc-
tion of squared slack variables. Even though the results with the proposed
algorithm were very good, we do not show them here because the behavior
of all the tested methods are very similar.

We tested the following algorithms:

• ALGENCAN: The Augmented Lagrangian Algorithm, as implemented
in the Tango web-page in October 2005.

• ALGENCAN+NEWTON: The Augmented Lagrangian Algorithm, ac-
celerated with Algorithm 2.1, with p = 1 (so, Hk = J(xk)

−1 for all
k).

• ALGENCAN+SR1: The Augmented Lagrangian Algorithm, acceler-
ated with Algorithm 2.1, with p = 10.

The results are exhibited in Figures 3 and 4. Since the three methods
found the solution in all the problems, we report, for each algorithm, two in-
dicators of performance: CPU time (in seconds), which is the most important
measure, and the total number of function evaluations.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec) − n= 250

τ

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n 

ρ(
τ)

Augmented Lagrangian + ISR1
Augmented Lagrangian + Newton
Augmented Lagrangian

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec) − n= 500

τ

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n 

ρ(
τ)

Augmented Lagrangian + ISR1
Augmented Lagrangian + Newton
Augmented Lagrangian

Figure 3: Performance Profile - CPU Time (sec).

Figure 3 illustrates the performance of the methods in terms of CPU
elapsed time, in seconds. The proposed algorithm has the best performance in
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Figure 4: Performance Profile - Number of Function Evaluations.

both cases (n = 250 and n = 500), since it solves about 90% of the problems
in the minimum time and it is also the most robust, since its distribution
function, shown in the vertical axis, attains the value ρ(τ) = 1 for the smallest
value of τ, τ < 1.5 in both cases. Even though the behavior of the curves
of the proposed algorithm is similar in both cases, it is clear that it becomes
more robust for larger scale problems, when compared to the other schemes.
This behavior can be partially justified, by the fact that the new algorithm
performs a small number of function evaluations, as shown in Figure 4.

5 Final remarks

The improvement of practical Augmented Lagrangian methods for constrained
optimization is usually associated to the development of innovative uncon-
strained or box-constrained algorithms for solving large-scale subproblems
[7, 8, 9, 10, 23, 24] or to the clever association between optimality and feasi-
bility parameters [14, 15, 16].

A different kind of improvement is proposed in the present work. We
claim that, many times, after performing at least one Augmented Lagrangian
outer iteration, it is worthwhile to try a shortcut based on the straightforward
solution of the optimality (KKT) system. A conveniently damped Newton’s
method is a suitable alternative for this auxiliary problem, but the symmetry
of the KKT Jacobian motivates the use of refinement steps based on the
Symmetric Rank-One formula. We proved that the proposed quasi-Newton

16



method has reasonable convergence properties and the numerical experiments
indicate that the suggested approach is reliable.

The next step of this research is to extend the approach to nonlinear
programming with equality and inequality constraints. Since the KKT con-
ditions may be formulated as nonlinear sytems in many different ways, this
will demand a judicious investigation, not only on the best method, but also
on the best formulation. The nonsmoothness of many reformulations is a
complicating aspect that will demand careful analysis, probably along de
lines of [32, 35].
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