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Abstract

Restarting GMRES, a linear solver frequently used in numerical schemes, is
known to suffer from stagnation. In this paper, a simple strategy is proposed to
detect and avoid stagnation, without modifying the standard GMRES code. Nu-
merical tests with the modified GMRES(m), GMRESH(m) procedure, alone and
as part of an inexact Newton procedure with several choices for the forcing term,
demonstrate the efficiency of the proposed strategy.
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1 Introduction

The objective of this work is to improve the performance of the restarted GMRES [22]. A
well known difficulty with the restart of GMRES, algorithm for solving Ax = b, A : n×n
is that it can stagnate when the matrix A is not positive definite [23], in the sense that
the residual sequence does not converge to zero within a reasonable time frame. In [26]
and [30] the authors modified the GMRES using spectral analysis. In [18], Ritz values
are used to improve the performance of the restart. Convergence issues and stagnation
are discussed in [28] and [35]. Van der Vorst and Vuik introduce an strategy to prevent
stagnation in GMRES, by including LSQR steps in some phases of the process [32].
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This work aims an early detection of stagnation; once detected stagnation, the initial
residue of the next cycle is steered away from the stagnation zone by means of a simple
hybrid safeguard which mostly involves, in addition, the current residue. The strategies
proposed here have the following objectives:

• avoid stagnation;

• use previous information given by the GMRES, avoiding any modification in it. At
most, the new program should ask for few information besides that usually provided
by GMRES;

• take into account information from the previous cycles performed by the GMRES.

In Section 2 we describe briefly the GMRES and the restarted GMRES algorithms.
We also study the effect of the GMRES cycle length on the decrease of the residual norm.
In Section 3 we establish our stagnation criteria and describe hybrid safeguards which
modify the GMRES method, obtaining a version called here GMRESH. In Section 4 we
show that GMRESH is capable to reduce considerably the effect of stagnation. In Section
5 we discuss the implementation of GMRESH within the Newton–Krylov method and
test its performance on a ray–tracing problem and on a set of boundary value problems.
Some concluding remarks are given in Section 6.

2 GMRES(m)

The method GMRES is proposed in [22] for solving linear systems As = b, where A is
a nonsingular n × n matrix (not necessarily symmetric) and b ∈ IRn. If s0 is a initial
approximation for the solution and r0 = b−As0 is the corresponding residual vector, the
Krylov subspace after l iterations of the GMRES will be:

Kl = [r0 , Ar0 , A2r0 , . . . , Al−1r0]. (1)

At each iteration l of GMRES a value sl ∈ s0 + Kl is computed to minimize the
residual vector, that is: rl = mins ∈ s0+Kl

‖b−As‖2. In what follows we always mean ‖.‖2

whenever we use ‖.‖.
It is known that, computationally speaking, GMRES is more expensive than other

Krylov subspace methods, such as Bi-CGSTAB, [15], QMR [23] for general square matri-
ces, or LSQR [19], [20] for anti–symmetric matrices. Nevertheless, it is widely used for
solving linear systems derived from the discretization of partial differential equations, since
theoretically the 2–norm of the residual vector is minimized inside the Krylov subspace
at each step.

We can describe GMRES as follows: given the subspace Kl and the initial approxi-
mation s0, compute sl, the approximate solution for As = b, where sl ∈ s0 +Kl in such a
way that rl = b− Asl is orthogonal to AKl.

2



Since sl ∈ s0 +Kl we can write sl = s0 + δ, δ ∈ Kl; then rl = b− Asl = r0 − Aδ. We
obtain δ in such a way that rl is orthogonal to AKl. Geometrically, Aδ is the orthogonal
projection of r0 in AKl, as shown in Figure 1.
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θ 

Figure 1: Orthogonal projection of r0 in AKl

The dimension of the Krylov space keeps increasing, so the memory cost and complex-
ity of the l–th GMRES step increase with l. A modified version called GMRES(m) is used
in large scale problems. In this version, the GMRES proceeds in cycles of m iterations,
see [15], [22]. Basically, the process begins with some vector s0, and a fixed number m
of iterations are performed. Then, a new cycle begins with sm as initial approximation
and rm = b − Asm as initial residue. Note that at each cycle an m–dimensional Krylov
subspace is generated from the initial residue, following the usual GMRES procedure.

Whereas the restarted policy is computationally more feasible, convergence cannot be
guaranteed in general, and stagnation becomes possible [11], [23], [27], [30] and [35]. A
rather expensive remedy would be to monitor the eigenvalues of the Hessenberg matrices
generated during the GMRES, [27]. Other schemes, such as the one mentioned in [30],
store some vectors created at the j–th cycle and use them at the (j + 1)–th cycle. We
present a different strategy.

3 Stagnation

In this section we present a new strategy to generate an approximation to the new cycle
that bypasses the stagnation of the method. We use the following notation: rj

0 is the
initial residue of the j–th cycle and rj

m is the residual vector at the end of this cycle.
Stagnation in GMRES(m) is usually described as slowness in the decrease of the con-

secutive residual norms, ‖rj
l ‖, l = 1, 2, 3, . . . , m. However, a situation where rj

m and r1
0 are

roughly linearly dependent could also be classified as stagnant.
To prevent stagnation we need to control the cycles in such a way that it is possible

to make a comparison between the norm of the last residue, ‖rj
m‖, and the norm of the
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initial residual vector of this cycle, ‖rj
0‖. Moreover, we need to guarantee that the basis

generated for the Krylov subspace in the (j + 1)–th cycle is linearly independent with
respect to the basis from the last cycles.

Firstly, we need to establish a criterion to detect stagnation, which can be based on
the norm of the residual vectors. However, even in the case of a reasonable decrease of
the norm of residues, if the angle between the initial and final residual vectors of one cycle
j is close to zero, the Krylov subspace of the new cycle, (j + 1), can be similar to the
previous one. This is because both subspaces began with vectors that are almost linearly
dependent. It is obvious that in such case the progress of the process towards the solution
will be very slow.

In Figure 1, we can observe that given the projection property of GMRES, if the cosine
of the angle between the initial and final residual vectors is close to 1, then the norm of
these residues are very close to each other so that there is an equivalence between the
tests

‖rj
m‖/‖rj

0‖ ∼ 1 (2)

and
| cos(θj)| ∼ 1, (3)

where θj is the angle between the vectors rj
0 and rj

m.
We must also consider the possibility of linear dependence between r1

0 and rj
m. Observe

that rj
m is the last residue of the j–th cycle whereas r1

0 is the initial residue of the first cycle
of the whole process. In this case, the Krylov subspace of the cycle (j +1) would be close
to the Krylov subspace generated in the first cycle. This would lead to the stagnation of
the process, too. If this is the case, there is no equivalence between the tests (2) and (3),
since r1

0 and rj
m belong to different Krylov subspaces. Thus it is not possible to use the

test with the norms of the residual vectors. Linear dependence can be detected through
the test between the cosine of the angle between the residues r1

0 and rj
m:

| cos(θj,1)| ∼ 1. (4)

In the strategies proposed in this work, the analysis will be always done at the end of
each cycle, to avoid a too big computational cost. Stagnation will be declared when:

| cos(θj)| ∼ 1 or | cos(θj,1) ∼ 1. (5)

In case of stagnation, another initial approximation must be chosen for the new cy-
cle. This new approximation is obtained using information generated during the process.
However, it needs to be constructed in such a way to guarantee a reduction in the norm
of the residual vector. The new strategy that is proposed generates an approximation for
the (j + 1)–th cycle using a hybrid scheme, based on the strategy proposed by Brezinski
and Redivo–Zaglia in 1994, [12]. This hybrid scheme uses the approximations s1

0 and sj
m

which, in some sense, take into account the information generated by GMRES(m). In this
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way, we are trying to get out of a sequence which yields little decrease for the residuals.
In what follows, we will briefly describe the scheme proposed in [12] for linear systems.

Consider the linear system of equations As = b. Once the approximations s̄ and ŝ
are known, and the corresponding residues, r̄ = b − As̄ and r̂ = b − Aŝ are computed,
the objective is to construct a new approximation as a linear combination of s̄ and ŝ,
s = αs̄+βŝ with the aim of reducing the residual norm. As a simplifying tool in obtaining
these parameters is to fix β = 1 − α, and then the corresponding residue r will be given
by r = b − As = αr̄ + (1 − α)r̂. Thus our problem is reduced to find α ∈ IR, the least
square solution for:

min
α
‖r‖ = min

α
‖(r̄ − r̂)α + r̂‖,

for which the optimal α is given by:

α = − (r̄ − r̂)T r̂/(r̄ − r̂)T (r̄ − r̂). (6)

The new approximation will be s = αs̄ + (1 − α)ŝ, and the corresponding residue is
r = αr̄ + (1− α)r̂.

Let us go back to the solution for As = b by the GMRES(m). Let sj
0 and sj

m denote
the initial approximation of the whole process, and the last approximation obtained af-
ter performing the m GMRES iterations of the j−th cycle, respectively. The following
safeguards are tested and the computation of the new approximation is done using the
hybrid scheme, where s̄ corresponds to s1

0 and ŝ to sj
m.

Strategy H:
if j 6= 1:
Safeguard 1: test the angle θj between rj

0 and rj
m:

if | cos(θj)| ∼ 1, compute sj+1
0 = αs1

0 + (1− α)sj
m, with α given by (6).

Otherwise,
Safeguard 2: test the angle θj,1 between rj

m and r1
0:

if | cos(θj,1)| ∼ 1, then compute sj+1
0 = αs1

0 + (1− α)sj
m, with α given by (6).

if j = 1:
Test the angle θ1 between r1

m and r1
0:

if | cos(θ1)| ∼ 1, compute sa as a random vector and s2
0 = αsa + (1− α)s1

m,
with α given by (6).

In the case j = 1, due to the orthogonality and minimization properties of GMRES, the
vector calculated from s1

0 is the same as the one encountered by the hybrid process. Thus,
s1
0 should be modified. We add that the corresponding residual vector ra is normalized so

as to guarantee the monotone decrease of the residues.
In Figure 2 we depict the situation tested by Safeguard 2, when the decrease in the

residual norm is sufficient, so that Safeguard 1 is not triggered. Thus, rj
m is necessarily

much smaller than r1
0. If indeed the angle between them is small, or close to π, the residue

formed by them will show a pronounced decrease in norm.
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Figure 2: Safeguard 2: angle between r1
0 and rj

m, and residue obtained by the hybrid
scheme.

The hybrid scheme also presents the advantage of maintaining the minimization of
the 2–norm of r, as is the purpose of GMRES(m). The important difference here is that
the GMRES(m) solves this problem in the Krylov subspace generated in the last cycle of
GMRES(m). In the hybrid scheme the minimization is carried out in the plane generated
by vectors belonging to two different Krylov subspaces: the first Krylov subspace (K1)
and the last Krylov subspace (Kj). Therefore our scheme keeps some information about
these two subspaces.

The hybrid vectors are used quite often. This idea is similar to the residual smoothing
used in [25], but in that case, it is used as a stopping criterion for the Conjugate Gradient
method; in [33] the authors compared the behavior of the smooth residue and the usual
residue for the MRS, QMR and BCG methods. Hybrid preconditioners are used in [24]
and [32]. We do not use the term “hybrid GMRES” since in the literature it is sometimes
used in other contexts, such as in [17], [29]. So we are calling it GMRESH.

4 Numerical experiments with GMRES and GMRESH

We present two examples comparing GMRES and GMRESH for 3× 3 matrices.
Our procedure in this paper is the following: a hybrid restart is calculated in the

first 5 occurrences of cos(θj) > 0.8 or cos(θj,1) > 0.8 and in the next 5 occurrences of
cos(θj) > 0.9 or cos(θj,1) > 0.9. In all other cases, the usual GMRES(m) is used. The
point is that if GMRESH(m) shows persistent stagnation then further progress is not
likely to occur.

Example 1. Zavorin [34] brings the system

A =




3.64347104554523 −1.30562625697964 2.12276233724947
3.81895186997748 −0.33626408416579 8.43952325416869
0.12754105943518 0.13002776444227 2.98820549610000


 (7)
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and

b =



−0.22385545043433
−0.30471918583417
0.92576182418211




with zero initial vector as an example where the sequence of GMRES(2) residues is con-
stant (stagnation). The precision used was 0.0001.

The results of GMRESH(2) for the first eight cycles where the Strategy H is triggered
are shown in Table 1: the sequences of relative residual norms and the cosine of the angle
θj. The total number of iterations was 19, with last relative residue equal to 5.1417e-004
while the relative residue using GMRES(2) always was 1.

We also tested GMRES(2) and GMRESH(2) on 64 problems, which were created as
follows: consider the systems As = bijl where bijl = b + vijl, vijl being a vector with
equidistant entries in [−0.1, 0.1]. We used 4 points in each interval. Figure 3 shows the
logarithmic relative error ‖rend‖/‖r1

0‖ for each problem, where rend is the last residue of
the whole process. Although both methods stagnated in some cases, GMRESH(2) shows
a clear improvement.

Table 1: Cosine and relative residue between rj
0 and rj

2

cycle cosine relative residue

1 1 1
2 0.9973 0.9932
3 0.9997 0.9353
4 0.9785 0.7836
5 0.9318 0.3964
6 0.8223 0.0796
7 0.9947 0.0107
8 0.7559 0.0104

Example 2. Embree [8] gives the matrix

A =




1 1 1
0 1 3
0 0 1


 b =




2
−4
1


 (8)

as an example where GMRES(1) converges in three iterations but for GMRES(2) the
relative residue stagnates near 0.3. We consider 1681 problems As = bνµ where r1

0 =
bνµ := (ν, µ, 1)T , ν, µ ∈ [−10, 10] and 10−6 was taken as precision. Figure 4 shows the
logarithm of the relative residual norms, (‖rend‖/‖r1

0‖), ranging from 0 (white) to −8
(black). Actually, some of the GMRESH relative residues calculated were less than 10−16.
We can see that the GMRESH(2) relative residue is much smaller than the GMRES(2)
relative residue in the vast majority of cases. Observing the size of the white region in
both graphics, it is easy to conclude the better performance of GMRESH(2).
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5 Numerical experiments

Here we apply the GMRES and GMRESH procedures, as linear solvers for the inexact
Newton method with a nonmonotone line search, [1], for solving a nonlinear system

F (x) = 0, F : IRn → IRn.

In the inexact Newton methods, [5], the sequence xk (called sequence of outer iterations)
is generated by

xk+1 = xk + sk;

sk solves approximately the linear system J(xk)s = −F (xk), using this stopping criterion:

‖J(xk)s + F (xk)‖ ≤ ηk‖F (xk)‖, (9)

where J(.) is the Jacobian matrix, ηk ∈ (0, 1] is the tolerance which is called the forcing
term, [7].

In the line search procedure, it is needed the following parameters: σ ∈ (0 , 1), %min

and %max such that 0 < %min < %max < 1 and the sequence {µk} such that µk > 0 for all
k = 0, 1, 2, . . . and

∑∞
k=0 µk = µ < ∞.

Now we present the inexact Newton algorithm with the nonmonotone line search pro-
cedure. Let x0 ∈ IRn be an arbitrary initial approximation to the solution for F (x) = 0.
Given xk ∈ IRn, and the tolerance ε > 0, the steps to obtain a new iteration xk+1 are
the following:

Algorithm 1. ( Inexact Newton method with nonmonotone line search):

While ‖F (xk)‖ > ε, perform steps 1 to 4:
Step 1: Choose ηk.
Step 2: Find sk such that ‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖;
Step 3: Take ξ = 1, compute xaux = xk + sk and F (xaux).

While
‖F (xaux)‖ > [1− ξσ]‖F (xk)‖+ µk,

perform the steps 3.1 and 3.2:
step 3.1: compute ξnew ∈ [%minξ, %maxξ];
step 3.2: set ξ = ξnew and compute xaux = xk + ξsk.

Step 4: Take ξk = ξ, compute xk+1 = xk + ξksk and update k.

In the Step 1 we examine the following choices for the forcing term:

Constant: we chose ηk = 0.1;
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EW1: ηk =
‖F (xk)− F (xk−1)− J(xk−1)sk−1‖

‖F (xk−1)‖ (see Eisenstat and Walker [7]);

EW2: ηk = γ

(‖F (xk+1)‖
‖F (xk)‖

)α

, γ ∈ [0, 1], α ∈ (1, 2] (see Eisenstat and Walker [7]);

GLT: ηk = [1/(k + 1)]ρ cos2(φk)
‖F (xk)‖
‖F (xk−1)‖ , ρ > 1 and −π/2 ≤ φk ≤ 0, (see Gomes-

Ruggiero et al, [10]).

The vector sk of the Step 2 is obtained by GMRES(m) and GMRESH(m).
The line search performed at Step 3 by Algorithm 1 follows the one proposed in [1]

which is a nonmonotone strategy similar to the one introduced by Li and Fukushima, [13].
So, Algorithm 1 has global convergence [10]. Besides that, with the choices EW1, EW2 and
GLT the convergence rate is superlinear, [7], [10].

5.1 Implementation features

We give now more details about the implementation of the algorithms. The implemen-
tation details can be found in [31], pages 26 and 49. All the tests were performed in a
Pentium III - 1.0GHz computer, using the software MatLab 6.1.

• Line search procedure:
if the vector xaux = xk + ξsk does not give an acceptable decrease in the value of
the function, in the sense of Step 3 of Algorithm 1, then we compute the new step
size as ξnew = 0.5ξ. For the parameter σ used in Step 3, we took σ = 10−4.

• The sequence µk:
we define:

ftip(0) = ‖F (x0)‖,
ftip(k) = min{‖F (xk)‖, ftip(k − 1)}, if k is a multiple of 3 and
ftip(k) = ftip(k − 1), otherwise.

Then, we set:

µk =
ftip(k)

(k + 1)1.1
.

• The initial value and safeguards for η:
for all the choices for ηk we set the initial value η0 = 0.1. For the choices EW1

and EW2 of [7] and for the choice GLT, we take ηk = min{ηk, 0.1} if k ≤ 3, and
ηk = min{ηk, 0.01} if k > 3. We also take ηk = 0.1 when φk > 0. At the
final iterations we have adopted the safeguard introduced in [21] which can be
described as: since the linear model is F (x) ∼ F (xk)+J(xk)s, at the final iterations,
we can have: ‖F (xk+1)‖ ∼ ‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖. In this case it is
important to set ηk such that ηk‖F (xk)‖ ∼ ε where ε is the precision required for
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the nonlinear system. A safeguard which represents these ideas is: if ηk ≤ 2ε then
we set ηk = (0.8ε)‖F (xk)‖.

• Parameters choice for ηk:
for the choice EW2 it was taken γ = 1 and α = 0.5(1 +

√
5) and for the choice GLT

it was taken ρ = 1.1.

• Stopping criterion:
the process is finished successfully if ‖F (xk)‖ ≤ 10−6 and k < 100.

• Restarts and the maximum number of iterations in GMRES(m):
we fix the restarts at each 30 iterations, m = 30, allowing initially a maximum of 100
cycles (3000 iterations). This maximum number, called here by maxit, is adjusted
during the process. This is the case, if the value of ‖F‖ increases, when F is com-
puted at the solution obtained after an inner iteration, before doing the line search.
Also, maxit is adjusted when the number of GMRES iterations have exceeded a cer-
tain value. Indeed, maxit is computed according to: if ‖F (xnew)‖/‖F (xold)‖ > 100,
then maxit is fixed as 30; if ‖F (xnew)‖/‖F (xold)‖ > 1 or if the maximum number
of GMRES iterations has been exceeded, then maxit is fixed as 50.

• Strategy H:
after each GMRES iteration, a possible stagnation is detected by the tests (3) and
(4). Initially, we use 0.9 as a tolerance for the value of the cosine of θj or θj,1. If the
hybrid scheme is triggered 5 times, we change this tolerance to 0.8. In the case of
the hybrid process be triggered at the beginning of 10 cycles, we stop the test as in
Section 4.

We present some numerical results obtained from the solution for a ray-tracing problem
[14] and also from a set of boundary value problems.

5.2 A ray-tracing problem, [2]

The objective here is to find the trajectory of an acoustic ray crossing a heterogeneous
medium, via reflection/transmission, emitted at the point S (source) and registered at
point G (geophone).

Without getting into details, the problem is reduced to solving the following non-
linear system: Φ(X) = 0, where Φ : IRn → IRn, Φ(X) = (φ1(X), . . . , φn(X)), with
Xl = (xl, fil(xl))) l = 1, . . . , n and φl : IRn → IR, l = 1, . . . , n, defined by:

φl(X) = vil+1

(xl − xl−1) + f ′il(xl)(f
′
il
(xl)− fil−1

(xl−1))

[(xl − xl−1)2 + (fil(xl)− fil(xl−1))2]1/2

− vil

(xl+1 − xl) + f ′il(xl)(fil−1
(xl+1)− fil(xl))

[(xl+1 − xl)2 + (fil+1
(xl+1)− fil(xl))2]1/2

.
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The functions fi(x) describe the interfaces of the problem. For a more complete
treatment see [14] and [16]. The i–th signature ai, i = 1, ..., m − 1, of the ray, specifies
the number of times it crosses the region Ωi bounded between interfaces fi and fi+1 in
the downward direction. For uniqueness, we assume that all the downward crossings of
Ωi occur before those of Ωi+1, as in Figure 5.

In Table 2 we consider a ray-tracing problem with two horizontal layers and signature
500, modeled as Φ(x) = 0.

Table 2: Results for the ray-tracing problem

ηk iterex iterin Feval

Cte (7, 4) (8800, 4978) (8, 5)
EW1 (8, 5) (6940, 3754) (9, 6)
EW2 (7, 5) (6724, 3424) (8, 6)
GLT (7, 5) (6786, 3486) (8, 6)

S G 

z = f
1
(x) 

z = f
2
(x) 

z = f
3
(x) 

Figure 5: A ray-tracing model with two layers and signature a = (2, 1).

Each ordered pair represents the result of GMRES (left) and GMRESH (right). Col-
umn iterex represents the total number of external iterations that were performed;
iterin, the number of inner iterations, that is, the number of iterations performed by
GMRES(m) in the whole process; finally, the column Feval represents the total num-
ber of function evaluations needed during the whole process. The stopping criterion was
‖Φ‖ ≤ 10−5.

We observe that in this example the second safeguard in Strategy H was never trig-
gered, while the first safeguard decreased considerably the number of inner iterations.

5.3 Boundary value problems

The general formulation of the boundary value problems solved in this work is finding
u : Ω = [ 0, 1]× [ 0, 1] → IR, such that, for λ ∈ IR,

−∆u + h(λ, u) = f(s, t), in Ω, u(s, t) = 0 on ∂Ω. (10)
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The real valued function h(λ, u), the different values for the parameter λ and the
function f define the different problems tested. All the problems were discretized using
central differences on a grid with 63 inner points in each axis. The discretized system
obtained has 3969 equations and variables. We now make a brief description of the
particular problems that were solved:

• Bratu problem: the function h is given by h(λ, u) = λ exp(u), and the function f(s, t)
is constructed so that u∗(s, t) = 10st(1− s)(1− t)es4.5

is the exact solution for the
problem. When λ < 0, the problem is considered relatively easy; not surprisingly,
the hybrid strategy has never been triggered in our tests. The problem is more
difficult for λ > 0, [9].

• A convection–diffusion problem: in this problem, the function h is given by h(λ, u) =
λu(us + ut), where us and ut denote the partial derivatives of the function u with
respect to s and t, and again the function f(s, t) is defined so that u∗(s, t) =
10st(1 − s)(1 − t)es4.5

is the exact solution for the problem. This is a problem
considered difficult to solve [9], in particular for values of λ greater than 50.

• A third problem: P3. This problem appears in the book of Briggs, Henson and
McCormick [3], page 105. In this case, h(λ, u) is given by h(λ, u) = λueu and the
function f(s, t) = ((9π2 + γe(x2−x3) sin(3πy))(x2 − x3) + 6x− 2) sin(3πy).

Table 3: Results for the boundary value problems with λ = 75.

ηk problem iterex iterin feval

Bratu (8, 7) (15809, 4959) (9, 8)
Cte. conv–dif (12, 12) (1729, 1829) (27, 27)

P3 (5, 5) (189, 189) (6, 6)
Bratu (9, 7) (18007, 5350) (10, 8)

EW1 conv–dif (11, 11) (1514, 1828) (26, 26)
P3 (5, 5) (213, 217) (6, 6)

Bratu (8, 7) (15302, 6409) (9, 8)
EW2 conv–dif (11, 11) (1517, 1826) (26, 26)

P3 (4, 4) (198, 182) (5, 5)
Bratu (8, 6) (15452, 5497) (9, 7)

GLT conv–dif (11, 11) (1518, 1824) (26, 26)
P3 (5, 5) (227, 212) (6, 6)

Table 3 shows the results of Newton-GMRES and Newton-GMRESH applied to the
above problems, for λ = 75, chosen by the occurrence of stagnation in the 3 problems,
and x0 = (0, 0, . . . , 0)T . Each ordered pair should be read as in Table 2. iterex, iterin
and feval are as before.
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For the Bratu problem, GMRESH shows a considerable decrease in the number of
inner iterations, thus effectively mitigating the stagnation problem. The line search was
not activated and iterex is slightly reduced.

The P3 problem can be considered an easy problem. Nevertheless, we noticed a
slight improvement using GMRESH with the choices EW2 and GLT. In the convection-
diffusion problem, the Jacobian matrices are always ill-conditioned near the solution. The
line search was activated various times, indicating stagnation coupled with insufficient
decrease. For all the problems considered, iterex was practically the same (or slighly
better) using GMRESH.

5.4 The performance profile of the methods

The performance profile, proposed by Dolan and Moré, [6], is a useful tool to compare a
set of algorithms used for solving a set of problems. As comparison measures, we can use,
for instance, the number of iterations performed, the number of function evaluations, the
CPU elapsed time, etc.

In this subsection we analyze the performance profile of the Algorithms Newton-
GMRES and Newton-GMRESH when applied to solve the boundary value problems.
A total of 18 problems were tested: Bratu, convection-diffusion and P3 with the following
values for λ := 10, 25, 30, 50, 75 and 100. We compare the performance of this Algo-
rithms using for ηk only the choices EW2 and GLT, in order to get an understandable figure.
In the legends of Figure 6, Algorithm Newton-GMRESH is indicated by an H, after the
name of the choice.

The measures used for comparison were the total number of inner iterations and the
number of outer iterations. Considering the number of inner iterations, we observe that
for the Algorithm Newton-GMRESH the choice GLT for ηk, obtained the best perfor-
mance. This is easily seen because it solved about 58% of the problems with the smallest
number of inner iterations, which is shown in the vertical axis. EW2/H had the second best
performance, since it solved about 30% in the same situation. Moreover the performance
of Newton-GMRES represented in Figure 6 by EW and GLT is under the one obtained by
the algorithm Newton-GMRESH.

It can be observed that EW and GLT solved some problems with a number of inner
iterations 5 and 6 times (respectively) greater than the minimum required to solve that
problem. Thus, the version of the Algorithm without incorporating the strategies to
prevent stagnation of the GMRES had a much worse performance than the new version
Newton-GMRESH, where these strategies are incorporated in GMRES. The strategies
worked successfully.

Analyzing now the performance with the number of outer iterations as measure, we
observe again that the best performance was that of GLT/H, followed by EW2/H.

In both versions, GMRES and GMRESH, the safeguards were triggered only during
the first external iterations. Subject to the usual precautions concerning the convergence
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of inexact Newton methods, and of the restarted GMRES method, the GMRESH version
shows the same type of convergence rate, since this rate only depends on the sequence
of forcing terms. In most of the examples checked, the GMRESH version had a better
numerical performance.

6 Conclusions

In this work we presented an inexact Newton-like Algorithm with a nonmonotone line
search, in which it was introduced an strategy to prevent stagnation of the linear solver
GMRES. This strategy showed as advantages: (i) the simplicity of implementation, since
it does not requires interfering in the inner procedure of the linear solver GMRES; (ii)
it can be monitored at each iteration; (iii) from the numerical results obtained, we can
conclude that this strategy is very efficient, either in the test for detecting the stagnation
of the inner solver, or with respect to the safeguards triggered in this case. This conclusion
can be seen in the solution of the ray-tracing problem, showed in Table 2, as well as in
the solution of a bunch of boundary value problems whose performance profile is showed
in Figure 6.
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