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Abstract

Using the concept of Green’s function associated with an ordinary
differential equation and the residue theorem, we discuss the connec-
tion between a finite number of poles and a branch cut and we obtain
an integral representation for the Dirac delta function, which is inter-
preted as a spectral representation associated with the Fourier sine
transform.

1 Introduction

Complex Analysis is a fundamental topic of mathematics that studies com-
plex numbers and complex functions. Among its main applications are prob-
lems of physical motivation and several others involving analytical methods
appearing in applied mathematics as, for example, the important problems
associated with the calculation of inverse integral transforms.

Moreover, this topic also includes the study of Laurent series and ana-
lytical functions, of which a fundamental result is the residue theorem. This
theorem is a natural consequence of the Cauchy integral theorem which in
turn is a particular case of the Cauchy theorem, one of the most beautiful
results of Complex Analysis.

Differently from integration on a straight line, integration on the complex
plane involves a kind of line integral known as path integral.? A line integral

We discuss a question made by a student, during a lecture on analytical functions,
namely, how can we relate a finite number of poles and a branch cut?
2This is not to be confused with a Feynman path integral.
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is an integral in which the function to be integrated is evaluated along a
simple curve. When this curve (path) is closed it is also called a contour
integral.

Concerning the function to be integrated, we will focus our attention on
meromorphic functions. A function is called meromorphic in an open subset,
D, of the complex plane if it is holomorphic in all D except in a set of isolated
points, which constitute the function’s polar singularities.[1]

Given the concept of a contour integral, we can now present the funda-
mental concept involving the residue. A residue is a complex number that
describes the behaviour of the contour integral of a meromorphic function
arround a singularity. As each residue is a simple coefficient of the func-
tion’s Laurent series, it may be used, for example, to calculate several more
complicated integrals by means of the residue theorem.

The residue thorem together with the Jordan lemma constitute a fun-
damental tool for the evaluation of several real integrals using the complex
plane. As we already said, this is useful in the calculation of inverse trans-
forms, an example of which is the inverse Laplace transform calculated by
means of the so-called Bromwich contour. (2]

In this note we are interested in the following question: how we can relate
a finite number of poles (discrete case) and a branch cut (continuous case). To
motivate our problem, we discuss the integration of an ordinary differential
equation associated with a vibrating string problem in two different cases,
called ‘finite’ and ‘infinite’ problems. The first case is that of a string of finite
length while the second one involves a string with infinite length, which
give rise, respectively, to discrete and continuous sets of eigenvalues. The
relation between the discret and continuous cases is shown by calculating
the corresponding Green'’s function, where emerges naturally the coalescence
of the poles in a branch cut.

The note is organized as follows: In Section 2, we introduce the concept
of Green function associated with an ordinary linear differential equation, for
the case of a string of finite length. In Section 3 we present the other case,
i.e., the string of infinite length and discuss how we can relate a finite number
of poles and a branch cut. In Section 4 we get the connection between these
two cases and there emerges the so-called spectral representation of Dirac

delta function. Finally, we present our concluding remarks.



2 Green’s Function and the Discrete Case

We consider the case of a finite system, a vibrating string of length £. In this
case the Green's function is singular on its poles only, i.e., the eigenvalues
associated with the system. The other possible case is that in which the
Green’s function is singular at every point of a line segment, i.e., on a branch
cut in the complex plane.

2.1 String of Finite Lenght

We consider a string of length ¢ fixed at both ends, i.e., satisfying the Dirichlet
boundary conditions.> Mathematically, the Green'’s function associated with
this system satisfies the ordinary linear differential equation

A GA(el€) + AGa(al) = ~b(z - &),
with 0 < z, € < ¢, and the Dirichlet boundary conditions
GA(0[€) = 0= G, (¢¢).
Using the Sturm-Liouville method|3] we get for the Green’s function
sin(VAz)sin[VA(£-€)] O<z<§
Gaal€) = F————
Vsin(vAe) sin(vVAg)sin[VA(l —z)] E<z <t

As we already said, the polar singularities are given by the algebraic

equation
VA = km,
with k =1, 2,... We can write
2
T
A=k L

this means that the poles are isolated points of the complex plane, located
on the real axis, as shown in Figure 1.

3After separation of variables, the partial differential equation (wave equation) is led
into two ordinary differential equations, one of than, in temporal variable, have a trivial
solution and another differential equation, in the spatial variable, is the equation which
will be discussed.



We note that the separation between poles is given by
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Figure 1: Poles on the real axis.

This form for G5(z|€) shows that the Green's function has poles on com-
plex plane at the points w = km/¢, with k a non null integer. These poles
will correspond to A = 72k?/€, i.e., poles on the complex plane A. Notice

that k£ = 0 is not a pole.

2.2 The Continuous Case

For £ — 0o, a vibrating string of ‘infinite’ length, we have a branch cut, as
can be seen in Figure 2. The value A = 0 is the so-called “branch point”.

In this case, the poles of the Green’s function coalesce to form a branch
cut, and the infinite sum of discrete eigenfunctions is substituted by a line
integral.

In other words, instead of representing the function as a discrete sum of
eigenfunctions we represent it as an integral transform. Mathematicaly this
means that we have to evaluate a contour integral around a branch cut.[2]

4We say that a string is infinite when its length is much greater than its other dimen-

sions.
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Figure 2: A = 0 is a branch point.

We begin by calculating the integral of G,(z|€) on a circle thh center at
the origin and radius R (after we take R — o0), i.e.,

j{ Gy (z|€)d\ = f %_‘/,\—X—I—)e‘ﬁ‘d/\,

with 0 < £ < €. For the interval 0 < £ < z we exchange z and £ in the
second member of the integral above because

Ga(z|€) = Ga(€]z)-
Now, we parameterize the contour of integration as follows:
A(#) = Re
with 0 < 6 < 27. In terms of the complex variable, w,

w=vAX

the contour is led into a semicircle as w = |w| to w = |w| '™ and then we can
write for the integral above the following representation

e g N
j{ Gi(z|€)d) = Iun / — [eleH) _ gminl==8] 94y, ¢ .
|w|—o00 w| 22



In this integral the integrand is an analytical function. By deforming the
path of integration the semicircle is transformed into a line along the real
axis and we can write the following expression

fGA(IIE)d,\ = 'l/ [ef.li(.‘c+£)_e—ip(.r—f)] d/.l.
-oc

= 2mi[6(z + &) —&(z—¢)].

If we take a semi-infinite vibrating string, the domain is 0 < z < £ and then
(the first Dirac delta function goes to zero) it follows that

o j[ Gi(zl€)dr = —5(z — ). (1)

3 Another Contour of Integration

- We now consider the same contour integral but with our circular contour
deformed in two linear contours in the right side (the positive real axis), i.e.,
0 < )\ < 00, or a branch cut of

1 sin(vViz)eV¥  0<z <€

Gi(z|€) = —=

va sin(V ) eV¥®  f<z<oc.

Let us first introduce the notation G5 (z|€) relatively to the opposite sides

of the branch cut, as in Figure 3.
To evaluate this Green’s function we consider the first sheet of the Rie-

mann surface of the v/, i.e., using the definition

V/|A| above to the branch cut
=
—+/|A| below to the branch cut.

With this definition we can write

0 00
fosign = / G (2]€)dA + [ G5 (z]€)dA

_ [ " (G5 (=le) - G (al€)] d
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Figure 3: Two possible Green’s functions.

where

VIAl
The discontinuity along the branch cut is given by the expression

G (zl€) - G5 (zle) = ﬁ sin(v/]NJz) sin(v/[NE),

and substituting this relation in the integral for G,(z|€), we get

1 _ 1 = sin(y/[Al) sin(/]A]€)
= fGrtalomn =1 | N

Introducing the change of variable 1/|A| = w we can write

1 B .
%jgc’,\(a:lﬁ)d)\ = —-7}-'/0 sin wz sin wé dw. (2)

Gx(zle) =

4 Integral Representation

As we can see, the two procedures led us to two different expressions, Eq.(1)
and Eq.(2), for the contour integral for the Green’s function. Identifying

these expressions we get

dz—-¢&)= %/Ow sin(wz) sin(w§) dw

i




i.e., a spectral representation for the Dirac delta functions, obtained by the
problem associated with the semi-infinite vibrating string.

This expression can also be interpreted as an integral representation for
the Dirac delta function associated with the sine Fourier transform. It can
be used in the several situations in which a solution for a problem may be
found using this integral transform.

5 Concluding Remarks

In this note we answered the question "How can we relate a finite number of
poles and a branch cut?” made by a student during a course of Complex Anal-
ysis. We used the Sturm-Liouville method to calculate a convenient Green's
function associated with an ordinary differential equation and discussed the
continuous and discrete cases, i.e., a problem involving eigenvalues.

For the discrete case we considered a finite system, i.e., a vibrating string
of length £; the second (continuous) case is represented by a vibrating string
of infinite length. In the first case the Green’s function is written in terms
of convenient trigonometric sine functions while in the continuous case we
have to expand it in a sine Fourier integral. After a convenient change of the

contour of integration we got an integral representation for the Dirac delta

function, i.e., a spectral representation.
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