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Abstract

This paper studies Morse decompositions of discrete and continuous-
time semiflows on compact Hausdorff topological spaces. We extend
two classical results which are well known facts for flows on com-
pact metric spaces: the characterization of the Morse decompositions
through increasing sequences of attractors and the existence of Lya-
punov functions.
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1 Introduction

This paper is related with the papers [8] and [9], which investigate the dy-
namical concept of Morse decomposition from the point of view of semigroup
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theory and apply the results to the study of semiflows of endomorphisms of
fiber bundles.

The link between Morse decompositions and semigroup theory is based
in two ingredients: an wide concept of chain (and chain recurrence) and the
theory of shadowing semigroups of semiflows.

The connection between Morse decompositions and chain recurrence is
an extension to semiflows on compact Hausdorff spaces of a classical result
in the Conley theory: the finest Morse decomposition is given by the chain
transitive components of the chain recurrence set. This fact is proved in
[8] by using the main result of the present paper. The abstract theory of
shadowing semigroups, which provides the link between semigroup theory
and a generalized concept of chain recurrence, is also presented in [8].

These abstract theories are applied in [9] to the study of semiflows of
endomorphisms on flag bundles, which are associated fiber bundles whose
typical fiber are the generalized flag manifolds of noncompact semi-simple
(or reductive) Lie groups. The results presented in [1], describing the chain
transitive components for continuous-time flows of automorphisms on flag
bundles with some restrictions on their base space, are extended in [9] to
discrete and continuous-time semiflows of endomorphisms on general flag
bundles with paracompact topological base spaces.

In this paper we study Morse decomposition of semiflows on topological
space. We consider a very general situation of a discrete or continuous-time
semiflow σt evolving on a compact Hausdorff topological space X which do
not need to be a metric space. The main result of the present paper is the
characterization of Morse decompositions in terms of increasing sequences
of attractors. This is a well known fact for flows on compact metric spaces
and was extended in [10] (see also [5] and [4]) for semiflows on compact
metric spaces. Let us mention that this general context is not vacuous,
since semiflows appear naturally in practice, while abstract topological spaces
arise, for instance, in compactifications of dynamical systems. This result
follows from the extension to semiflows of the lemmas presented in [3], which
are used to prove this characterization for flows on compact Hausdorf spaces.

The paper is concluded with a discussion on the existence of the so called
Lyapunov functions for semiflows on topological spaces. We show that when
an open semiflow and, in particular, a flow on a compact Hausdorff space
have the finest Morse decomposition, then they have a complete Lyapunov
function. Therefore, for open semiflows of endomorphisms or flows of auto-
morphisms of a flag bundle, with a chain transitive semiflow induced on the
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compact Hausdorff base space, a complete Lyapunov function there always
exists, since the finest Morse decomposition always exists, as is proved in [9].

2 Preliminaries

Let X be a compact Hausdorff topological space. A semiflow on X is a
continuous map σ : T×X → X, where T may be the set of positive integers
Z+ or the set of the positive real numbers R+, such that

(i) σ0 = idX , and

(ii) σt+s = σt ◦ σs, for all s, t ∈ T.

As usual we write σt for the map σt : X → X defined by σt(x) = σ(t, x).
The maps σt, t ∈ T, are continuous, but we do not assume them to be
invertible.

Given a subset Y ⊂ X and t ∈ T we write Y +
t =

⋃
s≥t σs(Y ) and Y t

+ =⋃
0≤s≤t σs(Y ). We also write Y −

t =
⋃

s≥t σ
−1
s (Y ) and Y t

− =
⋃

0≤s≤t σ
−1
s (Y ).

In particular, the forward orbit of Y under the semiflow is Y +
0 while Y −

0 is
the backward orbit.

The ω-limit set of the subset Y ⊂ X is defined in the usual way as

ω(Y ) =
⋂

t∈T
cl

(
Y +

t

)
.

Also the ω∗-limit set of Y is

ω∗(Y ) =
⋂

t∈T
cl

(
Y −

t

)
.

If x ∈ X we write more simpler x+
t = {x}+

t , x−t = {x}−t , xt
+ = {x}t

+ and
xt
− = {x}t

−. A sequence Λ = (xk) in X is called x-backward if x0 = x and
σ1(xk) = xk−1, for all k ∈ N. We define the Λ-backward orbit of x as

Λ(x) =
∞⋃

k=1

⋃

s∈[0,1]

σs(xk).

It is clear that the backward orbit of x is the union of all Λ-backward orbits
of x, with Λ running through the x-backward sequences. Given t ∈ T we
write

Λ(x)t = Λ(x) ∩ x−t .
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For each t ∈ T, there is a unique xt ∈ Λ(x) such that σt(x
t) = x. Thus we

define
Λ(x)t =

⋃

s∈[0,t]

σs(x
t).

The ω∗Λ-limit set of a given Λ-backward orbit of x is defined as

ω∗Λ(x) =
⋂

t∈T
cl (Λ(x)t) .

A subset Y ⊂ X is (forward) invariant if σt(Y ) = Y for all t ∈ T. The
subset Y is backward invariant if σ−1

t (Y ) = Y for all t ∈ T. Note that in both
case we require equalities and not just inclusions. In the case σ is actually
a flow, note that the usual definition of invariance, σt(Y ) ⊂ Y for all t ∈ T,
is equivalent to the present one. It is clear that if Y is backward invariant,
then it is also invariant. However the converse is not always true as shows
the following example.

Consider a semiflow F : Z+ × [0, 1] → [0, 1], defined by F (t, x) = f t(x),
with f t = f ◦ · · · ◦ f , t times, where f : [0, 1] → [0, 1] is a continuous
piecewise linear function defined by f(x) = 2x for x in [0, 1

4
], f(x) = 1

2
for

x in [1
4
, 3

4
] and f(x) = 2x − 1 for x in [3

4
, 1]. Thus defining U = [1

4
, 3

4
] and

A = {1
2
}, we have that A is invariant, but is not backward invariant, because

F−1
1 (A) = f−1(A) = U . Furthermore for all t ∈ Z+, Ft(U) ⊂ U , but U is not

invariant in the present sense at all, since Ft(U) = A for all t ∈ Z+.
The following result is presented in [6] for the case where Y is a singleton

of a sequentially compact space X. The extension to arbitrary subsets of a
general compact Hausdorff space X is straightforward by using nets.

Proposition 2.1 Let Y ⊂ X. Then ω(Y ) and ω∗(Y ) are invariant sets.

The concept of Morse decomposition for semiflows is analogous as for
flows. Recall that a collection {M1, . . . , Mn} of non-void, pairwise disjoint
and compact invariant subsets of X is a Morse decomposition if

(i) For all x ∈ X and all x-backward sequence Λ one has that ω(x) and
ω∗Λ(x) belong to

⋃n
i=1 Mi;

(ii) If ω(x) and ω∗Λ(x) belong to Mi, for some x-backward sequence Λ, then
x ∈ Mi;

(iii) The relation ¹ is a partial order,
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where the relation ¹ is defined on {M1, . . . , Mn} as follows: Mi ¹ Mj if,
and only if, there are a chain of sets {Mi = Mm1 , . . . , Mml+1

= Mj}, points
{x1, . . . , xl} and sequences {Λ1, . . . , Λl}, such that, for all k ∈ {1, . . . , l}, we
have Λk is xk-backward and ω∗Λ(xk) ⊂ Mmk

and ω(xk) ⊂ Mmk+1
.

Each element of Mi is called Morse set. We can order the Morse sets
in such way that Mi ¹ Mj implies that i ≤ j. Thus it is not difficult to
verify that the condition (iii) in the above definition is equivalent to the
collection {M1, . . . , Mn} can be ordered in such way that, for all x ∈ X and
all x-backward sequence Λ, there are integers i and j with i ≤ j such that
ω(x) ⊂ Mi and ω∗Λ(x) ⊂ Mj.

3 Attractors and Morse decompositions

A subset A ⊂ X is called an attractor if there is a neighborhood U of A such
that ω(U) = A. Similarly a set R ⊂ X is called a repeller if ω∗(V ) = R,
for some neighborhood V of R. It is implicit in their definitions that the
attractors and the repellers are invariant sets.

Proposition 3.1 If A is an attractor and U is a neighborhood of A such
that ω(U) = A, we have that

A =
⋂

t∈T
U+

t =
⋂

n∈N
(int U)+

n . (1)

Similarly, if R is a repeller and V is a neighborhood of R such that ω∗(V ) =
R, we have

R =
⋂

t∈T
V −

t =
⋂

n∈N
(int V )−n . (2)

In particular, R is a Gδ-set, i.e., countable intersection of open sets and, if
σt is an open map for all t ∈ T, A is also a Gδ-set.

Proof: For some t ∈ T, we have cl(U+
t ) ⊂ int U . For each s ∈ T, we have

cl(U+
t+s) ⊂ σs(cl(U

+
t )), because σs(cl(U

+
t )) is closed and contains U+

t+s. If
x ∈ A, then x ∈ cl(U+

t+s) ⊂ σs(int U), for all s ∈ T. Hence

A =
⋂

t∈T
U+

t =
⋂

t∈T
(int U)+

t .
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Since for all t, s ∈ T, with t < s, we have (int U)+
s ⊂ (int U)+

t , it follows that
(int U)+

n+1 ⊂ (int U)+
t ⊂ (int U)+

n , if n ≤ t < n + 1. This implies equation
(1). The proof of (2) is analogous.

The assertion that R is a Gδ-set follows by the equation (2) and the fact
that for each n ∈ N, (int V )−n is an open set. When σt is an open map for
all t ∈ T, we have that (int U)+

n is an open set for all n ∈ N, so that the
equalities (1) imply that A is a Gδ-set.

Corollary 3.2 If σ is actually a flow, then A and R are Gδ-sets.

If A is an attractor, we define A∗ = {x ∈ X : ω(x) ∩ A = ∅}, which is
called the complementary repeller of A due the following result.

Proposition 3.3 If A is an attractor, it is an invariant set and its comple-
mentary repeller A∗ is in fact a repeller. For any compact neighborhood K of
A disjoint from A∗, we have ω(K) = A. Also if K is a compact neighborhood
of A∗ disjoint from A then ω∗(K) = A∗.

Proof: The proof follows in the same way presented in [3], Chapter II, page
32, 5.1.A, with some straightforward adaptations to semiflows. The invari-
ance of A follows by Proposition 2.1.

If R is a repeller, we define its complementary attractor by

R∗ = {x ∈ X : ω∗Λ(x) ∩R = ∅ for some x-backward Λ}.

Proposition 3.4 If R is an repeller, it is backward invariant and its comple-
mentary attractor R∗ is in fact an attractor. For any compact neighborhood
K of R disjoint from R∗, ω∗(K) = R and if K is a compact neighborhood of
R∗ disjoint from R, we have ω(K) = R∗.

Proof: The backward invariance of R follows by (2) of Proposition 3.1,
because for all s ∈ T

σ−1
s (R) =

⋂

t∈T
σ−1

s (V −
t ) = R,

since σ−1
s (V −

t ) = V −
t+s.
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Let V be a neighborhood of R such that ω∗(V ) = R. Then for some
t > 0, cl(V −

t ) ⊂ int V . Defining U = X\V −
t , we have cl(X\U) ⊂ int V and

cl(X\V ) ⊂ X\int V ⊂ int U .
Now if x ∈ U and s ≥ t, then σs(x) /∈ V , because if σs(x) ∈ V , then

x ∈ σ−1
s (σs(x)) ⊂ V −

t . Hence cl(U+
t ) ⊂ cl(X\V ) ⊂ int U . Therefore ω(U) is

an attractor. If x ∈ ω(U) then there is an x-backward sequence Λ such that
ω∗Λ(x) ⊂ ω(U). Thus ω∗Λ(x)∩R = ∅ and therefore x ∈ R∗. On the other hand,
if x ∈ R∗, there is some x-backward sequence Λ such that ω∗Λ(x) ∩ R = ∅.
Hence Λ(x) ⊂ X\V ⊂ U and thus x ∈ ω(U). Therefore R∗ = ω(U) is an
attractor.

Suppose now that K is a compact neighborhood of R disjoint from R∗.
Since R∗ ⊂ X\K, for some t ∈ T, we have σt(U) ⊂ X\K. If x ∈ K, then x
is not in σt(U). Hence σ−1

t (x) ⊂ X\U and thus cl(K−
t ) ⊂ cl(X\U) ⊂ int V ,

which implies that ω∗(K) = R.
The last assertion of this proposition follows analogously.

The following result although immediate for flows requires a proof for
semiflows.

Lemma 3.5 If A is an attractor, then (A∗)∗ = A. Analogously, if R is an
repeller, then (R∗)∗ = R.

Proof: Let V be compact neighborhood of R disjoint from R∗ and U =
X\int V . If x ∈ (R∗)∗, then ω(x) ∩ R∗ = ∅. Then x+

0 ⊂ X\U ⊂ V and
x ∈ V −

t , for all t ∈ T. Hence x ∈ ω(V ) = R, showing that (R∗)∗ ⊂ R.
If x ∈ R, then ω(x) ⊂ R and ω ∗ (ω(x)) ⊂ R. Hence ω(x) ∩ R∗ = ∅ and
therefore x ∈ (R∗)∗, which implies that R ⊂ (R∗)∗.

Let U be a compact neighborhood of A disjoint from A∗ and V = X\int U .
If x ∈ (A∗)∗, then there is an x-backward sequence Λ such that ω∗Λ ∩A∗ = ∅.
Then Λ(x) ⊂ X\V ⊂ U and x ∈ U+

t , for all t ∈ T. Thus x ∈ ω(U) = A,
showing that (A∗)∗ ⊂ A. If x ∈ A, then there exists an x-backward sequence
Λ such that ω∗Λ(x) ⊂ A. Hence ω(ω∗Λ(x)) ⊂ A and thus ω∗Λ(x) ∩ A∗ = ∅,
which implies that x ∈ (A∗)∗ and that A ⊂ (A∗)∗.

We now recall the example presented before Proposition 2.1. The set A =
{1

2
} is attractor for the semiflow F : Z+ × [0, 1] → [0, 1] because A = ω(U),

where U = [1
4
, 3

4
]. Despite A being invariant, it is not backward invariant,

since F−1
1 (A) = U . The complementary repeller of A is the set A∗ = {0, 1},
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which is backward invariant. Indeed F−1
t ({0}) = {0} and F−1

t ({1}) = {1}
for all t ∈ T.

Lemma 3.6 Let K be a compact set in X. Suppose that there are a point
x ∈ K and a net xi → x such that Λti

i (xi) ⊂ K, where ti →∞ and Λi is an
xi-backward sequence. Then there are a point y ∈ K, with σ1(y) = x, and a
net yj → y such that Λ

sj

j (yj) ⊂ K, where sj → ∞ and Λj is a yj-backward
sequence.

Proof: Taking a subnet, we may assume that ti ≥ 1. Hence there exists
zi ∈ K such that σ1(zi) = xi. By the compactness of K, there is y ∈ K
and a subnet zij → y. We have that σ1(y) = x, since xij = σ1(zij) → σ1(y).

Defining yj = zij , sj = tij − 1 and Λj = Λij\{xij}, we also have that yj → y,
sj →∞ and

Λ
sj

j (yj) ⊂ Λ
tij
ij

(xij) ⊂ K.

Lemma 3.7 Let K be a compact set in X and A a maximal invariant set in
K such that A ⊂ int K. Then A is an attractor if, for all x ∈ K\L, where
L = int K ∩ σ−1

1 (int K), and all x-backward sequence Λ, the backward orbit
Λ(x) is not contained in K.

Proof: For each x ∈ K\L there are an open neighborhood Vx of x and tx ∈ T
such that Λtx(y) is not contained in K, for all y ∈ Vx and all y-backward
sequence Λ. If this is not the case, there are x ∈ K\L and a net xi → x such
that Λti

i (xi) ⊂ K, where ti → ∞ and Λi is xi-backward sequence. Applying
Lemma 3.6 we can construct recursively an x-backward sequence contained
in K, which is a contradiction. A finite number of subsets Vx cover the
compact set K\L and, defining t as the maximum of the corresponding tx,
we have that Λt(x) is not contained in K for all x ∈ K\L and all x-backward
sequence Λ.

If xt
+ ⊂ K, then x+

0 ⊂ K. If this is not the case,

t = sup{s ∈ T : xs
+ ⊂ K} ≥ t

is finite. Since K is closed, then xt
+ ⊂ K. Hence σt(x) is contained in

L = int K ∩ σ−1
1 (int K), since Λt(σt(x)) = xt

+ ⊂ K, for any σt(x)-backward
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sequence Λ containing x. If T = R+, there is ε > 0 such that σs(x) ∈ K, if
s ∈ [t − ε, t + ε]. Thus xt+ε

+ ⊂ K, which is a contradiction. If T = Z+, we
have that σt+1(x) = σ1(σt(x)) ∈ σ1(L) ⊂ K and hence xt+1

+ ⊂ K is again a
contradiction.

For all x ∈ A, we have xt
+ ⊂ A ⊂ int K. Thus there is a neighborhood

U of A contained in K such that U t
+ ⊂ K, which implies that U+

0 ⊂ K and
therefore ω(U) ⊂ K. Therefore the invariant set ω(U) is contained in the
maximal A and, since A ⊂ U , it contains A. Thus A = ω(U) is an attractor.

Lemma 3.8 Let K be a compact set in X and R a backward invariant set,
which is maximal invariant in N = σ−1

1 (K) and such that R ⊂ int N . Then
R is a repeller if, for all x ∈ N\L, where L = int N ∩ int K, the forward
orbit x+

0 is not contained in N .

Proof: For each x ∈ N\L, there is tx ∈ T and a neighborhood Vx of x such
that σtx(Vx)∩K = ∅. A finite number of sets Vx cover the compact set N\L
and, defining t as the maximum of the corresponding tx, we have that xt

+ is
not contained in K for all x ∈ N\L.

If xt
− ⊂ N , then x−0 ⊂ N . If this is not the case,

t = sup{s ∈ T : xs
− ⊂ N} ≥ t

is finite. If T = Z+, we have that xt
− ⊂ N . If T = R+, there is a sequence

tn → t such that such that tn < t and xtn− ⊂ N . If y ∈ σ−1
t (x), we have

that σt−s(σs(y)) = x, for all s ∈ [0, t]. Thus yt
+ ⊂ xt

− and furthermore
σt−tn(y) ∈ xtn− ⊂ N . Since N is closed and σt−tn(y) → y, it follows that
y ∈ N and thus xt

− ⊂ N . Therefore, if y ∈ σ−1
t (x), then yt

+ ⊂ xt
− ⊂ N . This

implies that σ−1
t (x) ⊂ L = int N ∩ int K. If T = Z+, since

σ−1
t+1(x) = σ−1

1 (σ−1
t (x)) ⊂ σ−1

1 (K) = N,

we have that xt+1
− ⊂ N , which is a contradiction. If T = R+, for each y ∈

σ−1
t (x), there are a neighborhood Vy of y and εy > 0 such that σ−1

s (z) ⊂ N ,
for all z ∈ VY and s ∈ [0, εy]. A finite number of subsets Vy cover the compact
set σ−1

t (x) and, defining ε > 0 as the minimum of the corresponding εy, we
have that σ−1

t+s(x) = σ−1
s (σ−1

t (x)) ⊂ N , for all s ∈ [0, ε]. Therefore xt+ε
− ⊂ N ,

which is again a contradiction.
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For each x ∈ R there is a neighborhood Vx of x such that (Vx)
t
− ⊂ N .

If this is not the case, there is a net xi → x such that σti(yi) = xi, where
yi ∈ X\int N and ti ∈ [0, t]. We may assume that ti → t and yi → y, where
t ∈ [0, t] and y ∈ X\int K. Thus σt(y) = x, because xi = σti(yi) → σt(y).
This is a contradiction, because y ∈ σ−1

t (R) = R ⊂ int K. Hence V =⋃
x∈R Vx is an neighborhood of R such that V t

− ⊂ N . Thus V −
0 ⊂ N , which

implies that ω∗(V ) ⊂ N . Therefore the invariant set ω∗(V ) is contained in
R and, since R ⊂ V , it contains R. Hence R = ω∗(V ) is a repeller.

Corollary 3.9 Let R be a repeller in X and R be a repeller in R. Then R
is a repeller in X.

Proof: Let K be a compact neighborhood of R in X which is disjoint from
the attractor R∗, complementary to R in R, and is disjoint from the at-
tractor R∗, complementary to R in X. By the backward invariance of R
and the forward invariance of R∗ and R∗, we have that N = σ−1

1 (K) is
also a compact neighborhood of R in X which is disjoint from R∗ and R∗.
Since R ⊂ L = int N ∩ int K, if x ∈ (N\L) ∩ R, then ω(x) ⊂ R∗ and if
x ∈ (N\L)\R, then ω(x) ⊂ R∗. In either case, ω(x) is not contained in N
and thus x+

0 is not contained in N . By the Lemma 3.8, since R a backward
invariant set and maximal invariant in N , we have that R is a repeller in X.

We can now state the main result of the present paper. It is the following
characterization of Morse decompositions in terms of attractor-repeller pairs.
This result is well known for flows on compact metric spaces. We prove it
for discrete and continuous-time semiflows on compact Hausdorff topological
spaces.

Theorem 3.10 For a semiflow σ on a compact Hausdorff space X, a finite
collection of subset {M1, . . . , Mn} defines a Morse decomposition if and only
if there is a strictly increasing sequence of attractors

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X

such that
Mi = Ai ∩ A∗

i−1,

for i = 1, . . . , n.
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Proof: After Lemmas 3.5 and 3.7 and Corollary 3.9, the proof is the same
as in [3], Chapter II, page 40, 7.1.B and 7.1.C.

4 Lyapunov functions

We conclude the paper discussing the existence of the so called Lyapunov
functions. A Lyapunov function associated to an attractor-repeller pair
(A, A∗) is a real valued function LA : X → [0, 1], such that L−1

A (0) = A,
L−1

A (1) = A∗ and LA is strictly decreasing on orbits in κ(A,A∗), where

κ(A,A∗) = X\ (A ∪ A∗)

is called the set of connecting orbits of the attractor-repeller pair (A,A∗).
A semiflow σ on a compact Hausdorff space X such that σt is an open

map for all t ∈ T is called an open semiflow. A simple example is the
semiflow generated by the map g : S1 → S1, defined by g(z) = z2, where
S1 = {z ∈ C : |z| = 1}. This is an open map, since g is in fact a covering
map of S1 onto S1.

Proposition 4.1 Let σ be an open semiflow on a compact Hausdorff space
X. For each attractor-repeller pair (A, A∗), there is a Lyapunov function LA

associated to it.

Proof: The proof is analogous to that of [3], Chapter II, 5.1.B. The point is
an application of a refinement of the Urysohn’s Lemma, which ensures the
existence of a continuous function l : X → [0, 1] such that l−1(0) = A and
l−1(A∗) if, and only if, both A and A∗ are closed Gδ-sets. Here we require
this refinement, which can be found in [7], page 137, and our Proposition
3.1, which shows that A and A∗ are closed Gδ-sets.

Corollary 4.2 Let σ be actually a flow on a compact Hausdorff space X.
For each attractor-repeller pair (A,A∗), there is a Lyapunov function LA

associated to it.

A complete Lyapunov function for a Morse decompositon

M = {M1, . . . , Mn}
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of a semiflow σ is a continuous real valued function LM : X → R, which is
strictly decreasing on orbits outside

⋃n
i=1 Mi and such that, for each critical

value c, the set L−1
M(c) is a Morse component, where LM(

⋃n
i=1 Mi) is the set

of critical values of LM.

Proposition 4.3 If M = {M1, . . . , Mn} is a Morse decompositon of an
open semiflow σ on a compact Hausdorff space X, there exists a complete
Lyapunov function for M.

Proof: Defining LM =
∑n

i=1 3−iLAi
, where LAi

is the Lyapunov function
associated to the attractor-repeller pair (Ai, A

∗
i ) given by Proposition 4.1, we

have that LM is a complete Lyapunov function for M.

Corollary 4.4 If M = {M1, . . . ,Mn} is a Morse decompositon of a flow σ
on a compact Hausdorff space X, there exists a complete Lyapunov function
for M.

A complete Lyapunov function for the semiflow σ is a continuous real
valued function L : X → R, which is strictly decreasing on orbits outside
the chain recurrent set and such that the set L(R) of critical values of L is
nowhere dense in R and, for each critical value c, the set L−1(c) is a chain
transitive component. When the finest Morse decoposition exists, a complete
Lyapunov function also exists, because the chain transitive components of
R are indeed the finest Morse decomposition. As is proved in [9], in the
situation of open semiflows of endomorphisms or flows of automorphisms
of a flag bundle, with a chain transitive semiflow induced on the compact
Hausdorff base space, the finest Morse decomposition always exists. Thus in
this case a complete Lyapunov function there always exists.

Proposition 4.5 Let σ be an open semiflow σ or, in particular, be a flow
on a compact Hausdorff space X. If the finest Morse decomposition for σ
exists, then a complete Lyapunov function for σ also exists.

As in the metric case, if an open semiflow σ has at most countably many
attractors-repellers pairs in a compact Hausdorff space X, the existence of a
complete Lyapunov function for the σ is also guaranteed. The proof of this
fact is similar to those one presented in [3], Section 6.4.
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