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Universidade Estadual de Campinas

Cx. Postal 6065, 13.081-970 Campinas-SP, Brasil

December 16, 2005

Abstract

We study the chain transitivity and Morse decompositions of dis-
crete and continuous-time semiflows on fiber bundles with emphasis
on (generalized) flag bundles. In this case an algebraic description of
the chain transitive sets is given. Our approach consists in embedding
the semiflow in a semigroup of continuous maps to take advantage of
the good properties of the semigroup actions on the flag manifolds.
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1 Introduction

This paper studies chain transitivity and Morse decompositions of flows and
semiflows on fiber bundles. We develop a general method to describe the
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chain components (that is, the maximal chain transitive sets) of a semiflow
on a fiber bundle E → X via semigroups of continuous maps. This method
is applied to semiflows on flag bundles, that is, fiber bundles whose fibers are
(generalized) flag manifolds of noncompact semi-simple and reductive Lie
groups.

For these bundles the general method is successful in reducing the study
of the chain transitive sets to the analysis of the action of open semigroups
on flag manifolds. Then we use the existing results on open semigroups on
semi-simple Lie groups to prove that the number of chain components on the
fiber bundles is finite provided that the semiflow on the base space X is chain
transitive (see Theorem 6.2). This yields the existence of the finest Morse
decomposition of the semiflow, when the base space X is compact (see [13]).

We also give an algebraic characterization of a chain component M by
describing its intersections with the fibers. Identifying a fiber Ex of E → X
with a flag manifold G/P we prove that M∩Ex is a variety of fixed points for
the action on G/P of an element hx ∈ G, which changes continuously with
respect to x. Under chain transitivity on X the various hx are conjugate in
G, that is, are contained in a fixed conjugacy class of G (see Theorem 7.5).
This way M is a kind of subbundle of E.

To prove that the number of chain components is finite we assume only
that the base space is paracompact while for the algebraic characterization
we require the backward invariance of the attractor chain component (which
holds for flows but may fail for semiflows) and the existence of ω and ω∗-limit
sets in the base (which is fulfilled if X is compact).

These results were proved before in [3] under an assumption on the base
space, namely that its semigroup of local homeomorphisms satisfies a con-
dition of local transitivity. It was shown in [3] that this condition holds on
open sets of Frechet spaces and on compact Riemannian manifolds, but not
for general metric spaces. Here we improve the results of [3] in following
directions: (i) the base space X can be any paracompact topological space
instead of the metric space context of [3]; (ii) we work with continuous or
discrete-time semiflows, while [3] considers only continuous-time flows.

These results generalize naturally previous results on linear flows on pro-
jective bundles, which have been extensively studied in the literature (see
Colonius-Kliemann [4], [5], Conley [6], Sacker-Sell [16], Salamon-Zehnder
[17], Selgrade [18], and references therein). In particular the algebraic de-
scription of the chain components generalizes the main result of [18], where
the chain components on a projective bundle are given by a Whitney decom-
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position of the underlying vector bundle. We give here an independent proof
of this result.

We describe now the contents of the paper. In Section 2 we recall the
results and concepts of [13] and [14] about chain transitivity, chain recurrence
and Morse decompositions in the context of topological spaces. We use our
concept of admissible family of open coverings to define the O-chains of a
semiflow. The O-chain recurrent set is related to Morse decomposition of the
semiflow. We recall also the concept of shadowing semigroup, as defined in
[14], and state the results relating them to the O-chain components.

In Section 3 we specialize to fiber bundles the general results stated in
Section 2. After recalling the construction of the associated bundles E =
Q ×G F our first job is to delimitate a correct admissible family of open
coverings of E. Here we assume local triviality of E and make use of a set Ψ
of local trivializations to define a family OΨ (E) of coverings adapted to the
trivializations in Ψ. We check thatOΨ (E) is admissible in three situation: (i)
E is a trivial bundle and Ψ consists of just one trivializing map (this situation
is enough for cocycles or skew-product semiflows); (ii) the fiber F is a metric
space acted transitively by a subgroup K ⊂ G of isometries of F , and the
base X is a general topological space; (iii) the base space X is a locally
compact paracompact space. Next we verify that the shadowing semigroup
approach to chain transitivity works within the semigroup of endomorphisms
of E. For this we assume the condition (ii) above. In this case where F is
acted transitively by a subgroup of isometries we describe a natural way of
defining distance functions on the fibers (cf. Salamon-Zehnder [17]).

To have the chain recurrent set from the shadowing semigroups we must
discuss the control sets. We devote Section 4 to the control sets of semi-
groups on fiber bundles. The novelty here is that we consider semigroups
of endomorphisms of E → X, that is, continuous maps which map fibers
into fibers homeomorphically, but which are not necessarily local homeomor-
phisms. Some of the results here were known for local homeomorphisms,
but there are new results which are used in subsequent sections. However,
the extension to the more general case considered here is not completely
straighforward.

We start to look specifically to flag bundles with the analysis of the control
sets in Section 5. Here the main issue is to prove that the control sets intersect
every fiber of the bundle provided the semigroup acts transitively on X. In
other words any control set projects down onto the base space. To prove this
the full algebraic structure of the flag manifolds is used. In fact, for general
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fiber bundles we can prove the surjectivity of the projections only for the
invariant (forward and backward) control sets. The fact that the control sets
meet every fiber is crucial to have a full picture of them, and hence of the
chain components.

In Section 6 we combine all the previous results to give a first description
of the chain components of a semiflow on a flag bundle. Under the assumption
that the semiflow is chain transitive on the base space X we prove that their
number is finite and parametrized by the Weyl group of the semi-simple Lie
group G. This description is enough to prove (if X is compact) the existence
of the finest Morse decomposition. Also, the algebraic properties of the flag
manifolds give several information about the chain components, like e.g. their
number and their ordering. These properties are read off from the concept
of parabolic type of the semiflow. The results of this section can be proved
in great generality, namely for discrete or continuous time semiflows and
paracompact base space.

Finally in Section 7 we get the above mentioned algebraic properties of
the fibers of a chain component M. The point here is to prove that there
are flag bundles where the attractor set M+ meets the fibers in singletons as
well as the repeller set M− in, possible, other flag bundles. These bundles
are determined by the parabolic type of the semiflow.

2 Preliminaries

A semiflow on a topological space X is a continuous map σ : T × X → X,
where T = Z+ or R+, such that (i) σ0 = idX and (ii) σt+s = σt ◦ σs, for all
s, t ∈ T. The maps σt, t ∈ T, are continuous, but we do not assume them to
be invertible.

Given a subset Y ⊂ X and t ∈ T we write Y +
t =

⋃
s≥t σs(Y ) and Y −

t =⋃
s≥t σ

−1
s (Y ). We also write Y t

+ =
⋃

0≤s≤t σs(Y ) and Y t
− =

⋃
0≤s≤t σ

−1
s (Y ). In

particular, the forward orbit of Y under the semiflow is Y +
0 and Y −

0 is the
backward orbit.

The ω-limit set of the subset Y ⊂ X is defined in the usual way as

ω(Y ) =
⋂
t∈T

cl
(
Y +

t

)
.
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Also the ω∗-limit set of Y is

ω∗(Y ) =
⋂
t∈T

cl
(
Y −

t

)
.

If x ∈ X we write more simpler x+
t = {x}+

t , x−t = {x}−t , xt
+ = {x}t

+ and
xt
− = {x}t

−. A sequence Λ = (xk) in X is called x-backward if x0 = x and
σ1(xk) = xk−1, for all k ∈ N. We define the Λ-backward orbit of x as

Λ(x) =
∞⋃

k=1

⋃
s∈[0,1]

σs(xk).

A subset A ⊂ X is invariant if σt (A) = A and backward invariant if
σ−1

t (A) = A, for all t ∈ T. (Note that in both cases we require equality of
the sets.) An invariant subset is called an attractor if there is a neighborhood
U of A such that ω(U) = A. Similarly an invariant subset R ⊂ X is called
a repeller if ω∗(V ) = R, for some neighborhood V of R. A repeller is also
backward invariant (see [13], Proposition 3.4).

2.1 Chain transitivity and Morse decompositions

We recall here the definitions and results related to the concept of chain
recurrence and chain transitivity introduced in [14]. This concept works for
semiflows on topological spaces and is based on families of open coverings of
the space.

Let X be a topological space and O a family of open coverings of X. For
U ,V ∈ O we write V ≤ U if for each V ∈ V , there exists U ∈ U such that
V ⊂ U . Also, we write V ≤ 1

2
U if for all V, V ′ ∈ V with V ∩ V ′ 6= ∅, there

exists U ∈ U with V ∪ V ′ ⊂ U . For example if X is a metric space and Uε is
the covering by all ε-balls we have V ≤ 1

2
Uε if V ≤ U 1

2
ε.

Given an open covering U of X and compact subset K ⊂ X we write

[U , K] = {U ∈ U : K ∩ U 6= ∅}.

If N ⊂ X is open with K ⊂ N we say that U is K-subordinated to N if, for
each U ′ ∈ [U , K] we have U ′ ⊂ N .

Definition 2.1 A family O of open coverings of X is said to be admissible
if

5



(i) for each U ∈ O there exists V ∈ O such that V ≤ 1
2
U .

(ii) Let N ⊂ X be an open set and K ⊂ N be compact. Then there exists
U ∈ O which is K-subordinated to N .

Known examples of admissible families are: (i) The family Ob(X) of all
coverings by ε-balls, ε > 0, of X when X is a metric space ; (ii) the family
O (X) of all open coverings of X when X is a paracompact space; (iii) the
family Of (X) of all finite open covering of X if X is a compact Hausdorff
space.

Take x, y ∈ X, U ∈ O and t ∈ T. A (U , t)-chain from x to y is
a sequence of points {x = x1, . . . , xn+1 = y} ⊂ X, a sequence of times
{t1, . . . , tn} ⊂ T and a sequence of open sets {U1, . . . , Un} ⊂ U such that
ti ≥ t and σti(xi), xi+1 ∈ Ui, for all i = 1, . . . , n.

Given a subset Y ⊂ X we write Ω(Y,U , t) for the set of all x such that
there is a (U , t)-chain from a point y ∈ Y to x. Also we put

Ω∗(x,U , t) = {y ∈ X : x ∈ Ω(y,U , t)}.

If O is a family of open coverings of X and Y ⊂ X we write

ΩO(Y ) =
⋂
{Ω(Y,U , t) : U ∈ O, t ∈ T}.

Also, for x ∈ X we write ΩO(x) = ΩO({x}) and define the relation x �O y
if y ∈ ΩO(x). If the family O is admissible then �O is transitive, closed and
invariant by σ, i.e., we have σt(x) �O σs(x) if x �O y, for all s, t ∈ T. For
every Y ⊂ X the set ΩO(Y ) is invariant as well.

Define the relation x ∼O y if x �O y and y �O x. Then x ∈ X is said
to be O-chain recurrent if x ∼O x. We denote by RO the set of all O-chain
recurrent points. It is easy to see that the restriction of ∼O to RO is an
equivalence relation.

An equivalence class of ∼O is called a O-chain transitive component or a
chain component, for short.

In case X is a compact Hausdorff space the chain recurrent set as well
as the sets ΩO(Y ), Y ⊂ X, are independent of the particular admissible
family O (see [14], Theorem 3.4). In this case we denote the common chain
recurrent set by R. In terms of attractors this set is given by

R =
⋂
{A ∪ A∗ : A is an attractor} ,
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where A∗ = {x ∈ X : ω(x) ∩A = ∅} is the complementary repeller (see [14],
Proposition 3.5).

Now we relate Morse decompositions to chain transitivity in the compact
case. First let us recall that a finite collection of subsets {M1, . . . ,Mn} defines
a Morse decomposition if and only if there is a strictly increasing sequence
of attractors

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X

such that Mi = Ai ∩ A∗i−1, for i = 1, . . . , n. For compact Hausdorff spaces
the existence of a finest Morse decomposition of a semiflow is equivalent to
the finiteness of the number of chain components (see [14], Theorem 3.15).

2.2 Shadowing semigroups

Let X be a topological space. A local semigroup on X is a family S of
continuous maps φ : domφ → X with domφ ⊂ X an open set, such that if
φ, ψ ∈ S and φ−1 (domψ) 6= ∅ then the composition ψ ◦φ : φ−1 (domψ) → X
also belongs to S. A local semigroup S acts naturally on X. We denote its
forward orbit by

Sx = {φx : φ ∈ S, x ∈ domφ}

and the backward orbit by

S∗x = {y : ∃φ ∈ S, φ(y) = x} =
⋃
φ∈S

φ−1{x}.

By means of this action we define the following three relations together with
their symmetrizations:

1. x � y if and only if y ∈ Sx and x ∼ y if and only if x �w y and y �w x.

2. x �w y if and only if y ∈ cl (Sx) and x ∼w y if and only if x �w y and
y �w x. (Weak relation.)

3. x �s y if and only if x ∈ int(S∗y) and x ∼s y if and only if x �s y and
y �s x. (Strong relation.)

We denote by [x]w be the ∼w class of x and let X∼w = {x ∈ X : [x]w 6= ∅}
be the set of self related elements. The restriction of ∼w to X∼w is an
equivalence relation. Similar remarks hold for the other relations.
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Definition 2.2 A weak class D = [x]w ⊂ X is said to be a control set of S
if x ∈ int (S∗x), that is, if x ∼s x.

If σ is a semiflow and t ∈ T the family Σt = {σs : s ≥ t} is a semigroup
of continuous maps of X. Given an open covering U of X, we define the
S-neighborhood of the identity map idX of X relative to U by

NS,U = {φ ∈ S : ∀x ∈ domφ, ∃Ux ∈ U such that x, φ(x) ∈ Ux}.

Definition 2.3 Let S be a local semigroup containing Σt. For all open cov-
ering U and t ∈ T, we define the (U , t)-shadowing set in S to be

Σt,U = {φσs : φ ∈ NS,U and s ≥ t}.

The (U , t)-shadowing semigroup St,U in S is the local semigroup generated
by Σt,U .

In the sequel we consider shadowing semigroups St,U with U ranging in a
specific family O of open coverings of X. For us the relevant families are the
admissible ones (see Definition 2.1). Therefore we assume always that O is
an admissible family of open coverings of X and S is O-locally transitive.

To construct a theory of continuous perturbations of the semiflow σ, we
are interested in local semigroups S which contain the semigroup Σt at least
for large t ∈ T and which have the good transitivity property stated in the
next definition.

Definition 2.4 Fix a local semigroup S that contains Σt and a family O
of open coverings of X. We say that S is O-locally transitive if given a
covering U ∈ O and U ∈ U , for every x, y ∈ U there exists φ ∈ NS,U such
that φ(x) = y.

Let Cl (X) be the local semigroup of all continuous maps defined on open
subsets of X. Then it is easy to check that Cl (X) is O-locally transitive for
any O.

The following results were proved in [14]. They relate the chains of a
semiflow σ and the action of the shadowing semigroups.

Proposition 2.5 Given x ∈ X, U ∈ O and t ∈ T, we have that St,Ux =
Ω(x,U , t) and S∗t,Ux = Ω∗(x,U , t) where

Ω∗(x,U , t) = {y ∈ X : x ∈ Ω(y,U , t)}. (1)
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Theorem 2.6 Let O be an admissible family of open coverings and assume
that the semiflow is contained in a O-locally transitive semigroup S. Let M
be a nonempty subset of X. Then the following condition is necessary and
sufficient for M to be a O-chain transitive component:

• For all shadowing semigroup St,U , t ∈ T and U ∈ O, there is an effective
control set DM,t,U such that M is contained in the set of transitivity
(DM,t,U)0 and

M =
⋂
U ,t

(DM,t,U)0 =
⋂
U ,t

cl (DM,t,U)0 . (2)

3 Semiflows on fiber bundles

The purpose of this section is to establish the topological results related
to chain recurrence of semiflows on fiber bundles. We consider a semiflow
σ : T × E → E defined on a fiber bundle E → X such that each σt is an
endomorphism of E (see below). Our purpose is twofold. First we build an
admissible family OΨ (E) of open coverings of E to be used as a basis for
chain recurrence in E. Secondly we give general conditions ensuring that the
semigroup of endomorphisms of E is OΨ (E)-locally transitive.

3.1 Notation and terminology

Regarding fiber bundles we follow the notation and terminology of Kobayashi-
Nomizu [11]. Let us start with a locally trivial principal bundle π : Q → X
with structural group G The base space X is a topological space and G is
a topological group acting on Q on the right. This action is denoted by
(q, a) ∈ Q × G 7→ q · a ∈ Q. The local triviality implies that the projec-
tion π is an open map. We denote the fiber above x ∈ X by Qx and the
fiber through q ∈ Q by Qq. The group G acts freely on Qq and, under the
hypothesis of local triviality, the map iq : G→ Qq given by

iq : a ∈ G 7−→ q · a (3)

is a homeomorphism. Often a local trivialization is realized by a local cross
section χ : U → Q, U ⊂ X. Then an atlas of Q is given by an open covering
{Ui}i∈I of X together with cross sections χi : Ui → Q. If Ui ∩ Uj 6= ∅ then
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χi (x) = χj (x) aij (x) with aij : Ui ∩ Uj → G the transition functions. When
it is possible to reduce the principal fiber bundle π : Q→ X to a subbundle
π : P → X, P ⊂ Q, with structural group K, then it is possible to choose
the trivializations such that the transition functions aij values in K.

An associated fiber bundle E = Q×GF → X is constructed via a continu-
ous action of G on the topological space F , the typical fiber. The total space
E is the quotient Q×F/ ∼ where ∼ is the equivalence relation (p, v) ∼ (q, w)
if and only if q = pa and w = a−1v. We denote the equivalence class of (q, v)
by q · v ∈ E. If Ψ = (Ui, χi)i∈I is an atlas of Q → X then the maps
ψi : π−1 (Ui) → Ui × F given by

ψi (χi (x) a · v) = (x, av)

are local trivializations of E → X. The family (Ui, ψi)i∈A is an atlas of
E → X.

For each q ∈ Q the mapping

v ∈ F 7→ q · v ∈ Eπ(q)

is a homeomorphism. When the action of G on F is transitive, for each
v ∈ F , the map

q ∈ Q 7→ q · v ∈ E (4)

is transitive as well. In this case we assume always that the map g ∈ G 7→
gx ∈ F is open for any x ∈ X (this condition holds for differentiable actions
of Lie groups). Then (4) is also an open map. We denote the image of a
subset A ⊂ Q under (4) by A · v. If the typical fiber F is compact, the local
triviality implies that π : E → X is a closed map.

Definition 3.1 A local endomorphism of Q is a map φ : domφ → Q such
that

1. domφ = π−1 (U) where U ⊂ X is an open set, and

2. φ (qa) = φ (q) a for every q ∈ domφ and a ∈ G.

We denote by Endl (Q) the set of local endomorphism of Q, which is
clearly a local semigroup.
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A mapping φ ∈ Endl (Q) maps fibers into fibers and hence induces a map
from π(domφ) into X. This induced map will also be denoted by φ. Also, if
E → X is an associated bundle we can define a map (also denoted by φ) by
φ (q · v) = φ (q) · v. Its domain is the open set in E above π(domφ).

Let χi : Ui → Q be local cross sections with Ui ⊂ X, i = 1, 2. If x ∈ X
and t ∈ T are such that x ∈ U1 and σt (x) ∈ U2, then σt (χ1 (x)) belongs to
the same fiber as χ2 (σt (x)) so that there exists ρχ1,χ2 (t, x) ∈ G such that

σt (χ1 (x)) = χ2gs ((x)) ρχ1,χ2 (t, x) .

We call the map ρχ1,χ2 the local cocycle defined by the cross sections χ1 and
χ2.

3.2 Admissible family of coverings

For the rest of this section we assume that the typical fiber F is a compact
metric space with metric d and the base space is paracompact. Also we fix
an atlas Ψ = (Ui, ψi)i∈I of E with (Ui)i∈I an open covering of X and ψi :
π−1(Ui) → Ui × F trivializing homeomorphisms with ψi(ξ) = (π(ξ), vi(ξ)),
where vi : π−1(Ui) → F is a continuous map. Since X is paracompact we
can (and will) assume that the covering {Ui : i ∈ I} is locally finite.

Definition 3.2 Let Ψ = (Ui, ψi)i∈I be an atlas of E. Given an open covering
U of X subordinated to {Ui}i∈I and a function ε : I → (0,+∞) we define the
open covering (U , ε) of E by

(U , ε) = {ψ−1
i (U ×Bεi

(v)) : U ∈ U , U ⊂ Ui , i ∈ I and v ∈ F}.

We say the covering (U , ε) is adapted to Ψ and denote by OΨ(E) the family
of all adapted open coverings.

In what follows we will take chains for semiflows on E with jumps pre-
scribed by adapted open coverings. To make sure that this family yields the
right results we must prove that OΨ (E) is admissible in the sense of Defi-
nition 2.1. We will check the first condition of admissibility in some special
cases, which are enough for our purposes. The second condition is proved in
the next lemma in full generality.

Lemma 3.3 Let N ⊂ E be an open set and K ⊂ N a compact subset. Then
there exists (V , ε) ∈ OΨ(E) which is K-subordinated to N .
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Proof: The projection π : E → X is continuous and an open map. Hence
π(N) is open, π(K) is compact and of course π(K) ⊂ π(N) ⊂ X. Since the
covering (Ui)i∈I is locally finite the set of i ∈ I such that Ui ∩ π(K) 6= ∅ is
finite.

Now take x ∈ π(K) and q ∈ Qx. For each ξ ∈ Ex ∩K, there are εξ > 0
and an open set Vξ ⊂ X such that

ψ−1
i

(
Vξ ×Bεξ

(vi(ξ))
)
⊂ N

if x ∈ Ui. By compactness of Ex ∩K, there are ξ1, . . . , ξn, such that

Ex ∩K ⊂
n⋃

k=1

ψ−1
i

(
Vξk

×Bεξk
(vi(ξk))

)
⊂ N.

We define Vx = Vξ1 ∩ · · · ∩ Vξn and

εx =
1

2
inf {d(vi(ξ), v) : x ∈ Ui , ξ ∈ Ex ∩K and v ∈ F\ ∪n

k=1 Bεξk
(vi(ξk))}.

Since Ex ∩K is compact we have that εx > 0. For i ∈ I such that Vx ⊂ Ui,
let α, ξ ∈ ψ−1

i (Vx ×Bεx(v)) with ξ ∈ K. Then d(vi(ξ), vi(α)) < 2εx,
which implies that vi(α) ∈ Bεξk

(vi(ξk)), for some k = 1, . . . , n. Hence

ψ−1
i (Vx ×Bεx(v)) ⊂ N and the family {Vx : x ∈ π(K)} is an open cov-

ering of π(K). Again by compactness there are x1, . . . , xm such that π(K) ⊂
Vx1 ∪ · · · ∪ Vxm .

Now we define V = {X\π(K), Vx1 , . . . , Vxm} and ε : I → (0,+∞) by
εi = min{εx1 , . . . , εxm}. Of course, (V , ε) ∈ OΨ(E) and the open sets in
(V , ε) having nonempty intersection with K are contained in N . Therefore
(V , ε) is K-subordinated to N , concluding the proof.

We discuss now the existence of the refinements required in Definition
2.1 (i). There are three situations where that condition is fulfilled. Firstly
let E = X × F be a trivial bundle. In this case we take the atlas Ψ with
just one (evident) chart. Then for any ε > 0 and every covering U ∈ O (X)
the covering (U , ε) is adapted. Also, it is clear that (V , ε

2
) ≤ 1

2
(U , ε), if

V ≤ 1
2
U . Hence OΨ (E) satisfies condition (i) of Definition 2.1. This proves

the following statement.

Proposition 3.4 If E = X × F is a trivial fiber bundle then the family
OΨ(E) is admissible.
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The second case is when the principal bundle Q → X can be reduced
to a subbundle P ⊂ Q with structural group K acting on the fiber F by
isometries. This case applies to the flag bundles to be considered later.

Proposition 3.5 Suppose that the principal fiber bundle Q → X can be
reduced to a subbundle P → X whose structural subgroup K acts on F by
isometries. Then the family OΨ(E) is admissible.

Proof: Take an atlas Ψ = (Ui, ψi)i∈I with transition functions aij : Uij →
K ⊂ G taking values in K. If K acts on F by isometries then for all u, v ∈ F
we have d(aij(x)u), aij(x)v)) = d(u, v). Hence each fiber can be endowed
with a distance function so that if V ≤ 1

2
U then (V , ε

2
) ≤ 1

2
(U , ε), concluding

the proof.

When G is a Lie group andK is a maximal compact subgroup, it is always
possible to reduce Q→ X to a subbundle K-subbundle P → X.

Corollary 3.6 Let E = Q ×G F → X be a fiber bundle, where G is a Lie
group and K is a maximal compact subgroup. Then the family OΨ(E) is
admissible.

Finally we prove the following result which works when the base space X
is paracompact and locally compact. In this case, we can take the covering
{Ui}i∈I of the atlas such that Ui, i ∈ I, is relatively compact and for each
i ∈ I, the number of j ∈ I such that Ui ∩ Uj 6= ∅ is finite.

Proposition 3.7 Let E be a locally trivial fiber bundle where its base space
X is locally compact and paracompact. Then the family OΨ(E) is admissible.

Proof: By Lemma 3.3, it remains to show that for each (U , ε) ∈ OΨ(E)
there is (V , δ) ∈ OΨ(E) such that (V , δ) ≤ 1

2
(U , ε). For each εj > 0, there

is δij > 0 such that, if d(u, v) < δij, then d(aij(x)u, aij(x)v) < εj for all
x ∈ Uij, since Uij and F are compact sets. Let V ≤ 1

2
U and define δ :

I → (0,+∞) by δi = 1
2
min{δij : j such that Uij 6= ∅}. Let us show that

(V , δ) ≤ 1
2
(U , ε). If there is ξ ∈ ψ−1

i (V ×Bδi
(v)) ∩ ψ−1

j

(
V ′ ×Bδj

(v)
)
, then

π(ξ) ∈ V ∩ V ′ and thus there is U ∈ U such that V ∪ V ′ ⊂ U ⊂ Uk for some
k ∈ I. Take α ∈ ψ−1

i (V ×Bδi
(v)). We have that vk(ξ) = ρik(π(ξ), vi(ξ))

and vk(α) = ρik(π(α), vi(α)). Since d(vi(ξ), vi(α)) < 2δi ≤ δik, it follows
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that d(vk(ξ), vk(α)) < εk. Thus ψ−1
i (V ×Bδi

(v)) ⊂ ψ−1
k (U ×Bεk

(vk(ξ))).
Analogously, ψ−1

j

(
V ×Bδj

(v)
)
⊂ ψ−1

k (U ×Bεk
(vk(ξ))) and therefore

ψ−1
i (V ×Bδi

(v)) ∪ ψ−1
j

(
V ×Bδj

(v)
)
⊂ ψ−1

k (U ×Bεk
(vk(ξ))) ,

which concludes the proof.

3.3 Local transitivity and metrizable groups

The objective here is to analyze the local transitivity property of the semi-
group Endl (E) with respect to the family of open coverings OΨ(E) built
above from an atlas Ψ of E. The idea is to combine the actions of Cl (X) on
the base space X with the action of G on the fiber F . The former is auto-
matically locally transitive, so that our main assumptions are on the action
of G on F . These assumptions will be readily satisfied for the flag bundles
to be considered in the next section.

As before we assume that the fiber of E is a metric space (F, d). Given
two maps f, g : F → F we write

δ(f, g) = sup
w∈F

d(f (w) , g(w)). (5)

For the next result we assume also that (F, d) is such that for any pair
x, y ∈ F with d (x, y) < 2ε there exists z ∈ F such that x, y ∈ Bε (z).

Theorem 3.8 Let E = Q ×G F → X an associated fiber bundle with para-
compact base X and fix an atlas Ψ = (Ui, ψi)i∈I of E. Suppose that the action
of G on F satisfies the following condition:

• For every u, v ∈ F there exists g ∈ G such that v = k · u and d(u, v) =
δ(k, id).

Then the local semigroup Endl (E) is OΨ(E)-locally transitive on E.

Proof: Take (U , ε) ∈ OΨ(E). By definition U is a covering subordinated
to (Ui)i∈I and ε : I → (0,+∞) is a map. An element of (U , ε) has the
form ψ−1

i

(
U ×Bε(i)(v)

)
with U ∈ U , i ∈ I and v ∈ F . Given α, ξ ∈

ψ−1
i (U ×Bεi

(v)) we must build φ ∈ Endl (E) with φ(α) = ξ (see [14], Defi-
nition 5.1).

14



Put ρ = d(vi(α), vi(ξ)) where ψi = (π, vi). We have ρ < 2ε(i), so that by
assumption there exists k ∈ G such that k · vi(α) = vi(ξ) and δ(k, id) = ρ.
Define φ : π−1(U) → E, by φ(ψ−1

i (x, v)) = ψ−1
i (π(ξ), k · v). Clearly, we have

that φ(α) = ξ and φ ∈ Endl (E). It remains to show that β and φ(β) are
in ψ−1

i

(
U ×Bε(i)(vβ)

)
, for some vβ ∈ F and for all β ∈ π−1(U). To see this

note that π(β) and π(φ(β)) = π(ξ) are in U and that

d(vi(β), vi(φ(β))) = d(vi(β), k · vi(β)) ≤ δ(k, id) = ρ < 2εi.

Thus there exists vβ ∈ F such that vi(β) and π(φ(β)) are in Bεi
(vβ), con-

cluding the proof.

We proceed now to look at a general situation where the condition of the
above theorem is fulfilled. This situation includes the flag bundles.

Suppose that G contains compact metrizable subgroup K which acts
transitively on F . In this case it is known that K admits a bi-invariant
metric d compatible with its topology (see [8], 12.9.1). Since K is compact,
the transitive action on F implies that F is compact as well.

We use the metric on K to endow F with a compatible metric. Since
the action of K is proper and transitive F is homeomorphic to K/L (given
the quotient topology) where L is a compact subgroup, the isotropy at some
x ∈ F . In K/L we consider the Hausdorff distance

dH(kL, k′L) = min
a∈L

[
min
b∈L

d(ka, k′b)

]
k, k′ ∈ K. (6)

This is in fact a metric in K/L, since the collection of cosets partitions K.
This metric induces the quotient topology on K/L. In fact, the canonical
projection π : K → K/L, π(k) = kL, is a d-dH contraction and hence
continuous. Conversely let A be an open set in quotient topology, so that
π−1(A) ⊂ K is open. Take k ∈ K such that kL ⊂ π−1(A) and let r be
the distance between (π−1A)c and kL. Since L is compact we have r > 0.
Clearly BH(kL, r) ⊂ A where BH stands for the ball w.r.t. dH , showing that
the two topologies coincide.

Before proceeding let us note the following easier expression for dH holds:

dH(kL, k′L) = min
l∈L

d(kl, k′) k, k′ ∈ K. (7)

In fact, by definition and the right invariance of the metric, we have

dH(kL, k′L) = min
a∈L

[
min
b∈L

d(ka, k′b)

]
= min

a∈L

[
min
b∈L

d(kab−1, k′)

]
.
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Clearly, this implies that

dH(kL, k′L) = max
a∈L

[
min
l∈L

d(kl, k′)

]
= min

l∈L
d(kl, k′).

Formula (7) implies in particular that the distance dH is invariant under
the action of K on F . When no confusion arises we denote the distance dH

simply by d.
Viewing the elements ofK as homeomorphisms of F the function δ defined

in (5) yields another distance in K:

δ(k, k′) = sup
g∈K

dH(kgL, k′gL) k, k′ ∈ K.

Lemma 3.9 δ(k, k′) ≤ d(k, k′).

Proof: By definition and equation (7),

δ(k, k′) = sup
g∈K

[
min
l∈L

d(kgl, k′g)

]
≤ sup

g∈K
d(kg, k′g) = d(k, k′).

Now we can show that the condition of Theorem 3.8 can be realized by
elements of K.

Lemma 3.10 Suppose K ⊂ G is a compact subgroup as above and endow
F = K/L with the Hausdorff metric d = dH . Take u, v ∈ F . Then there is
k ∈ K such that v = k · u and δ(k, id) = d(u, v).

Proof: We first show that for w = aL, where a ∈ K, there exists b ∈ K
such that w = bL and dH(w,L) = δ(b, id). By (7) there exists m ∈ L with
d(am, 1) = dH(aL, L) = dH(w,L). Putting b = am, we have w = bL and, by
the Lemma 3.9

dH(w,L) = dH(bL, L) ≤ δ(b, id) = δ(am, id) ≤ d(am, 1) = dH(w,L).

Now assume that u = hL and v = gL, where h, g ∈ K. Put w = g−1u and
let be b ∈ K as above. Putting k = gbg−1, we have that u = gw = gbL =
(gbg−1)gL = kv and , by the bi-invariance of δ and dH

δ(k, id) = δ(b, id) = dH(w,L) = dH(g−1u, L) = dH(u, v).
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As a direct corollary, we have the following fact.

Corollary 3.11 The left action of K (and hence of G) on F is Oε(F )-locally
transitive.

Combining the above results with Theorem 2.6 we arrive at a shadowing
semigroup theorem for semiflows on fiber bundles.

Theorem 3.12 Let E = Q ×G F → X be a fiber bundle with paracompact
base space X such that there exists a compact subgroup K ⊂ G which acts
transitively on F . Let σt be a semiflow of endomorphisms of E. Then the
following condition is necessary and sufficient for the nonempty subset M of
E to be a OΨ-chain component of σ:

• For all shadowing semigroup St,U , t ∈ T and U ∈ OΨ, there exists an
effective control set DM,t,U ⊂ E such that M is contained in the set of
transitivity (DM,t,U)0 and

M =
⋂
U ,t

(
D(M,t,U)

)
0

=
⋂
U ,t

cl
(
D(M,t,U)

)
0
.

The above theorem is the main result linking semigroups to chain transi-
tivity. It will be used later to describe the chain components in flag bundles,
after finding the control sets. As immediate consequences we mention that
chain transitivity of semiflows on fiber bundles hold provided the structural
group G is compact or solvable and the fiber is compact. In both cases
the semigroups acting on the fibers are transitive, and hence the shadowing
semigroups are transitive as well (cf. [3]).

4 Control sets on fiber bundles

As before let Endl (Q) be the semigroup of local endomorphisms of the prin-
cipal bundle Q→ X and take a subsemigroup

SQ ⊂ Endl (Q)
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and its induced semigroups on X

SX = {φ ∈ Cl (X) : φ (π (q)) = π (φ (q)) , φ ∈ SQ}

and on the associated bundle E = Q×G F :

SE = {φ ∈ Cl (E) : φ (q · v) = φ (q) · v, φ ∈ SQ}.

Our objective is to relate the control sets of SE on total space E with the
control sets of SX on the base space X, by looking at control sets on the
typical fiber F .

4.1 Projections of classes

Let E = Q ×G F → X be a bundle associated to Q → X. The first step
towards relating the control sets on the total space E and the base space X
is to look at the projections of the classes of the three relations ∼, ∼w and
∼s defined before. We take S ⊂ Endl (Q). To avoid cumbersome notation
we denote also by S the semigroups SX and SE. The space where S acts
will become clear from the context. Also, we denote by π both projections
π : E → X and π : Q→ X.

Lemma 4.1 For every ξ ∈ E we have π ([ξ]) ⊂ [π (ξ)].

Proof: In fact, [ξ] = Sξ ∩ S∗ξ, hence

π (Sξ ∩ S∗ξ) ⊂ π (Sξ) ∩ π (S∗ξ) = [π (ξ)].

Regarding the weak relations we have the following facts.

Lemma 4.2 For every ξ ∈ E we have π (cl (Sξ)) ⊂ cl (Sπ (ξ)).

Proof: Let C be a closed set containing S (π (ξ)). Then π−1 (C) is closed
and contains Sξ, since π (Sξ) = S(π(ξ)). Hence cl(Sξ) ⊂ π−1 (C), that is,
π(cl(Sξ)) ⊂ C. Since C is an arbitrary closed set containing S (π (ξ)), it
follows that π(cl (Sξ)) ⊂ cl(S(π(ξ))).

18



Corollary 4.3 Let ξ, η ∈ E. Then

1. π (ξ) �w π (η), if ξ �w η,

2. π (ξ) ∼w π (η), if ξ ∼w η and

3. π([ξ]w) ⊂ [π (ξ)]w.

Proof: Suppose that ξ �w η, that is, η ∈ cl (Sξ). By the previous lemma
π (η) ∈ cl (Sπ (ξ)), that is, π (ξ) �w π (η), showing the first statement. State-
ments (2) and (3) are direct consequences of (1).

For the strong relations we have the following similar facts.

Lemma 4.4 For ξ ∈ E it holds

1. π (int (Sξ)) ⊂ int (Sπ (ξ)) and

2. π (int (S∗ξ)) ⊂ int (S∗π (ξ)).

Proof: In fact, π is an open map and π (Sξ) = Sπ (ξ) as well as π (S∗ξ) =
S∗π (ξ).

Corollary 4.5 Let ξ, η ∈ E. Then

1. π (ξ) �s π (η), if ξ �s η,

2. π (ξ) ∼s π (η), if ξ ∼s η and

3. π([ξ]s) ⊂ [π (ξ)]s.

Proof: It is similar to the proof of Corollary 4.3.

Lemma 4.6 Let D ⊂ E be a control set. Then there exists a control set
C ⊂ X such that π (D) ⊂ C and π (D0) ⊂ C0.

Proof: This is a direct consequence of Corollaries 4.3 and 4.5.

In case of S or S∗-invariant control sets the second inclusion in this lemma
can be proved to be an equality, as we show next.
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Lemma 4.7 Suppose that the control set D ⊂ E is S or S∗-invariant and
let C ⊂ X be the control set containing π (D) as asserted by Lemma 4.6.
Then π (D0) = C0.

Proof: It remains to show that C0 ⊂ π (D0). In fact, take x ∈ C0 and
ξ ∈ D0. Since π(ξ) ∈ π (D0) ⊂ C0, there are φ, ψ ∈ S such that x =
φ(π(ξ)) = π(φ(ξ)) and ψ(x) = π(ξ). Since ψ is a bijection between the fibers
Ex and the fiber Eπ(ξ), there is η ∈ Ex such that ψ(η) = ξ. If D is S-
invariant, then φ(ξ) ∈ D0, which shows that x ∈ π (D0). If D is S∗-invariant,
then η ∈ D0, which shows that x = π(η) ∈ π (D0).

Corollary 4.8 Suppose that S is transitive on the base space X. Then the
forward and the backward invariant control sets project onto X, that is, in-
tersect every fiber of E.

To check that the S-invariant control sets themselves also project onto
control sets we will assume that the fiber is compact.

Lemma 4.9 Suppose that the typical fiber F is compact. Then π (cl (Sξ)) =
cl (Sπ (ξ)).

Proof: Since the typical fiber F is compact, the projection π is a closed
map. Thus π (cl (Sξ)) is a closed set containing π (Sξ). Thus cl (Sπ (ξ)) ⊂
π (cl (Sξ)), and the equality holds by the previous lemma.

Lemma 4.10 Suppose that the typical fiber F is compact and let D ⊂ E be
an invariant control set. Then π (D) is an invariant control set.

Proof: We have D = cl (Sξ) for any ξ ∈ D. But by Lemma 4.9 we have
π (cl (Sξ)) = cl (Sπ (ξ)). This implies that π (D) = cl (Sx) for all x ∈ π (D).
Now any control set C ⊂ X satisfies C ⊂ cl (Sx) for all x ∈ C. Taking
x ∈ π (D) we conclude that

π (D) ⊂ C ⊂ cl (Sx) = π (D) ,

concluding the proof.
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4.2 Semigroups on the fiber

In order to relate the control sets of SE on the total space E with the control
sets on the typical fiber F we need to define suitable semigroups inside the
structural group G. These semigroups should reflect the action of SE on the
fibers of E.

For each x ∈ X, we can consider the subsemigroup SQ that fixes the fiber
Qx, i.e,

Sx
Q = {φ ∈ SQ : φQx = Qx}.

Since fibers are mapped homeomorphically onto fibers by elements of SQ, we
can look at Sx

Q as a semigroup of homeomorphisms ofQx. After fixing q ∈ Qx,
the action of Sx

Q on the fiber Qx is given by the following subsemigroup of G.

Definition 4.11 Given q ∈ Q we put Sq = {a ∈ G : qa ∈ SQq} or, equiv-
alently Sq = i−1

q (SQq ∩Qq) where iq is the bijection (3) between G and the
fiber.

Note that the inverse semigroup S−1
q = {a−1 ∈ G : a ∈ Sq} is well defined

even if the elements of SQ are not invertible. We have however the following
equality.

Lemma 4.12 S−1
q = i−1

q

(
S∗Qq ∩Qq

)
.

Proof: In fact, S−1
q = {a−1 ∈ G : ∃φ ∈ SQ, qa = φ (q)}, that is

S−1
q = {b ∈ G : ∃φ ∈ SQ, φ (qb) = q}.

Thus S−1
q = i−1

q

(
S∗Qq ∩Qq

)
.

The intersection of int
(
S∗Qq

)
with the fibers is given by

Uq = {b ∈ G : qb ∈ int
(
S∗Qq

)
} (8)

= i−1
q

(
int

(
S∗Qq

)
∩Qq

)
.

Lemma 4.13 Uq is a left ideal of S−1
q .

Proof: Take a ∈ S−1
q and b ∈ Uq. Then there is φ ∈ SQ such that φ (qa) = q.

Since φ commutes with right multiplication we get

φ (qab) = φ (qa) b = qb
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showing that qab ∈ φ−1(qb). Since qb ∈ int
(
S∗Qq

)
, it follows that qab ∈

int
(
S∗Qq

)
(see [14], Lemma 4.2), showing that ab ∈ Uq.

Clearly Uq is open in G. Moreover, Uq ⊂ int
(
S−1

q

)
= (intSq)

−1. It follows
that int (Sq) 6= ∅ in G in case Uq 6= ∅. Also, it is clear that Uq = S−1

q if S∗Qq
is open.

In order that the semigroups Sq, q ∈ Q, have nonempty interior we require
the following accessibility property for SQ.

Definition 4.14 Let D be a control set of SX . We say that SQ is ∗-accessible
over D if there exists q ∈ π−1 (D0) such that

int
(
S∗Qq

)
∩ π−1 (D) 6= ∅.

Remark: Since π is an open map, it follows that π−1 (D0) is dense in π−1 (D)
if D0 is the set of transitivity of the control set D ⊂ X.

Lemma 4.15 Suppose that SQ is accessible over D. Then for every p ∈
π−1 (D0) we have

int
(
S∗Qp

)
∩ π−1 (D0) 6= ∅.

Proof: Let q ∈ π−1 (D0) be such that int
(
S∗Qq

)
∩ π−1 (D) 6= ∅. Take p ∈

π−1 (D0). Since both π (q) and π (p) belong to D0, there exists ψ ∈ SX such
that ψ (π (q)) = π (p). Its lifting satisfies ψ (q) = pa for some a ∈ G.

Put V = int
(
S∗Qq

)
∩ π−1 (D0) and define W = V a−1. Clearly, V and

W are open sets. Note that for every q′ ∈ V there exists φ ∈ SQ such that
φ (q′) = q. Then

ψ ◦ φ
(
q′a−1

)
= ψ (q) a−1 = p,

which shows that W ⊂ S∗Qp. Since W is open and contained in π−1 (D0), the
lemma follows.

Lemma 4.16 Let D be a control set in X and suppose that SQ is accessible
over D. Then for every q ∈ π−1 (D0), we have Uq 6= ∅. Hence intSq 6= ∅ in
G.
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Proof: By Lemma 4.15 we have int
(
S∗Qq

)
∩π−1 (D0) 6= ∅ for all q ∈ π−1 (D0).

Fix q and take p ∈ int
(
S∗Qq

)
∩ π−1 (D0). Since π (q) , π (p) ∈ D0, there ex-

ists φ ∈ SQ such that φ (q) ∈ Qp. Hence there exists q′ ∈ Qq be such that
φ (q′) = p, because φ restricted to Qq is a homeomorphism Qq → Qp. Such
q′ belongs to φ−1

(
int

(
S∗Qq

))
⊂ int

(
S∗Qq

)
by continuity. Hence q′ ∈ Uq, con-

cluding the proof.

4.3 Intersection with fibers

We proceed now to look at the intersections of the control sets in the total
space E with the fibers of the bundle E → X. First we note that by definition
of the induced maps we have for any ξ = q · v ∈ E that SEξ = (SQq) · v
and S∗Eξ =

(
S∗Qq

)
· v. Hence the forward and backward orbits of SE can be

recovered from the orbits of SQ.
Regarding the accessibility property, the map q ∈ Q 7→ q · v ∈ E is

open in case G acts transitively on the typical fiber F . In this case we have
(int (SQq)) · v ⊂ int (SE (q · v)) and

(
int

(
S∗Qq

))
· v ⊂ int (S∗E (q · v)). Hence

accessibility of SQ implies that of SE.
We start by checking the existence of control sets in E above control sets

in X. This requires compactness of the fiber of the associated bundle.

Proposition 4.17 Let E = Q×G F be such that the fiber F is compact and
G acts transitively on F . Let C ⊂ X be a control set and assume that a
semigroup SQ is accessible over C. Then there exists a control set D ⊂ E
such that π (D) ⊂ C and π (D0) ⊂ C0.

Proof: Take q ∈ Q with π (q) ∈ C0. As before write Uq = i−1
q

(
int

(
S∗Qq

)
∩Qq

)
,

which is an open subsemigroup of G. Since F is compact and Uq acts on F
by homeomorphisms there exists a control set, say A ⊂ F of Uq. Hence there
are v ∈ F and a ∈ Uq such that av = v. We have q · a ∈ int (S∗q) and
q · v = qa · v, so that q · v ∈ (int (S∗q)) · v ⊂ int (S∗ (q · v)).

Now let D = [q · v]w. Then D is a control set because q · v ∈ D ∩
int (S∗ (q · v)). Moreover, π (D) meets C, hence by Lemma 4.6 it follows that
π (D) ⊂ C and π (D0) ⊂ C0.
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Theorem 4.18 Assume that the semigroup S is accessible over a control set
C ⊂ X. Let D ⊂ E be a control set with π (D) ⊂ C and take q ∈ Q with
D0 ∩ Eπ(q) 6= ∅. Then there exists a control set A ⊂ F for the semigroup
Sq = i−1

q (SQq ∩Qq) such that

D0 ∩ Eπ(q) = q · A0.

Proof: Denote by B the subset of F given by D0 ∩ Eπ(q) = q · B. We must
check that B = A0 for some control set A. Take u, v ∈ B. Then q ·v, q ·u ∈ D0

so that there are φ, ψ ∈ S with φ (q) · v = q · u and ψ (q) · u = q · v (see [14],
Corollary 4.7). Of course, φ and ψ preserve the fiber Qq. Hence, there are
a, b ∈ Sq such that φ (q) = qa and ψ(q) = qb. It follows that au = v and
bv = u, showing that B is entirely contained in the equivalence class [u] for
the action of Sq on F .

Conversely, suppose that w ∈ [u]. Then there are a, b ∈ Sq such that
aw = u and bu = w. By definition there are φ, ψ ∈ S with φ (q) = qa and
ψ (q) = qb. Then φ (q · w) = q · u and ψ (q · u) = q · w. Thus q · w ∈ D0 and
w ∈ B. Therefore, we have proved that B = [u].

Put A = [u]w, and let us show that A0 = B = [u]. In view of Proposition
4.8 in [14] it is enough to check that u ∈ A0.

Now q · u ∈ int (S∗ (q · u)) because q · u ∈ D0. Let B′ ⊂ F be such that
q · B′ = int (S∗ (q · u)). Then B′ is open in F and for every w ∈ B′ there
exists a ∈ Sq such that aw = u. This means that B′ ⊂ S−1

q u. Since u ∈ B′,

we have u ∈ int
(
S−1

q u
)
. Thus u ∈ A0, concluding the proof.

The following is a partial converse to the above theorem.

Proposition 4.19 Let E be an associated bundle such that G acts transi-
tively on F . Let C ⊂ X be a control set and assume that the semigroup S is
accessible over C. Take q ∈ Q above C and let A ⊂ F be a control set for
Sq. Suppose that there exists v ∈ A and a ∈ Uq such that a · v = v. Then
there exists a control set D ⊂ E of S such that

D0 ∩ Eπ(q) = q · A0.

Proof: By assumption there are v ∈ A and a ∈ Uq ⊂ (intSq)
−1 such that

av = v. We have that a−1v = v and thus v ∈ A0. By definition q · a ∈
int (S∗q), so that q · a−1 ∈ SQq. Hence

q · v = qa · v ∈ int (S∗q) · v ⊂ int (S∗ (q · v)) .
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Also, q · v = q · a−1v ∈ S (q · v). Hence D = [q · v]w is the desired control
set, since q·v ∈ D0 so that by the above theorem we haveD0∩Eπ(q) = q·A0.

4.4 Invariant control sets

For the invariant (forward and backward) control sets we can improve the
above results, specially in what concerns the surjectivity of their projections.
At this regard the following two propositions refine Lemma 4.7, showing that
invariance on the fibers is enough to have onto projections.

Proposition 4.20 Assume that the semigroup S is accessible over a control
set C ⊂ X and let D ⊂ E be a control set for SE with π (D0) ⊂ C0. Take q ∈
Q above C0 and A ⊂ F be the control set for Sq such that D0∩Eπ(q) = q ·A0.
Suppose that A0 is Sq-invariant. Then D0 is forward invariant relatively to
π−1C0 in the sense that φ (p · w) ∈ D0 if p · w ∈ D0, φ ∈ S and φπ (p · w) ∈
C0. Also, π (D0) = C0.

Proof: Take p ·w ∈ D0 and φ ∈ S such that φ (y) ∈ C0 where y = π (p · w).
To show that φ (p · w) ∈ D0 take v ∈ A0 and write x = π (q · v). Then
q · v ∈ D0 hence there exists ψ ∈ S such that ψ(q · v) = p ·w. By assumption
φ (y) ∈ C0 and hence there exists η ∈ S such that ηφ(y) = x. Then there
exists u ∈ F such that ηφ(p · w) = q · u. Combining the maps we get

ηφψ(q) · v = ηφψ(q · v) = q · u.

Hence there exists a ∈ Sq such that ηφψ(q) = qa and u = av ∈ A0, because
A0 is Sq-invariant. This implies that q · u ∈ D0. But η(φ(p · w)) = q · u and
φψ(q · v) = φ(p · w). Hence we can steer φ (p · w) into D0 and conversely,
showing that φ(p ·w) ∈ D0. Finally the equality in the last statement follows
by transitivity of S on C0.

The proof for the backward invariant control sets is similar.

Proposition 4.21 Let the notation be as in the above proposition and sup-
pose that A0 is S−1

q -invariant. Then D0 is backward invariant relatively to
π−1C0 in the sense that p ·w ∈ D0 if φ (p · w) ∈ D0 and π (p · w) ∈ C0. Also,
π (D0) = C0.
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Proof: Take p ·w ∈ E such that z = π(p ·w) ∈ C0 and φ(p ·w) = r · u ∈ D0

for some φ ∈ S. To check that p ·w ∈ D0 take v ∈ A0 and write x = π (q · v).
Then q · v ∈ D0 hence there exists ψ ∈ S such that ψ(r · u) = q · v. Also,
there exists η ∈ S such that η(x) = z, which implies that η(q · v1) = p ·w for
some v1 ∈ F . We have

ψφη(q) · v1 = ψφη(q · v1) = q · v.

Hence there exists a ∈ Sq such that ψφη(q) = qa and v1 = a−1v ∈ A0, be-
cause A0 is S−1

q -invariant. This implies that q · v1 ∈ D0. But φ(p ·w) = r · u
and η(q · v1) = p · w, which shows that p · w ∈ D0. Finally D0 projects onto
C0 by transitivity of S on C0.

As a consequence of the above propositions we have the following char-
acterizations of the invariant control sets.

Corollary 4.22 Assume that the semigroup S is accessible over a control
set C ⊂ X. Take q ∈ Q above C. Let D ⊂ E be a control set for SE and
A ⊂ F a control set for Sq such that D0 ∩ Eπ(q) = q · A0. Then

1. Suppose that C is S-invariant. Then D0 is S-invariant if and only if
A0 is Sq-invariant.

2. Suppose that C0 is S∗-invariant. Then D0 is S∗-invariant if and only
if A0 is S−1

q -invariant,

Proof: By propositions 4.20 and 4.21 in both cases it is enough to prove the
only if part.

Assume that D0 is S-invariant and take v ∈ A0 and a ∈ Sq. Then there
exists φ ∈ S such that φ(q) = q · a, so that

q · av = qa · v = φ(q) · v = φ(q · v).

Since q · v ∈ D0, it follows that q · av ∈ D0, which implies that av ∈ A0,
showing that A0 is Sq-invariant.

For backward invariance, assume first that D0 is S∗-invariant and take
v ∈ A0 and a ∈ S−1

q . Then there exists φ ∈ S such that φ(qa) = q, so that

q · v = φ(qa) · v = φ(q · av).

Since q · v ∈ D0, it follows that q · av ∈ D0, which implies that av ∈ A0,
showing that A0 is S−1

q -invariant.
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Lemma 4.23 Assume that the semigroup S is accessible over a control set
C ⊂ X. Take q ∈ Q above C and let A ⊂ F be a control set for Sq which is
Sq or S−1

q -invariant. Then there is an element in A0 fixed by an element of
Uq.

Proof: If A is Sq invariant, take v ∈ A0 and a ∈ Uq ⊂ S−1
q . We have

a−1v ∈ A0 (see [14], Corollary 4.17). Thus there is b ∈ S−1
q such that

bv = a−1v. Hence ba(a−1v) = a−1v. Therefore u = a−1v ∈ A0 and ba ∈ Uq,
because Uq is a left ideal of S−1

q , by Lemma 4.13.
If A is S−1

q -invariant and v ∈ A0 we have that (Uq)v ⊂ A. Since (Uq)v is
open and A0 is dense in A, there is a ∈ Uq such that av ∈ A0. Thus there is
b ∈ S−1

q such that bav = v and again ba ∈ Uq.

Theorem 4.24 Let C ⊂ X be an invariant control set and assume that S
is accessible over C. Then for each S-invariant control set D ⊂ E over C
we have π (D0) = C0 and for every q ∈ π−1 (C0), there exists a Sq invariant
control set AD

q ⊂ F such that

D0 ∩ Eπ(q) = q ·
(
AD

q

)
0
.

Furthermore, fixing q ∈ π−1 (C0) the map D 7→ AD
q is a bijection between

the S-invariant control sets in E over C and the Sq-invariant control sets.

Proof: If D is a S-invariant control set over C, π(D0) ⊂ C0. By Lemma 4.7,
the S-invariance of D implies that π(D0) = C0. Thus D0∩Eπ(q) 6= ∅ and, by
Theorem 4.18, there is a control set AD

q of Sq such that D0∩Eπ(q) = q ·
(
AD

q

)
0
.

By Corollary 4.22, we have that
(
AD

q

)
0

is Sq-invariant which implies that AD
q

is Sq-invariant. If A is Sq-invariant, we have, by Lemma 4.23, that there
exists an element in A0 fixed by an element of Uq. By Proposition 4.19, this
implies that there is a control set D such that D0 ∩ Eπ(q) = q · A0. Again,
by Corollary 4.22, we have that D0 is S-invariant which implies that D is
S-invariant over C. Hence AD

q = A, showing the surjectivity of the map. Its
injectivity is obvious.

Theorem 4.25 Let C ⊂ X be a backward invariant control set and assume
that S is accessible over C. Then for each S∗-invariant control set D ⊂ E
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over C we have π (D0) = C0 and for every q ∈ π−1 (C0), there exists a S−1
q

invariant control set AD
q ⊂ F such that

D0 ∩ Eπ(q) = q ·
(
AD

q

)
0
.

Furthermore, fixing q ∈ π−1 (C0) the map D 7→ AD
q is a bijection between

the S∗-invariant control sets in E over C and the S−1
q -invariant control sets.

Proof: The proof is almost the same of Theorem 4.24 adapting for the S∗

and S−1
q -invariance of the respective control sets.

5 Control sets on flag bundles

In this and the next sections we take fiber bundles with (generalized) flag
manifolds as fibers. In this section we describe the control sets of the semi-
groups. The main task is to prove that any control set projects onto the base
space in case the semigroup is transitive on the base. Once this is done in
Theorem 5.8 and its corollary, the control sets are easily described.

The surjectivity of the projections of the control sets were proved in [3]
under the assumption that the base space is connected, which is suitable for
continuous-time flows. Here we offer a different and more general proof.

We work here with semi-simple Lie groups. The extension to reductive
Lie groups is made the same way as in [3], Subsection 5.3.

We follow closely the notation of [3], and refer the reader to that paper
(and references therein) for unexplained concepts. Let G be a connected
noncompact semi-simple Lie group with Lie algebra g. A flag manifold of G
is given built from a subset Θ ⊂ Σ, where Σ is a simple system of roots of
a split subalgebra a of g. We denote this flag manifold by FΘ. Usually we
omit the subscript or the superscript Θ when F = F∅ is the maximal flag
manifold.

Let Q → X be a principal bundle with structure group G. We write
EΘ → X for the associated bundle EΘ = Q ×G FΘ, having typical fiber FΘ.
If the fiber is the maximal flag manifold F then bundle is written E → X. We
note that by the transitive action of G on FΘ it follows that EΘ identifies with
the space of orbits Q/PΘ of the right action of PΘ on Q (see [11], Proposition
5.5).
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Let S ⊂ End (Q) be a semigroup of endomorphisms of Q. We assume
that for all q ∈ Q both S · q and S∗ · q are open sets. These conditions are
satisfied by the shadowing semigroups (see [14], Corollary 5.4). We assume
also that S is transitive on X. This condition will be true for the shadowing
semigroups because we work with semiflows which are chain transitive on the
base X.

By the results of Section 4 the control sets of S in a flag bundle EΘ are
obtained by piecing together the control sets of the semigroups Sq with q
ranging through Q.

On the other hand, let W be the Weyl group of G. Then the control sets
of Sq in FΘ are parametrized by W , that is, for each w ∈ W there exists a
control set AΘ

q (w) ⊂ FΘ of Sq and these exhaust the control sets of Sq (see
[3], Section 5 and references therein).

The set q · AΘ
q (w) is independent of q in the fiber over x = π (q), that is

if p = qa, a ∈ G, then q · AΘ
q (w) = p · AΘ

p (w) (see [3], Subsection 8.1).
Given x ∈ X we put F x

Θ (w) = q · AΘ
q (w), F x

Θ (w)0 = q · AΘ
q (w)0. By

Proposition 4.19 there exists a (unique) control set of S in EΘ which contains
F x

Θ (w)0.

Definition 5.1 We denote by Dx
Θ (w) the control set of S in EΘ which con-

tains F x
Θ (w)0.

By Theorem 4.18 the sets Dx
Θ (w) exhaust the control sets in EΘ:

Proposition 5.2 Let D be a control set of S in EΘ. Then there are x ∈ X
and w ∈ W such that D = Dx

Θ (w).

Our objective is to check that for a fixed w ∈ W the control sets Dx
Θ (w)

of S do not change with x ∈ X. This will be achieved by proving that Dx
Θ (w)

projects onto the base space, that is, intersects every fiber. In the general
framework of Section 4 this was done only for the S and S∗-invariant control
sets.

Proposition 5.3 In each EΘ there is only one forward invariant control set
as well as one backward invariant control set. They project down onto the
base (due to transitivity of S on X) and each one is a union of control sets
on the fibers. The forward invariant control set is Dx

Θ (1) for any x ∈ X
and Dx

Θ (w0) is the backward invariant control set where w0 is the principal
involution of W.
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Proof: Follows by combining theorems 4.24 and 4.25, Proposition 5.2 with
the uniqueness of the forward and bacward invariant control sets on the flag
manifolds we get the following statement.

In the sequel we denote by C+
Θ and C−

Θ the forward and backward invariant
control set in EΘ, respectively.

The above proposition gives all the control sets of S if the group G has
real rank one:

Proposition 5.4 Suppose that G has real rank one. Then there exists just
one flag bundle E → X and the only control sets are the invariant ones,
forward and backward, and both project onto the base space.

Proof: In fact, in this case W has exactly two elements.

We deal with the general case by reducing to the real rank one case via
fibrations between the flag manifolds and flag bundles. This requires the
following preparatory results.

Recall that when Θ1 ⊂ Θ2 there exists a natural equivariant fibration
f 1

2 : FΘ1 → FΘ2 , which identifies FΘ1 with the associated bundle G ×PΘ2

(PΘ2/PΘ1) with typical fiber FΘ1,Θ2 = PΘ2/PΘ1 . The fibration FΘ1 → FΘ2

induces a fibration π1
2 : EΘ1 → EΘ2 between the flag bundles defined by

π1
2 (p · v) = p · f 1

2 (v) if v ∈ FΘ1 and p ∈ Q. In particular, the fiber of
EΘ1 → EΘ2 above p ·u ∈ EΘ2 is p ·FΘ1,u where FΘ1,u is the fiber of FΘ1 → FΘ2

above u ∈ FΘ2 and the typical fiber of EΘ1 → EΘ2 is FΘ1,Θ2 as well. Also,
EΘ1 is identified with associated bundle Q ×PΘ2

FΘ1,Θ2 , with Q viewed as a
principal bundle over EΘ2 with structural group PΘ2 . Furthermore if we view
EΘ1 and EΘ2 as sets of orbits of PΘ1 and PΘ2 on Q, respectively (see [11],
Proposition 5.5), then π1

2 maps the orbit q ·PΘ1 in the orbit q ·PΘ2 containing
it.

If φ is an endomorphism of Q → X then it is also an endomorphism of
Q→ EΘ2 and both endomorphisms induce the same map on EΘ1 (viewed as
associated bundle of each of the principal bundles). Also, φ induce the same
map on EΘ2 (viewed as an associated bundle of Q→ X or the base space of
EΘ1 → EΘ2). Hence our previous results hold for EΘ1 → EΘ2 .

Proposition 5.5 Let π1
2 : EΘ1 → EΘ2 be a fibration between flag bundles

where Θ1 ⊂ Θ2. Fix w ∈ W. Then for any x ∈ X the control set Dx
Θ1

(w)
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projects into the control set Dx
Θ2

(w). Furthermore inside the fibers the pro-
jection is onto, that is, for any y ∈ X we have

π1
2

(
Dx

Θ1
(w)0 ∩ EΘ1,y

)
= Dx

Θ2
(w)0 ∩ EΘ2,y.

Proof: By Lemma 4.6 the control set Dx
Θ1

(w) projects into a control set,
say D′ of S in EΘ2 . Now D′ must be equal to Dx

Θ2
(w). In fact, Dx

Θ2
(w) is

defined to be the control set containing F x
Θ2

(w)0 = p ·AΘ2
p (w)0 and for every

p ∈ Q the transitivity set AΘ1
p (w)0 projects onto AΘ2

p (w)0 (see [3], Section
5 and [21], Proposition 5.1). The last statement is also a consequence of
f 1

2

(
AΘ1

p (w)0

)
= AΘ2

p (w)0.

There are two special cases of the fibrations in the above proposition
where we can apply directly previous results (propositions 4.20, 4.21 and
5.3) to get surjectivity of the projections of the control sets.

Corollary 5.6 In the situation of Proposition 5.5 we have πDx
Θ1

(1) = Dx
Θ2

(1)
and πDx

Θ1
(w0) = Dx

Θ2
(w0) (see the notation of Proposition 5.3).

Proof: In fact, the forward and backward invariant control sets intersect ev-
ery fiber. Since the projections within the fibers are onto the result follows.

For the remaining control sets we use an inductive procedure based in the
following fact.

Proposition 5.7 In the situation of Proposition 5.5 suppose that Θ2 = Θ1∪
{α}. Then for any w ∈ W we have π1

2D
x
Θ1

(w)0 = Dx
Θ2

(w)0.

Proof: Take q ∈ Qx in the fiber of Q → X above x. Then Dx
Θ1

(w)0 ∩
EΘ1,x = q · AΘ1

q (w)0. Now the intersection of AΘ1
q (w)0 with a fiber of

FΘ1 → FΘ2 (which identifies with the fiber of EΘ1 → EΘ2) is known. In
fact, f 1

2A
Θ1
q (w)0 = AΘ2

q (w)0 and the possible control sets (f 1
2 )
−1 (

AΘ1
q (w)0

)
are AΘ1

q (w) and AΘ1
q (wrα), where rα is the reflection with respect to α, be-

cause Θ2 = Θ1∪{α} (see [21], Section 5). Hence the intersection of AΘ1
q (w)0

with a fiber of FΘ1 → FΘ2 is either a forward invariant or a backward invari-
ant control set in the fiber (cf. Proposition 5.4). Hence we can apply one
of the propositions 4.20 or 4.21 to conclude that π1

2D
x
Θ1

(w)0 = Dx
Θ2

(w)0, as
claimed.
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We can prove now that a control set Dx
Θ (w) intersects every fiber of

EΘ → X and conclude that it is independent of x ∈ X. We consider first the
maximal flag bundle E → X.

Theorem 5.8 Let π : E → X be the maximal flag bundle and assume that S
is transitive on X. Then for every x ∈ X and w ∈ W we have π (Dx (w)) =
X. Furthermore Dx (w) is independent of x ∈ X. We denote this control set
by D (w).

Proof: The proof is by induction on the length ` (w) of w as a product
of simple reflections. There exists w′ ∈ W and a simple root α such that
w = w′rα and ` (w′) = ` (w) − 1. By induction π (Dx (w′)) = X. Consider
the fibration πα : E → E{α} whose fiber is the flag manifold of a rank one Lie
group. Since π (Dx (w′)) = X we have

παD
x (w′) = Dx

{α} (w′) = Dx
{α} (w) ,

where the first equality is a direct consequence of Proposition 5.7, and the
second one follows from Aq (w′rα) = Aq (w′), for every q ∈ Q.

By Proposition 5.5, παD
x (w) ⊂ Dx

{α} (w). Now the restriction of the

action of S to π−1
α

(
Dx
{α} (w)

)
has exactly two control sets and both of them

project onto Dx
{α} (w), by Proposition 5.4. Hence παD

x (w) = Dx
{α} (w′)

which implies that π (Dx (w)) = X. The independence on x ∈ X follows
by induction as well. In fact, assuming the result for Dx (w′) the induction
follows by observing that the forward and backward invariant control sets
above Dx

{α} (w) are Dx (w′) and Dx (w), respectively. Finally, in both cases

the induction starts because Dx (1) is the forward invariant control set for
any x ∈ X.

Combining Proposition 5.5 with the previous one it follows at once that
the same result holds in an arbitrary flag bundle.

Corollary 5.9 Let πΘ : EΘ → X be a flag bundle and assume that S is
transitive on X. Then for every w ∈ W and x ∈ X we have π (Dx

Θ (w)) = X.
Also, Dx

Θ (w) is independent of x ∈ X. We denote this control set by DΘ (w).
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We conclude this section by introducing the notion of parabolic type of
a semigroup S ⊂ End (Q). Recall that the parabolic (or flag) type of an
open semigroup S ⊂ G is a flag manifold FΘ(S) such that (i) π−1

Θ(S)

(
CΘ(S)

)
is

the invariant control set of S in F where πΘ(S) : F → FΘ(S) is the canonical
projection and CΘ(S) is the invariant control set of S in FΘ(S); (ii) Θ (S) is
maximal with this property. The parabolic type of S gives the number of its
control sets on the flag manifolds (see [21], Section 4 and [3], Section 5).

Proposition 5.10 Let S ⊂ End (Q) be transitive on X. Then the parabolic
type of Sq is independent of q ∈ Q.

Proof: See the proof of Proposition 8.9 in [3]. The idea of the proof is that
the invariant control set of S in E contains one and hence every fiber of the
fibration E → EΘ(Sp) above the invariant control set in EΘ(Sp).

In view of this proposition it makes sense to talk about the parabolic type
of a local semigroup S ⊂ End (Q).

Definition 5.11 Let S ⊂ End (Q) be as above. Then the parabolic type of
S is the common parabolic type of Sq, q ∈ Q.

6 Semiflows on flag bundles

Now we can summarize the previous results to get the chain components of
a semiflow on a flag bundle. As before we let Q→ X be a principal bundle
with semi-simple structural group G. We assume that the base space X is
paracompact to ensure that the family O (X) of all open coverings of X is
admissible. Also we fix an atlas Ψ = (Ui, ψi)i∈I of Q→ X which induces an
atlas on each flag bundle EΘ → X. We denote by OΨ (EΘ), or simply by OΨ,
the family of adapted open coverings as in Definition 3.2.

A right invariant semiflow σ : T×Q→ Q on Q induces semiflows on the
flag bundles EΘ = Q ×G FΘ → X associated to Q. Clearly, for each Θ the
induced semiflow on EΘ is contained in End (EΘ). We assume throughout
that the corresponding semiflow on X is chain transitive.

The shadowing semigroups SV,T , V ∈ OΨ(EΘ), T > 0, have open orbits.
The assumption that σ is chain transitive on X implies that every shadowing
semigroup SV,T is transitive on X. Therefore the results of the previous
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sections hold for SV,T . In particular the control sets of SV,T are parametrized
by the Weyl group W . We denote by DΘ

V,T (w) the control set of SV,T in EΘ

associated to w ∈ W .
On the other hand a maximal compact subgroup K of G acts transitively

on FΘ. Hence Theorem 3.12 is available, so that the chain components of σ
are given by intersections of control sets.

Lemma 6.1 Fix w ∈ W and write

MΘ (w) =
⋂
V,t

cl
(
DΘ
V,t (w)0

)
.

Then MΘ (w) 6= ∅.

Proof: Fixing x ∈ X, we have that the family{
cl

(
DΘ
V,t (w)0

)
∩ (EΘ)x : t ∈ T,V ∈ OΨ(EΘ)

}
has the finite intersection property and, since (EΘ)x is compact, the intersec-
tion of its members is not empty.

Combining this lemma with Theorem 3.12 we get the following description
of the chain components on EΘ.

Theorem 6.2 Let σt be a right invariant semiflow on Q. Suppose that the
base space X is paracompact and that the semiflow on X is chain transitive.
Then the associated flow on a flag bundle EΘ → X satisfies:

1. For each w ∈ W there exists a chain component MΘ (w).

2. If M⊂ EΘ is a chain component then M = MΘ (w) for some w ∈ W.

3. MΘ (1) is the only attractor while MΘ (w0) is the only repeller, where
w0 is the principal involution of W.

In the sequel we put M+
Θ = MΘ (1), M−

Θ = MΘ (w0), and suppress the
subscripts when E = Q×G F is the maximal flag bundle.

We denote by ΘV,T the parabolic type of SV,T and introduce the parabolic
type of σ as in [3], Section 5.
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Definition 6.3 The parabolic type of the semiflow σ is defined to be

Θ (σ) =
⋂
V,T

ΘV,T .

As happens to semigroups the parabolic type of the semiflow σ keeps
several information about the chain components of σ. For example, the
number of chain components of σ in a flag bundle EΘ is equal the order
of the double coset space WΘ(σ)\W/WΘ (see [3], for details). Also, the
attractor component M (1) in the maximal flag bundle E → X is given by
M (1) = π−1

Θ(σ)MΘ(σ) (1) where πΘ(σ) : E → EΘ(σ) is the projection onto the
flag bundle corresponding to the parabolic type.

To conclude this section we describe the domain of attraction and the
repeller domain of a control set M (w) in the maximal flag bundle. For this
we use the following notation: Fix a simple system of roots Σ and for a finite
sequence α1, . . . , αn in Σ let s1, . . . , sn be the reflections with respect to these
roots, and denote Ei = E{αi} the corresponding flag bundle. We have the
fibration πi : E → Ei. Now, given i = 1, . . . , n let γi stand for the operation
of exhausting a subset of E with the fibers of πi, that is, if A ⊂ E then

γi (A) = π−1
i πi (X) =

⋃
x∈X

Ex,

with Ex standing for the fiber through x of πi : E → Ei.
Having this notation we can describe the attraction and repeller domains

of M (w) in the next proposition. Its proof is analogous to the proof of
Proposition 9.9 in [3], with the difference that here we must change the
argument that use sequences and take nets of pairs V , T , instead.

Proposition 6.4 The domain of attraction of M (w) is given by

A (M (w)) = γ1 · · · γn

(
M−)

, (9)

where γ1, . . . , γn is taken from a reduced expression w0w = sn · · · s1, and the
repelling domain of M (w) is given by

R (M (w)) = γ1 · · · γm

(
M+

)
, (10)

where γ1, . . . , γm is taken from a reduced expression w = sm · · · s1.

From this proposition we get the order of the chain components, which is
defined by M (w1) ⊂ A (M (w2)).

Corollary 6.5 The order M (w1) �M (w2) between the chain components
is given by the Bruhat-Chevalley order of the Weyl group as in [20].
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7 Chain components on flag bundles

In this section we give the final description of the chain components on
flag bundles via the parabolic type of the semiflow (see Theorem 7.5). The
main step in the proof is Theorem 7.3 which ensures that both the attractor
component M+

Θ(σ), in the bundle of the parabolic type of σ, as well as the

repeller component M−
Θ∗(σ), in the dual bundle, intersect each fiber in just

one point. The proof for M+
Θ(σ) is the same as Lemma 9.3 in [3] but for

M−
Θ∗(σ) we give a new proof since here there is no backward flow.
Let x, y ∈ X and take χi : Ui ⊂ X → Q, i = 1, 2, with x ∈ U1 and y ∈ U2.

Let ρχ1,χ2 be the local cocycle to these cross sections. If y ∈ ω(x) then there
exists a sequence tk → +∞ such that σtk (x) → y, so that σtk (x) ∈ U2 for
large enough k. Hence it makes sense to define the sequence gk = ρχ1,χ2 (tk, x)
in G.

On the other hand, if y ∈ ω∗(Λ−(x)), for some negative orbit Λ−(x)
through x then there are a sequence yk → y and sk ∈ T such that σsk

(yk) =

yk−1, where y0 = x and tk =
∑k

i=1 si → +∞. If χ2 is a local cross section
around y let ρ = ρχ2,χ2 be the corresponding cocycle. Then for large values
of k we have yk,σsk

(yk) ∈ V . Hence it makes sense to write

hk = ρ−1 (sk, yk) · · · ρ−1 (s1, y1) (11)

in G. We have
σsk

(ξ(yk)gk) = χk−1(yk−1)gk−1.

Taking subsequences if necessary we assume that gk and hk are admissible
(see [3], Section 6, and references therein) and denote their principal images
by imΘ (gk), imΘ (hk) and their principal domains by domΘ (gk), domΘ (hk).

The following lemma relates imΘ (gk) to M+
Θ and imΘ (hk) to M−

Θ.

Lemma 7.1 Let the notation and assumptions be as above. Then the fol-
lowing statements are true.

1. Assume that M+
Θ is backward invariant and take y ∈ ω(x). Then

χy (y) · imΘ (gk) is contained in M+
Θ.

2. If y ∈ ω∗(Λ−(x)), for some negative orbit Λ−(x), then χy (y) · imΘ (hk)
is contained in M−

Θ.
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Proof: The proof of the first statement is the same as Lemma 9.1 of [3]. It
uses backward invariance of M+

Θ, which is true for flows but may not hold
in general for semiflows.

For the second part take T > 0 and U ∈ OΨ (EΘ) and let V ∈ OΨ (EΘ)
be such that V ≤ 1

2
U . Let DΘ

V,T (w0) be the minimal control set of SV,T in
EΘ. By Corollary 5.9 we have πDΘ

V,T (w0) = X. Hence there exists

β = χ1 (x) · v ∈ DΘ
V,T (w0) ∩ χ1 (x) · domΘ (hk)

because χ1 (x) · domΘ (hk) is dense in the fiber above x. Define β0 = β and
βk = χk (yk) · hkv. Then

1. φsk
(βk) = βk−1,

2. βk ∈ DΘ
V,T (w0) and

3. βk → γ := χy (y) · u, where u ∈ imΘ (hk).

Clearly
γ ∈ cl

(
DΘ

T,V (w0) ∩ ω∗
(
Λ− (β)

))
.

Now by [14], Lemma 5.6, we have clDΘ
T,V (w0) ⊂ DΘ

U ,T (w0) and since M−
Θ is

backward invariant we conclude that

γ ∈ DΘ
U ,T (w0) ∩R = M−

Θ.

Hence χy (y) · imΘ (hk) intersects M−
Θ. But χy (y) · imΘ (hk) is connected

and contained in the chain recurrent set (cf. the proof of Lemma 9.1 of [3]).
Hence χy (y) · imΘ (hk) ⊂M−

Θ concluding the proof.

When we specialize this lemma to the case Θ = Θ (σ), the parabolic type
of the flow, we see that the principal image imΘ(σ) (gk) reduces to a single
point. In fact, for this specific bundle the attractor set M+

Θ is contained
in open Bruhat cells, that is, the set χ (y)−1 ·

(
M+

Θ ∩ EΘ(σ)

)
is contained in

some open Bruhat cell of FΘ(σ). Hence Lemma 7.1 implies that imΘ(σ) (gk)
is contained in an open cell. But the only possibility for this occurrence is
when gk is contractible with respect to Θ (σ), that is imΘ(σ) (gk) is a point.
The same reasoning applies to imΘ∗(σ) (hk), where Θ∗ (σ) is the dual of Θ (σ).
Hence we have the following consequence of Lemma 7.1.
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Corollary 7.2 Keep the notation and assumptions as above. Then imΘ(σ) (gk)
and imΘ∗(σ) (hk) are singletons.

Now we can prove the main result about the structural property of the
attractor and the repeller chain components in the flag bundles.

Theorem 7.3 Let M+
Θ(σ) be the attractor chain component for the semiflow

on the flag bundle EΘ(σ) and let M−
Θ∗(σ) be the repeller one in the dual flag

bundle EΘ∗(σ). Take x ∈ X. Then we have the following statements.

1. Suppose that M+
Θ(σ) is backward invariant. Then M+

Θ(σ) ∩ EΘ(σ),x is a

singleton, if ω (x) 6= ∅;

2. M−
Θ∗(σ) ∩ EΘ∗(σ),x is a singleton, if ω∗(Λ−(x)) 6= ∅, for some negative

orbit Λ−(x) trough x.

Proof: The first part was proved in Lemma 9.3 of [3], so we prove only the
second statement.

Let χ1 and χ2 be cross sections around x and y, respectively. Write
A = χ1 (x)−1 · M−

Θ∗(σ) and fix b0 ∈ A. We shall take a polar decomposition

of G adapted to b0 as follows: Choose a Weyl chamber A+ ⊂ G such that b0 is
the repeller of A+ in FΘ∗(σ) and the corresponding stable manifold (open cell)
Σ contains A. This Weyl chamber determines a maximal compact subgroup
K ⊂ G and the polar decomposition G = KA+K.

For any y ∈ ω∗ (Λ− (x)) consider the sequence hk in G defined in (11)
and write hk = vklkuk with uk, vk ∈ K and lk ∈ A+, where uk → u and
vk → v. By Corollary 7.2 the sequence hk is contractible in FΘ∗(σ), that is,
imΘ∗(σ) (hk) is a point.

Replacing if necessary the cross section χ1 with χ
′
1 = χ1u, u ∈ K, we can

assume that uk → 1.
By Lemma 6.1 of [3], we conclude that h−1

k b is outside the compact subset
A ⊂ Σ if b 6= vb0.

However
σtk (χ2 (yk) · b) = χ1 (x)

(
h−1

k b
)

since for large k we have h−1
k b /∈ A = χ1 (x)−1 · M−

Θ∗(σ), it follows that

χ2 (yk) · b /∈M−
Θ∗(σ) if vb 6= b0.

Therefore, for large values of k the fiber of M−
Θ∗(σ) above yk reduces

to the point χk (yk) · (v−1b0). This implies that the fiber of M−
Θ∗(σ) above
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x also reduces to a single point since σtk is a bijection between the fibers
EΘ∗(σ),yk

→ EΘ∗(σ),x and its inverse preserves the repeller chain component.

Of course, the conditions about ω and ω∗-limits are satisfied in case the
base space X is compact.

By the above lemma we have two cross sections Ω : X → EΘ(σ) and
Ω∗ : X → EΘ∗(σ) given by {Ω (x)} = M+

Θ(σ) ∩
(
EΘ(σ)

)
x

and {Ω∗ (x)} =

M−
Θ∗(σ)∩

(
EΘ∗(σ)

)
x
. They are easily seen to be continuous (see [3], Corollary

9.6).
The cross sections Ω and Ω∗ can be defined by functions f : Q → FΘ(σ)

and f ∗ : Q→ FΘ∗(σ) by

f (q) = q−1 · Ω (π (q)) and f ∗ (q) = q−1 · Ω∗ (π (q))

(see [11]). Clearly for every q ∈ Q we have Ω (π (q)) ∈ M+
Θ(σ), so that f (q)

belongs to the set of transitivity of the invariant control set in FΘ(σ) of Sq
V,T .

The same way f ∗ (q) belongs to the minimal control set in FΘ∗(σ). This
implies that for every q ∈ Q the pair (f (q) , f∗ (q)) belongs to the generic
(open and dense) G-orbit OΘ(σ) ⊂ FΘ(σ) × FΘ∗(σ) (cf. [3]). This orbit can be
identified with the following adjoint orbit Ad (G)HΘ(σ). Here HΘ(σ) ∈ cla+

is defined by the condition α
(
HΘ(σ)

)
= 0 if and only if α ∈ 〈Θ (σ)〉.

Thus we have a map h : Q → Ad (G)HΘ(σ) which is equivariant in the
sense that h (q · g) = Ad (g−1) · h (q). This map defines a cross section of the
associated bundle whose typical fiber is the adjoint orbit Ad (G)HΘ(σ).

Proposition 7.4 Let the notation and assumptions be as in Theorem 7.3.
Consider the associated bundle AΘ(σ) = Q ×G Ad (G)HΘ(σ) → X . Then
there exists a cross section ζ : X → A with corresponding map h : Q →
Ad (G)HΘ(σ), such that f (q) is the attractor of h (q) in FΘ(σ) and f ∗ (q) is
the repeller of h (q) in FΘ∗(σ).

Once we have the attractor and repeller chain components (and the cross
section given by Proposition 7.4), the other components are easily obtained
through intersections of the attracting and repelling domains of the control
sets.

In the maximal flag bundle E → X let M± be the attractor and repeller
chain components, respectively. If M (w) is another chain component then

M (w) = A (M (w)) ∩R (M (w)) ,
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where A (M) and R (M) are the attraction and repeller domains of M (w),
respectively. But by [14], Proposition 5.9, we have

A (M) =
⋂
V,T

A (DV,T (M)) R (M) =
⋂
V,T

R (DV,T (M)) .

Now we can apply Proposition 6.4 to give the full picture of the chain
recurrent components.

Theorem 7.5 Suppose the following conditions are satisfied:

1. M+ is backward invariant.

2. ω (x) 6= ∅ for some x ∈ X.

3. There exists y ∈ X such that ω∗(Λ−(y)) 6= ∅ for some negative orbit
Λ−(y).

Consider the map h : Q → Ad (G)H of Proposition 7.4, where H is
any element of the “partial chamber” a+ (Θ (σ)). Then the chain recurrent
components in the maximal flag bundle E are given by the fixed points of h (q)
as follows:

M (w)π(q) = q · fix (h (q) , w) .

Proof: Is a consequence of Proposition 6.4 and the fact that the intersection
of the opposed cells appearing in (9) and (10) are the fixed points of h (q).

References

[1] Braga Barros, C.J. and L.A.B. San Martin: Chain control sets for semi-
group actions. Mat. Apl. Comp., 15 (1996), 257-276.

[2] Braga Barros, C.J. and L.A.B. San Martin: On the action of semigroups
in fiber bundles. Mat. Contemp., 13 (1997), 1-19.

[3] Braga Barros, C.J. and L.A.B. San Martin: Chain transitive sets for
flows on flag bundles. Forum Math. To appear.

40



[4] Colonius, F. and W. Kliemann: The dynamics of control. Birkhäuser,
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