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Abstract

Recently Kiriushcheva and Kuzmin [1] claimed to have shown that the
Einstein-Hilbert Lagrangian density cannot be written in any coordinate
gauge as an exact differential in a 2-dimensional spacetime. Since this is
contrary to other statements on on the subject found in the literature, as
e.g., by Deser [2], Deser and Jackiw [3], Jackiw [4] and Grumiller, Kummer
and Vassilech [5] it is necessary to do decide who has reason. This is done
in this paper in a very simply way using the Clifford bundle formalism.

In [1] authors claim to have shown that: ‘if general covariance is to be
preserved (that is, a coordinate system is not fixed) the well known triviality of
the Einstein field equations in two dimensions is not a sufficient condition for
the Einstein-Hilbert action to be a total divergence’. This statement is contrary
to well known statements, as, e.g., in [2, 3, 4, 5]). So, we need to decide who is
correct. In what follows we explain that even if at first (and even second) sight
the arguments of [1] seems to be correct, they are not complete and indeed the
Einstein-Hilbert Lagrangian in a 2-dimensional spacetime can always be written
in any coordinate gauge as an exact differential.
To attain our objective in the most efficacious way we shall use in what

follows the Clifford bundle formalism as developed in [6], from where we use the
main notations, and where in particular (M,g,∇, τg, ↑) denotes a Lorentzian
spacetime1. We shall explicitly calculate the expression of the Einstein-Hilbert
Lagrangian density in an arbitrary chart (U,ϕ) of the maximal atlas of M with

1M is a 4-dimensional Hausdorff and paracompact differentiable manifold, oriented by

τg ∈ sec
^4

T∗M and time oriented by ↑ (details in [6]). Also g ∈ secT 20M denotes a Lorentz

metric of signature −2, ∇ is the Levi-Civita connection of g, and g ∈ secT02M denotes the
metric of the cotangent bundle.
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coordinate functions {xµ} using coordinate and orthogonal cobasis and analyze
its behavior in a general n-dimensional spacetime and in the particular case of
a 2-dimensional spacetime.
We start by recalling some well known results concerning the differential

geometry associated with a n-dimensional Lorentzian manifold, which can be
easily derived using the Clifford bundle of differential forms Cc(M, g) [6].
1. Let {eµ := ∂

∂xµ } ∈ secF (M)2 a coordinate basis and {ϑµ = dxµ} the
corresponding dual basis, i.e., dxµ( ∂

∂xν ) = δµν . We also have

g(eµ, eν) = gµν = gνµ = g(eν , eµ),

g(ϑµ, ϑν) = gµν = gνµ = g(ϑν , ϑµ), (1)

gµαgαν = δµν .

The frame {eµ := gµν ∂
∂xν } ∈ secF (M) is called the reciprocal of the frame

{eµ} and the coframe {ϑµ = gµνϑ
ν} is called the reciprocal of the coframe {ϑµ},

ϑµ ∈ sec
^1

T ∗M /→ sec Cc(M, g).
2. We introduce also an orthonormal frame {ea} ∈ secPSOe1,n−1(M) (called

a tetrad in a 4-dimensional spacetime) and its dual coframe {θa} (called a
cotetrad in a 4-dimensional spacetime ) which are basis for TU and T ∗U . Using
obvious notation we represent the reciprocal of the frame {ea} (respectively
coframe {θa}) by {ea} (respectively {θa}). We have3

ea = hµaeµ, e
a = haµe

µ, θa = haµdx
µ = haµϑ

µ, θa = hµaϑµ,

g(ea, eb) = ηab = diag(1,−1, ...,−1), (2)

g(θa, θb) := θa · θb = ηab = diag(1,−1, ...,−1).

3. Define θa1...ar = θa1 ∧ ... ∧ θar ∈ sec
^r

T ∗M /→ sec Cc(M, g) and

Bθa1...ar = B(θa1 ∧ ... ∧ θar) sec
^n−r

T ∗M /→ sec Cc(M, g). In the Clifford

formalism we have for any Ar ∈ sec
^r

T ∗M /→ sec Cc(M, g) that

BAr = Ãrτg = Ãrθ
1...n, (3)

where Ãr denotes the reverse of Ar, e.g., ^θa1 ∧ ... ∧ θar = θar∧...∧θa1 . Observe
that we use the convention that the Clifford product of multiforms is denoted
by juxtaposition of symbols. The following identities which will be used below
are easily shown to be true:

dθa1...ar = −ωa1b ∧ θba2...ar − ...− ωarb ∧ θa1...ar−1b, (4)

dBθa1...ar = −ωa1b ∧ Bθba2...ar − ...− ωarb ∧ Bθa1...ar−1b, (5)

2 . Note that each eµ ∈ secTM . i.e., is a vector field. Also, each dxµ ∈ secT∗M and
µ = 1, 2, ..., n. In what follows F (M) denotes the frame bundle and PSOe1,n−1(M) denotes

the orthonormal frame bundle and PSOe1,n−1(M) the orthonormal coframe bundle.
3The boldface indices take the values 1, 2,...,n.
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where the ωab are the connection 1-form fields in a given gauge. We put

ωab := ωacbθ
c (6)

Moreover, we recall that:

∇eaeb := ωcabec, ∇eaθb := −ωbacθc. (7)

It is trivial also to show that an analogous formula holds for ϑα1...αr =

ϑα1 ∧ ...∧ϑαr ∈ sec
^r

T ∗M /→ sec Cc(M, g) and Bϑα1...αr = B(ϑα1 ∧ ...∧ϑαr ) ∈

sec
^n−r

T ∗M /→ sec Cc(M, g) with ωa1b 7→ ωα1β = Γα1νβϑ
ν , etc., and where

Γα1νβ = Γ
α1
βν are the Christoffel symbols defined by:

∇eµeν := Γ
α
µνeα, ∇eµϑ

ν := −Γνµαϑα (8)

4. The following result is a useful one. Let ∂ = dµ∇eµ = θa∇ea the Dirac
operator acting4 on sections of Cc(M, g). If Ap ∈ sec

^p
T ∗M /→ sec Cc(M, g)

then

∂Ap = ∂∧Ap + ∂·Ap

= dA− δAp. (9)

In Eq.(9) δAp = −∂·Ap is the Hodge codifferential given by

δAp = (−)p B−1 d B Ap. (10)

In particular, if A ∈ sec
^1

T ∗M /→ sec Cc(M, g), writing A = Aµdx
µ = Aaθ

a

and a = g(A, ) = Aµeµ ∈ secTM we may verify that the Hodge codifferential
of A is

δA = −∂·A = −ϑµ · [∇eµ(Aνϑ
ν)] = −ϑµ · [(∇µAν)ϑ

ν) = −gµν∇µAν = −(∇µA
µ)

= − 1p
(−)n−1 detg

∂µ(
p
(−)n−1 detgAµ) := −div a (11)

5. Now, the Einstein-Hilbert Lagrangian density in a n-dimensional Lorentzian
spacetime is the n-form LEH ∈ sec

^n
T ∗M /→ sec Cc(M, g)

LEH =
1

2
Rτg = R

p
(−1)n−1 detgdx1 ∧ dx2 ∧ ... ∧ dxn

=
1

2
Rθ1 ∧ θ2 ∧ ... ∧ θn = 1

2
Rθ1θ2 . . . θn, (12)

where R denotes as usual the curvature scalar. It is a legitimate scalar function
which has, as such, the same value in a given spacetime point when calculated
in any coordinate chart of the maximal of M.

4The Clifford product is denoted by juxtaposition of symbols.
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6. Cartan’s structure equations for a general n-dimensional Lorentzian
spacetime are:

T a = dθa + ωab ∧ θb = 0,
Ra
b = dωab + ωac ∧ ωcb, (13)

where ωab are the connection 1-form fields
5 defined by Eq.(6), T a ∈ sec

^2
T ∗M /→

sec Cc(M, g) are the torsion 2-form fields and Rab ∈ sec
^2

T ∗M /→ sec Cc(M, g)

are the curvature 2-form fields. Of course, similar equations can be written using
coordinate basis, in which case the torsion and curvature 2-forms are denoted
by T α(= 0) and Rα

β .
7. With these preliminaries we can rewrite the Einstein-Hilbert Lagrangian

density (in natural units) as:

LEH =
1

2
Rτg

=
1

2
Rµν ∧ B(ϑµ ∧ ϑν) =

1

2
Rcd ∧ B(θc ∧ θd) (14)

Indeed, we have immediately using the formulas of Chapter 2 of [6], that

Rcd ∧ B(θc ∧ θd) = (θc ∧ θd) ∧ BRcd = −θc ∧ B(θdyRcd)

= − B [θcy(θdyRcd)], (15)

and since

θdyRcd =
1

2
Rcdabθ

dy(θa ∧ θb) = 1

2
Rcdab(η

daθb − ηdbθa)

= −Rcaθb = −Rc, (16)

it follows that −θcy(θdyRcd) = θc · Rc = R.
8. Now, with a little bit more of algebra we can write the Einstein-Hilbert

Lagrangian density as:

LEH = Log − d (θa ∧ Bdθa)
= Lcg − d (ϑα ∧ Bdϑα) (17)

where Log and Lcg,

Log = −
1

2
τgθ

ayθby (ωac ∧ ωcb) , Lcg = −
1

2
τgϑ

αyϑβy
³
ωαγ ∧ ωγβ

´
, (18)

5Once an orthonormal basis is fixed we suppose for doing calculations that ωab ∈
sec

^1
T∗M /→ sec Cc(M, g).
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are first order Lagrangian densities (first introduced by Einstein) written in
intrinsic form. Indeed, to prove Eq.(17) we observe that using Cartan’s second
structure equation and Eq.(5) we can write LEH as:

LEH =
1

2
B [θcy(θdyRcd)]

=
1

2
B [θcy(θdydωcd)] +

1

2
B [θayθby (ωac ∧ ωcb)]

=
1

2
d[ωab ∧ B(θa ∧ θb)] +

1

2
ωab ∧ d B (θa ∧ θb) +

1

2
B [θayθby (ωac ∧ ωcb)]

= −d (θa ∧ Bdθa) +
1

2
ωab ∧ d B (θa ∧ θb) +

1

2
B [θayθby (ωac ∧ ωcb)]

= −1
2
ωab ∧ ωac ∧ B(θc ∧ θb)− d (θa ∧ Bdθa) (19)

Also, LEH can be written as

LEH =
1

2
B [ϑγy(ϑδyRγδ)] = −

1

2
ωαβ ∧ ωαγ ∧ B(ϑγ ∧ ϑβ)− d (ϑµ ∧ Bdϑµ) (20)

We now calculate, e.g., ωαβ ∧ ωαρ ∧ B(ϑρ ∧ ϑβ). We have:

ωαβ ∧ ωαρ ∧ B(ϑρ ∧ ϑβ) = ϑρ ∧ ϑβ ∧ B(ωαβ ∧ ωαρ )
= B(ϑρ ∧ ϑβ) · (ωαβ ∧ ωαρ )
B [(ϑβ · ωαρ )(ϑρ · ωαβ)− (ϑβ · ωαβ)(ϑρ · ωαρ )]. (21)

Recalling that ωαρ = Γ
α
µρϑ

µ we get

Lcg = −
1

2
ωαβ ∧ ωαγ ∧ B(ϑγ ∧ ϑβ) = −

1

2
τgg

βκ
³
ΓµκγΓ

γ
µβ − ΓµµγΓ

γ
κβ

´
. (22)

Of course, if repeat the calculation using an orthonormal coframe we get
recalling that ωab = ωabcθ

c that

Log = −
1

2
ωab ∧ ωac ∧ B(θc ∧ θb) = −

1

2
τgη

bk
¡
ωdkcω

c
db − ωddcω

c
kb

¢
. (23)

Eq.(22) shows that Log and Lcg are indeed expressions for first order Einstein
Lagrangians density in different gauges. It is crucial for what follows to realize
that in general Log 6= Lcg. Before we use this fact, let us recall that Eq.(22)
shows that, e.g., we can write Lcg = LΓΓd

nx where

LcΓΓ =
1

2
gβκ

p
(−1)n−1 detg

³
ΓµκγΓ

γ
µβ − ΓµµγΓ

γ
κβ

´
. (24)

We notice that as defined LcΓΓ is not a scalar nor is it a scalar density, to use
the wording of old textbooks in differential geometry and general relativity (see,
e.g., [7]). There is a different LcΓΓ for every coordinate chart that we choice to
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use. In[1] it is claimed that LΓΓ or Lg when expressed in an arbitrary coordinate
chart where g12 6= 0, is not zero, in general, for a 2-dimensional spacetime, and
so that the Einstein-Hilbert Lagrangian density cannot be expressed as an exact
differential. Although the statement that in a general coordinate chart Lg 6= 0
in a 2-dimensional spacetime is correct, the statement that the Einstein-Hilbert
Lagrangian density cannot be written in a 2-dimensional spacetime as an exact
differential is incorrect.
9. To prove our statement, let us first show that Lg = 0 in a 2-dimensional

spacetime, which implies also that the corresponding LoΓΓ = 0 in this case.
Recall that when dimM = 2 only ω12 = −ω21 is non null. So, the second

member of Eq.(23) in this case is :

−1
2
ωab ∧ ωac ∧ B(θc ∧ θb) = −

1

2
ω12 ∧ ω11 ∧ B(θ1 ∧ θ2)−

1

2
ω12 ∧ ω12 ∧ B(θ2 ∧ θ2)

− 1
2
ω21 ∧ ω21 ∧ B(θ1 ∧ θ1)−

1

2
ω21 ∧ ω22 ∧ B(θ2 ∧ θ1)

= 0. (25)

Next note that although we can write (in obvious notation)

LEH = −d (ϑµ ∧ Bdϑµ)−
1

2
ωαβ ∧ ωαγ ∧ B(ϑγ ∧ ϑβ)

= −d (θa ∧ Bdθa)−
1

2
ωab ∧ ωac ∧ B(θc ∧ θb), (26)

it is not true, e.g., that d (ϑ0µ ∧ Bd0ϑµ) = d (θa ∧ Bdθa) or that 1
2ω

0
αβ ∧ ω0αγ ∧

B(ϑ0γ ∧ϑ0β) = 1
2ωab∧ωac ∧B(θc∧θb). Only the sums indicated in Eq.(26) define

a n-form with tensorial properties. The parcels are coordinate gauge dependent
as is trivial to verify, and there is no mystery in this statement, although it may
look odd at first sight if these parcels are written in components. Indeed, using
Eq.(2) we have, e.g.,

d (θa ∧ Bdθa) = d (ϑµ ∧ Bdϑµ) + d
£
haµϑ

µ ∧ B[(∂αhβa)ϑα ∧ ϑβ ]
¤

(27)

10. So, from Eq.(27) and Eq.(26) we get

− d (ϑµ ∧ Bdϑµ)− d
£
haµϑ

µ ∧ B[(∂αhβa)ϑα ∧ ϑβ ]
¤
− 1
2
ωab ∧ ωac ∧ B(θc ∧ θb)

= −d (ϑµ ∧ Bdϑµ)−
1

2
ωαβ ∧ ωαγ ∧ B(ϑγ ∧ ϑβ). (28)

11. Now, since in a 2-dimensional spacetime Eq.(25) says that 12ωab ∧ ωac ∧
B(θc ∧ θb) = 0 we get (in this case)

d
£
haµϑ

µ ∧ B[(∂αhβa)ϑα ∧ ϑβ]
¤
=
1

2
ωαβ ∧ ωαγ ∧ B(ϑγ ∧ ϑβ). (29)

With this result we can write the Einstein-Hilbert Lagrangian density in a
2-dimensional spacetime (denoted L(2)EH) as an exact differential, i.e.,

L(2)EH = −d
£
ϑµ ∧ Bdϑµ + haµϑ

µ ∧ B[(∂αhβa)ϑα ∧ ϑβ ]
¤
, (30)
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which is the result that we wanted to show. We observe that the final expression
(i.e., Eq.( 30)) needs the introduction of a tetrad field to be written, but it is
true in an arbitrary coordinate chart.
12. We observe also that Eq.(29) shows explicitly the error done by authors

of Ref. [1]. Indeed, they affirm that the term −12ωαβ ∧ ωαγ ∧ B(ϑγ ∧ ϑβ) =

− 12τggβκ
³
ΓµκγΓ

γ
µβ − ΓµµγΓ

γ
κβ

´
cannot be written as an exact differential, which

as we just saw, is not the case.
13. It is also worth to note that in an orthonormal gauge the form of the

Einstein-Hilbert Lagrangian in a 2-dimensional spacetime is simply

L(2)EH =
1

2
Rτg = −d (θa ∧ Bdθa) . (31)

Then we can write taking into account that in a 2-dimensional spacetime τ2g = 1
we have taking into account Eq.(3) thatp
−detgR = −2

p
−detgd (θa ∧ Bdθa) τg = 2

p
−detg B d (θa ∧ Bdθa) , (32)

an equation identical to Eq.(1.55) of [5], establishing the correspondence of the
formalisms. Also, Eq.(32) shows that the statement in [2] that first oder theory
does not involve the zweibein {θa} is not correct. Indeed, in the formula used in
[2] the {θa} disappeared after using Cartan’s first structure equation in Eq.(32).
14. We now obtain a very convenient form for Lg (in a n-dimensional

spacetime) in terms of {θa}, which may be appropriately called the Thirring
Lagrangian [6, 12, 13, 14] .To do that, we first verify using Cartan’s first struc-
ture equation that

ωcd =
1

2

£
θdydθc − θcydθd + θcy

¡
θdydθa

¢
θa
¤
. (33)

Using Eq.(33) in Eq.(18) we get,

Lg = −
1

2
τgθ

ayθby{1
2
[θaydθc + θcydθa + θay(θcydθk)θk]

∧ 1
2
[θbydθc + θcydθb + θcy(θbydθl)θl], (34)

which after some algebraic manipulations using, e.g., the identities of Chapter
2 of [6], reduces to

Lg = −
1

2
(dθa ∧ Bθb) ∧ B(dθb ∧ θa) +

1

4
(dθa ∧ θa) ∧ B

¡
dθb ∧ θb

¢
(35)

or equivalently,

Lg = −
1

2
dθa ∧ Bdθa +

1

2
δθa ∧ Bδθa +

1

4
(dθa ∧ θa) ∧ B

¡
dθb ∧ θb

¢
. (36)

Eq.(36) is the basis for a possible formulation of gravitational theory in
Minkowski spacetime, once we introduce the concept of deformation extensor
fields. Details are to be found in [6]
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15. The expression for Lg given, e.g., by Eq.(35) (or Eq.(36)) obviously
defines a unique n-form when expressed in any coordinate chart. Since it does
not contain the gauge dependent connection 1-forms ωab and since moreover
it is obviously null 6 for a 2-dimensional spacetime someone may may think
equivocally (as we did at a first sight) that the fact that LEH is indeed an exact
differential in that case, does not imply that it must be an exact differential
when expressed in an arbitrary coordinate gauge.
16. For completeness it remains to calculate the ‘divergence term’ using

Clifford algebras methods in a 2-dimensional spacetime, since such an exercise
shows how powerful and economic is this calculation instrument.
We have,

ϑµ ∧ Bdϑµ = − B (ϑµydϑµ)
= − B [ϑµyd(gµαϑα)]
= − B [ϑµy(gµα,β ϑβ ∧ ϑα)]
= − B [gµα,β g

µβϑα − gµα,β g
µαϑβ ]

= − B [gµβ (gµα,β −gµβ ,α )ϑα] (37)

= − B [gµβgνα (gµα,β −gµβ ,α )ϑα] := − B [Aµϑµ] = − B A.

and
haµϑ

µ ∧ B[(∂αhβa)ϑα ∧ ϑβ = − B haα(∂
αhβa − ∂βhαa )ϑβ = − B B, (38)

with A,B ∈ sec
^1

T ∗M.

Now,

−d (ϑµ ∧ Bdϑµ) = d B A = (−1) B (−1) B−1 d B A = − B δA, (39)

−d[haµϑµ ∧ B[(∂αhβa)ϑα ∧ ϑβ] = −d B B = − B δB (40)

Finally, calling A+B = V ∈
^1

T ∗M we get

−d
¡
ϑµ ∧ Bdϑµ + haµϑ

µ ∧ B[(∂αhβa)ϑα ∧ ϑβ
¢
= ∂µ

³p
−detgV µ

´
d2x =

1

2
Rτg,

(41)
which furnishes an alternative expression for R relative to Eq.(1.49) of [5] or
Eq.(2.8) of [3].
17. We recall that this result implies that unfortunately there is no consis-

tent Hamiltonian formulation for the Einstein-Hilbert action in 2-dimensional
spacetime, contrary to what is stated in [1] and also in [8, 9]. Indeed, as showed,
e.g., in [10] the Einstein-Hilbert action is a topological invariant (in Euclidean
signature it is directly related to the genus of a 2-dimensional Riemannian
space [5]). So the spatial metric has no conjugate momentum and the canonical

6Recall, e.g., that dθb ∧ θa and (dθa ∧ θa) in Eq.(35) are 3-forms in a 2-dimensional space-
time and then are null.

8



formalism breaks down. We observe however, that as showed by Polyakov [11]
in quantum field theory there are subtle effects which gives rise to a nontrivial
effective action. It is this effective action that is used in the quantization of
2-dimensional gravity.
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