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Abstract

We study the existence, uniqueness and regularity of solutions of the parabolic equation
up — Au = a(z)u? + b(x)uP in a bounded domain and with Dirichlet’s condition on the
boundary. We consider here a € LY(Q2),b € LP(2) and 0 < ¢ < 1 < p. The initial data
u(0) = ug is considered in the space L"(£2), » > 1. In the main result(0 < ¢ < 1), we assume
that a,b > 0 a.e in 2 and we assume that uyg > ydq for some v > 0. We find a unique
solution C([0,T7, L"(Q)) N L2.((0,T), L= ().

loc
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1 Introduction

Let © be a bounded domain in RY, with smooth boundary 9Q and 7' > 0. We consider the
following nonlinear heat equation

ug — Au = a(x)u? + b(x)u? in Q x (0,T)
u = in 99 x (0,7) (1.1)
u(0) =up in

with a € L¥(Q),b € L#(Q), 0, 3>1,0< ¢ <1 < p.

The study of problems with the nonlinearity of (1.1) has been studied since the pioneering
work of Ambrosetti, Brezis and Cerami [1] and it is important because combines concavity and
convexity effects, see also [8]. The problem (1.1) for @ = b =1 and up € L>*(R), up > 0 was
studied by Cazenave, Dickstein and Escobedo [6] who showed the existence of a unique solution
positive u € L>®((0,7) x Q) in a maximal time interval [0,7,,). Other problems for (1.1) as
continuation of solutions after T;, and a priori estimates for ¢ = 1 has been considered by
Goémes and Quittner [10] and Quittner and Simondon [9].

In this paper we are interested in the existence, regularity and uniqueness of solution of
the problem (1.1) for initial data ug € L"(2) with » > 1. In the case that a = 0,0 = 1 the
problem has been considered by different authors [2], [4], [7], [11], [13] since the pioneering work
of Weissler [14], [15]. We know that if 7 > §(p—1) or r = §(p—1) with r > 1 and ug € L"(Q)
then there exist a unique classical solution u of (1.1) such that

w e O([0,T], L"(2)) N Lige((0, T), L>*(2)) (1.2)
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with u(0) = ug. Moreover, if ug > 0, then u is nonnegative.

In this work we find analogous conditions for the existence and uniqueness of a solution of
the problem (1.1) in the class (1.2).

If (S(t))t>0 is the linear heat semigroup on € with the Dirichlet condition on 0f2, then the
problem (1.1) will be studied under the form of the(formally equivalent) integral equation

¢
u(t) = S(t)uo + /0 S(t —o)laul (o) + buP(o)]do. (1.3)

When ¢ = 1 < p, the study is easy because the nonlinearity satisfies the Lipschitz’s condi-
tion. Thus we have the following result.

Theorem 1.1 Let a € L*(Q),b € LP(Q) with 1 < o, 3 < co. Assume that ug € L(Q),
1§7‘<oo,oz>% andé—f—%gl—l—Nlp. If%—i—pzl < % 07’%—%%:% with r > 1, then
there exist T > 0 and a unique function

C([0,7], L™(€)) N Lie((0, T), L=(€2)). (1.4)

with w(0) = up solution of (1). Moreover, there exists a positive constant C' such that

N(l

t2 G u(t)][ s < C
forallt € (0,T) andr < s < 0.

When 0 < ¢ < 1 the nonlinearity is not Lipschtitz. In order to overcome the obstacle
generated by the lack of the Lipschtitz’s condition, we consider initial data in L"(£2) greater
than the distance function dqo(x) = dist(xz,0Q). Also, we consider a,b > 0 a.e in Q. Thus, we
have.

Theorem 1.2 Let a € L*(Q),b € LA(Q) with 1 < o, < 00, a,b > 0 a.e in Q. Assume
that ug € L"(Q2), 1 < r < oo, there exists v > 0 such that ug > ~vdq(a.e in ), a > q%

andé—l—%gq—l—l;]\,qﬂ—]%. If%—l—p_l <%or%+p;1:%and7“>l, then there exist

T

T =T(up) >0, 1 <m< oo and a function
we C([0,7], L7(2)) N C((0, T], Wy ™(2) (1.5)
with u(0) = ug solution of (1). Moreover, u(t) > yidq,
N1 1
2 G u®)||ps < C for allr < s < oo,

for N > 2,
N
o _ <
5 u(t) = S(t)uollyan < C.
for N =1
1,11 1
212G 3| Dy [u(t) — St uo)||zs < C for allm < s < oo
with t € (0,T] and some C,~v; > 0.

This solution is unique in the class of functions

C([0,T7, L™(2)) N Lig((0, T), L>=(2))

loc

such that u(t) > vdq fort a.e in (0,T) and some v > 0.



The space Wolm(Q)(m > 1) denotes the closure de C}(£2) in the Sobolev’s space W™ ((2)
with the norm
e lyaon = [Vl

for all u € I/VO1 Q). As we will see, the function u is valued in WO1 () because the proof of
the Theorem 1.2 relies in a fixed point argument and in our estimates we will use the Hardy’s
inequality.

For the case that a,b are positive constant, that is, & = § = oo we have that the Theorem
1.2 is optimal. This follows from [15](Theorem 1) because the nonlinearity of (1.3) is larger
than buP.

Remark 1.3 In the uniqueness part of Theorems 1.1 and 1.2, u being a solution of (1.3) in
the class (1.4) or (1.5) is understood in a very weak sense: the integral term in (1.3) should
simply be an improper Bochner integral in L™(Q2) convergent to 0, ast — 0.

The plan of the paper is the following. In Section 2 we present some preliminary results
and in the Sections 3 and 4, we prove the Theorems 1.2 and 1.1 respectively.

2 Preliminary results
We will frequently use the smoothing effect of the semigroup (S(t))+>0.

Lemma 2.1 Let Q@ C RY be a bounded domain. If 1 < r,s < oo and ug € L"(Q), then
S(t)ug € L*(2) and there exists a positive constant C = C(|Q2]) such that

N axfl_1
1S E)uollzs < CH=¥ mxC=10} |,
for allt > 0.

For the proof see [5].

Also we use the following.
Lemma 2.2 Given a compact set K C L"(Q2) and 1 < r < s < oo, there exists a function
v :(0,1] — (0,00) with limy_oy(t) = 0 such that t%(%fi)HS(t)uoHLr < ~(t) for all t € (0,1)
and ug € K.

For the proof see Lemma 8 of [4].

Lemma 2.3 Let Q C RY be a C' bounded domain and f € L'((0,T),L*(Q)), T > 0. Define
forte (0,T),

w(t) = /0 S(t—o)f(o)do.

If w(t) € L™(Q) for some 1 < m < oo and VS(t — ) f(-) € L'((0,t), L™(R2)), then w(t) €
Wolm(Q) for every t € (0,T).

Proof. Fix ¢t € (0,T). Since that f € L'((0,T), L'(2)), we have S(t —-)f € L'((0,t), L}(Q),

thus w(t) is well defined. Moreover, by the regularity of the Lemma 2.1, S(t—o) f(0) € Wolm(Q)
for all o € (0,¢). On the other hand, we have that if u € Wolm(Q) and ¢ € C}(RY) then

Jp .
’/ua| < |[Vullzmlloll s i =1,2,...,N (2.1)
Q T
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This it is clear to u € C3°(2) and thus by density for u € VVO1 "™(Q). Therefore, by Fubini’
Theorem and (2.1) we have that if ¢ € C}(RY), then

dp t

|| w®) gl <llellpm | (VS = o)f(o)llzmdo
Q Ly 0
= Cilleo|l -

Since that w(t) € L™ (), from the proposition IX.18 [3] we have the result.

We will use the following generalized Gronwall’s inequality.

Lemma 2.4 Let T >0, A>0, «>0,0< 8,7 <1. Consider ¢ € L*(0,T) a nonnegative
function such that

o(t) <A+ ta/o (t — o) PoVp(0)do a.e in (0,T)

If 1+« > B+, then there exists a positive constant C = C(T,«, 3,7) > 0 such that

o(t) < CA a.ein (0,T).

For the proof of the Theorems 1.1 and 1.2 we need some technical results.

Lemma 2.5 Let0<g<1<p anda7575215ati5fyin9%+§<17%+%<Q+%’a>q‘%’
%—i— p=l % Let m(s) given by

s

1 _{min{§+}v,1—}v} N >2 (2.2)
= 1 AT .
m(s) 1—--1 N =1
then,
1—
(7’) é+%+m(£) Sl’
(7’7’) é_'_%_m%s) <%
(”7’) m(s) < % + 17;(% - i)
(ZU)§+%_%< m%s)
Proof. It follows directly.
O

Remark 2.6 Together with the properties of m gives by the Lemma 2.5 it is possible to find
Bo € [1,0] satisfying (i)-(iv) and ﬁ < FIO + 2. Indeed, if m%s) > %—i— B, then choosing
Bo € [1,0) suchthat%—i—% = 1 <1 we have%—i—% < %—I—% < %—i—%for]\f > 2,

m(s)

5% 4+l é — % < 2 for N =1 and the conditions of the Lemma 2.5 hold.

S

Remark 2.7 [t is easy to observe that when N = 1 we can take any m € (1,00), in the
definition of m given by (2.2), such that only the property (i) of the Lemma 2.5 holds.



Lemma 2.8 Assume the conditions of the Lemma 2.5. If m(s) > 1 is given by (2.2), B =

% + élr _ 2n]1\25) and & = %(% — 7) then the expressions

(i) 1+ a1 —q) — ¥ max{l + <1 0},

~ w2 0} — aa,

(iii) 1 — ¥ max{L + =1 4 1-¢ (1-q)(a—7),
(iv) 3 — S max{l + 92— m(gs),O} +q(f—a)

are positives.

(ii) & + 8- & max{l + 1

Proof. It is directly, using the fact 1 > 8 > a.

Lemma 2.9 Assumethat0<q§1<p,a,ﬁ,rzlwz’tha>q%and +1<q+ Nq+
If%—i—p < N orﬁ—i—p 1 :% and r > 1, then there exists n > r such that

() 1+ <q+ 355
(it) 5 + 5 <1
(m) —i—p < Z,

(iv) p%(% — %) < 1.

Proof. Since that %—}—p;l < % or %—I—pzl = % and r > 1 we have that é+ < 1+%. This
together the other conditions it allow us to choose 7 > r such that i Nlp < % < %(% %),
L<oband L <14 58— L

O
The following result, it will be necessary to show the uniqueness of the solution of (1.3).

Proposition 2.10 Assume that a € LO‘(Q) b 6 LB(Q) 1 < « ﬁ,s < 00, 0<g<l<p. If
ug € L°(Q), B+ <1, a>q+1, a—i— <qg+2 and L —|—p 1 then the problem (1.3)
has a unique solutwn i the class offunctwns

we Lo((0,T), L*(92)) N LS ((0,T), Wy ™ (@) (2.3)

such that }
sup esste(ovT)tﬁHu(t) — S()uolly, 1mis) < 00,

u(t) > ydg for some~y >0 and t € (0,T). m(s) is defined by (2.2) and ( = I+ QES -,

2m

Proof. Let u and v be two solution of the equation (1.1) in the class (2.3). Then,

u(t) — v(t) = /0 S(t — o)a[ul (o) — v(c)|do + /0 S(t— oWuP(0) — P (o)do . (2.4)

-~ -

Wi(t) Wal(t)




Let M = sup 683te[0,T]{HU(t)HLS, [lo(t)||rs} and

o(t) = 81[1&] ||u(o) —v(o)||Ls + sup essoe[o’t]aﬁHu(a) — ’U(O’)HWOl,m.
oe|0,

Since that u(t),v(t) > ~vydq for t € (0,T), then

lud — 07| < gy7? |u1—_v| =Clu— vWM)l_q. (2.5)
dg 1 do
By Lemma 2.5 (i)-(iii) é+%—|—% <1, é+%+% < %, é%—%—% < N thus using the

Lemma 2.1 and Hardy’s inequality

¢ N i1 a-1,1-g 1—
WA ()]s SCHGHLQ/O (t— o) 2 TRy — 0|4,V (u — v) || ldo

¢ N 1.,g-1_ 1- 5 (2.6)
< C/ (t — o)~z mexda H 50 =800 o (5) do
0
_ oot
PIWAlyrn < Cllalpet? [ (8= o)~z 2 G200y — |4, [lu — vl[} 1, do
"o , o ARG
gCtﬁ/ (t — o)z 2 max{G =0 (0) do
0
Similarly, since that
[ — o] < C(lufP~! + P u — o] (2.8)
and by (iv) of the lemma 2.5 and the remark (2.6), we have that £ + % — << % + L, we
conclude .
p—l _ﬂ(l
IWa(®lle < a7 bls [ (6=o) 730 o
N1 (2.9)
<C/ (t—o) REACRRE )w(a)da
F 1 3 —1_Nyp_ 1)
W2 (O)]lyyam < (M +1)P7[b[ st / (t—o) 2 277 —v||psdo
0 0
ot N (2.10)
< Ctﬂ/ (t — a)_7 > (57 m)gp(a)da
0
From (2.6), (2.7),(2.9) and (2.10)
p(t) < 0/ (t — o)~ 3 max{G+ 1T+ 150} o =B0-0) () dor
+Ctﬁ/ (t — o) 22 max{G i 0 =800 (5 dor
+C/ (t— o) 2 Gt (o) do
+Otﬁ/ (t— o) TR (o) do
0
Since that by the Lemma 2.8(for r = s), 1 — %max{é + %1 + %,0} — B(l -q), % + 8-
Y max{l 49— 2 0} - 3(1—q) are positive and %—l—ﬁ—%(%—i—g—%) = 1—%(%—1—1”;1) >0,
by the lemma 2.4 we have that ¢(t) = 0, that is, u(t) = v(¢t) for t € [0,T]
O

Also for the case ¢ = 1 we have the following result of uniqueness.



Proposition 2.11 Assume that a € L*(Q),b € L?(Q) with o, > 1, ¢ = 1 and ug € L*(Q),
s> 1. Ifé-ﬁ-% <1, %—4—% <1l,a> % and%—l—pgl < %, then the problem (1.3) has a unique
solution in L*°((0,T), L7 (R)).

Proof. Let u,v € L*>((0,7),L7(2)) solutions of (1.3) with the same initial data ug. Let
M = sup esseo, )1l |[ut)|Ls, [[v(t)|[s }- Since that (2.8) holds, by the Lemma 2.1 we have

t
_ N
u(t) — v(®)lle < Cllallze / (t — o) 35 ju(o) — v(0)||edo
-1 t 7ﬁ(l+p—1)
oMb / (t— o) Ju(o) — v(0)||+do
0

and so, the result follows of the Lemma 2.4.

3 Proof of Theorem 1.2

To show the Theorem 1.2 we follow the standard way to study problems with singular initial
data. We use the fixed point argument of the mapping u — ®(u) defined by

O(u)(t) = S(t)ug + /0 S(t — o)au?(0) + buP (0)]do (3.1)

in a suitable complete metric space, see [4], [14], [15].
Proof of the existence part of the Theorem 1.2. We consider two situations.

Case 1. % + =L o % Let C), be the positive constant such that

r

IVS®)llm < Cont 2| ]| (3.2)

for all ¢ € L™(Q) with m > 1 and let Cy, C; > 0 be such that Cydg < p1 < Cidq where ¢ is
the first eigenvector associated to the first eigenvalue A of the operator —A in H&(Q)

Let n be given by Lemma 2.9 and let m = m(n) be where m is given by (2.2). Thus, the
results of Lemma 2.5, 2.8(for s = 7) and 2.9 hold. On the other hand, since that € is bounded
we have the inclusion of the LP spaces and by the remark 2.6 we can assume that
<

+ (3.3)

| =
33

1
m
Fix M > ||luo||rr and let

E = C((0,T),L(Q) N C((0,T), Wy™ (),

K = {u € E;u(t) > yido, t%[u(t)||r < M+ 17|V (u(t) - S(t)ug)|| < 1 for t € (0,T)}
with & = %(% - %), 8= —% + % + % and y; = 1% CoCy e 1. We equip K with the distance

d(u,v) = max{ sup t*[ju—wv||gs, sup t7||V(u—v)||Ln},
0<t<T 0<t<T

so (K,d) is a nonempty complete metric space.



For u € K we set ¢u defined by (3.1). We will show that qb K — K and it is a contraction.
FromLemma29wehavea q<1ﬂ+ <1, + <*<N,ﬁ+ —and
ap < 1. Thus, by Lemma 2.1

t
1| gu(t)|| < ||uol|rr + Ct%]a]| /0 (t — o) 2 T Oy ()19, +
- t _ N1, p-1
bl s / (t — o) F D (o), do
0

~ t N max{14+to} 4
< M + Ct%||a||po( sup taH'LL(t)HLn)q/ (t—o) 2 N Y [
te(0,T) 0
a & dl T (FHED) —ap
Ct \|b||L6(SUPte(0Tt HU( HL" Jot—o) 25T omar gy
SM‘FCHGHL 1+a(1 q)— —max{ +4= 0}(M—|—1)

_ﬂ(l_i)
Clibllet 27 7 (M + 1)P.

2=

From (ii) and (iv) of Lemma 2.5(with s = 1) and (3.3) we have that - + % -1 <3
< % + %. By (3.2) and Lemma 2.1 we conclude

t
0 / IVIS(t — o)(au? + bu?)]|| < £°C]lal|p / (t— o) 33 maxlit m’O}HuH do+
0
t 1

2001 [b]] / (t— o)

N\Z

1
7_1'_7
G50 |2, do

0
< O|a||pat2 P2 maxda im0 =Ga pr | 1)y
Cllbllpat' 2 G5 (M 4+ 1)
(3.5)
3 ! 3 ! Y max{t+4_1 o}
el / S(t — o)au? + buPldol| < CtPlal|pe / (t— o)~ % moxGH =50y 4 oy
: AT ORI PRD
tCWw/@—®25 ][}, do
0
< CHQHL ¢ +5 max{ + m,O}—QQ(M+ 1)q+
3 N /1
Cllpllpsts 2G5 (M 4 1)

thus, by the Lemma 2.3 we have that ¢u(t) — S(t)ug € Wolm(Q) and by (3.5)

9|V [pu(t) — S(t)uo)||rm <0|ra||mt2*ﬁ”m“{ BRI 10 VRIS LR
C|[b]] 1ot~ 25 (M + 1)P

Proceeding as (3.4) we have for 0 <7 <t < T,

' t N ma {i+q;1 0} -
||/ S(t — o)(au? 4+ buP)do||pn §||a|]La(M+1)q/(t_g) o max{g+57.0F —ag 0

¢ T

bl s (M + 1)? / (t— o) Gy

-
— 0, ast — 7.

Therefore, u — S(-)up € C((0,T],L"(2)) and so u € C((0,T],L"(2)). Similarly, we can show
that

t
H/ S(t — o)(au? + buP)do || yyim — 0, as ¢ — 7> 0
0
]
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and therefore, u € C((0, T], W™ (Q2)).

By the Lemma 2.3 ¢u(t) € Wol’m(Q) for t € (0,7) and since that uw,a,b > 0 we have
ou(t) > S(t)up > v1dg. From (3.4), (3.6) and (i), (ii) of the Lemma 2.8 we have that for T
sufficiently small ¢ : K — K.

To show that ¢ is a contraction, we consider u,v € K and from (3.1) we have

ou( / S(t—o)afu(o)? —v(o) da—l—/ S(t — o)blu(o)? — v(o)P|do

g

Wi(t) Wa(t)

Since that u(t) ( ) > m1dq we have that (2.5) holds. Moreover by (i)-(iii) of Lemma 2.5
we have < 77 , iy Tl + 1% <% and 1 +%— 4 <1 Thus, proceeding similarly
as (2.6) and (2. )

t
5 -1 A +L 0
£\ [W ()| o szrmuwau—o> T max(y Hiw = 0]|%, 1V (u — )| |j2ddo

< Cllal|ga (Sup0<t<T tO‘HU( ) ( )Hm)q(supoqa ]|V (u(t) — v(t)||pm)
0

= CHGHL“d(uvU)tl_%max{é+q%1+%,0}+(1—q)&—ﬁ(1—q)
(3.7)

> 3 t Ll Nopaxflya g -
thwwMMLscmmmééu—@2 Pt oIV =0l g

S C||a||Lad(u,v)t2 3 max{g +I-Z 0} +q(B—&)

On the other hand, since that (2.8) holds, 1 3 + <land0 <1 pn—l < % (Lemma 2.9
(ii), (iii)) Proceeding as (2.9) and (2.10)

Q\

w\z

+— -1
G (lal 2t + [[o][22 ) Ju — o] | ado

t
[ Wa®)llpe < CJbll st / (t— o)
i ~1 g s [ N(Lyply g
< ClBlls(M + 1P sup £5][u(t) — o(b)] [t / (t— o) B G+ ga
o<t<T 0

< C|[b|| ppd(u, o)t 2 G

(3.9)

= 3 t 1 _N¢l1l,p_ 1 -1 1
||V Wa ()| scubumtﬁ/oa—o) 2= 2 =) ([|ul |25 + [[o][20 ) Ju — o] |

+2230)

T

(3.10)

|-

-1 1-5¢(
< Cbl|ps (M + 1)P~ d(u,v)t 2
Thus, we have that

13 ¢(u) (t) — ) ()| n < Clal|pad(u, vyt~ 7 moxlat 5+ RL0H1-0@=0)
p—1
C|[bl[ psd(u, v)t" 2 G+,

3 1N max 1_4 &
II99) (1) ~ 6(0)len < Clal ped(u,v)et—F mla i obatioo),
P
U 01 + -t =3
and therefore, by (iii) and (iv) of Lemma 2.8 we have that ¢ is a contraction, for 7" possibly
smaller. Therefore, ¢ has a fixed point.




To show the continuity of the solution u it is sufficient to show for t = 0 because U E

C((0,T),L"(Q)) C C((0,T], L"(£2)) since that 1 > r. Thus, since that a > q+—1, = —i— 112
and by (iii) of Lemma 2.9, % 3 + £ 2 < N By Lemma 2.1
¢ — Y max{1+2_1 0}
lu(t) = S()uollzr < Cl!allLa/ (t—o0) 2" e u(o)||7,do+
0
t
L R (T
0 3.11
< Cllalln (M 4 1y 5 w0
C[bl (M + 1yt et o)
— 0, ast — 0.
In this way, v € C([0,T], L"(2)).
Case 2. + + p;—l = % with » > 1. The argument is similar to the previous case with

some minor technical differences. We only will show the existence of a solutions, because the
regularity and uniqueness part follow as in the anterior case.
Let n given by Lemma 2.9, m = m(n) given by (2.2) and

E = {u e C((0,T), L"(Q)): lim t%u(t) = 0} N C((0,T), Wy ™ ()

w2

where & = § (1 — %) Given 6 > 0 to be chosen later, let

K = {u € Byu(t) > yida, t5][u(t)||n < 8,t%(|V{u(t) — S(t)uo]||m < 1},

~1 is defined as the anterior case and (3 satisfies: 5+ % = %—I— é\]—r We equip K with the distance

d(u,v) = max{ sup t7[[u(t) = v(t)||1r, sup ]| VIu(t) = v(®)]][1m},
0<t<T 0<t<T

so (K, d) is a nonempty complete metric space. For u € K we consider the application defined
by (3.1). As the anterior case, we have that ¢(u)(t) > v1dg and ¢(u)(t) — S(t)ug € Wolm(Q)
Proceeding as in (3.4) and (3.6),

B B t
19| gu(t)|[rn < t3][S(t)uo||Ln + [|al [ pat® /0 (t — o) 7 Ml e
5 t _N/1 3.12
o] 5t /0<t—a> G )2, (3.12)

< 18IS (E)uo||n + Cl[a]| pasat' FEO—O=F maGHETEO} Lo jp| 00

[un

3 - t
V() = Stwlllin < Cullallin [ (0= o) 5 Em RO g+
-t
|[6]] L6 Crm tﬁ/(t—a)ég(}ﬁﬁi)Hqu (3.13)

< Cllal|patz - T ma im0 G050 4 0y ][ 007

Moreover, proceeding as (3.7)-(3.10) we have for u,v € K

13| gu(t) — ¢v(t)| |0 < Clal|pod(u, vyt~ mXE+H T HTLOH=0GED) 4 conpl| 0671 d(u, v)
(3.14)
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q q

P11V (6u(t) = o)l < Cllallpad(u, v}tz ™= a5 MO8 L 0y jp] 6 d(w, v)
(3.15)
Fix § € (0,1) such that C||b]|;s0P~! < 2, C = max{C1,...,C4}. By the Lemma 2.2 there exist
T > 0 such that t¥|[S(t)ug||n < g. Thus, from (3.12) and (3.13) and the Lemma 2.8 we have

that t%|[gu(t)||zn < 9, t°||V[ou(t) — S(t)uo]||zm < 1 for T > 0 small enough and so ¢ : K — K.
Moreover, from (3.14) and (3.15) choosing T' possibly smaller we have that d(¢u, ¢pv) < $d(u,v),
that is, ¢ is a contraction and therefore, it has a fixed point.

We use the same argument as the previous case for to show that v € C((0,T], L"(f)).
Proceeding as (3.11) we have

N paxflia_11_4

||U(t> — S(t)uOHLr < Ha”La(M + 1)qt1 5 ma {a-l-g =0} aq+
al 1- Y max{i4+2_1 0 4
CHbHLB(SUPkoQ0a||u(a)\|m)pt 2 ma {,8+ -0} —ap

moor
— 0, set — 0.

Therefore, u € C([0,T], L"(2)).
a

Remark 3.1 [t is possible to observe that the choice of T depends in the Case 1 of ||ug||rr and
the Case 2 on the compact KK C L"(Q2) that contains ug.

When ug € L*>°(€2) we have the following result.

Proposition 3.2 Assume that a € L%(Q), b € L?(Q), a,b >0 a.e in Q, o > qle,B > % with
a,3>1,0<qg<1<p. Ifug€ L*®(Q) and uy > vdq for some v > 0 then there exist T > 0
and a function

we L¥((0,T), L%(R)) N Ls.((0, 1), Wy ™) (02)) (3.16)
satisfying the equation (1.3). This solution is unique in the class of functions (3.16) such that
sup essie o |[u(t) — SOl < o0

and u(t) > vidq a.e in (0,T) x Q for some 1 > 0. m is defined by (2.2).
Proof. To show the existence we can adapt the arguments of the anterior proof. The
uniqueness follows from the Proposition 2.10.

a

Proof of the regularity of the Theorem 1.2. We use the the bootstrap procedure of
[12]. The existence proof ensure that for all ¢ € (0, 7]

vl

2G| ()| < C (3.17)

with C' = M + 1 in the Case 1 and C = ¢ in the Case 2. We will show that (3.17) continues
being valid for some 1’ > 7.
Let u be the solution obtained above, then for ¢t € (0,7

t

u(t) = S(t/2)u(t/2) + » St — o)[aud (o) + buP (0)]do. (3.18)

11



By the proof of the Theorem 1.2, we have that 1 + w5 < l and % + % - % < % Then there
ex1sts77 > 1 such thatl +f——< 7 L<ly q and +f——< %+%. Since%+%§1
and L+ L <1, we have from (3.18), (3.17)
N t N(Lya 1y
@l < (/2725 fu(@/2)lls + llallze /t/Q(t—U) 2ot |ul |7, do
Niypp_ Ly
25l do

t
bl / (t—o)
t/2

’ﬂ(l* ,ﬁ(iJrg 1)
< (t/2) 7250 u(t/2) Hm+0quay\m/ (1 — o) T3 -3
t/2

t
Ol [ (t= o) EEER G
t/2
Thus, since that the integrals
1 1
/ (1- 0)7%(é+%7%)07% Fwdo < 00, (1- 0)7%(#%7%)07%(%7%)&7 < 00,
1/2 1/2
then
Ne1_1 11 _N(1,p-1
£ )y < €2 4 Cllal et )
=C".

So we see that (3.17) holds for ' > 1 and one can bootstrap in a finite number steps to obtain

that there exists a constant C' > 0 such that t%Hu(t)HLoo < C. Since that ||u(t)||r < M + 1,
using interpolation we concluded that there exists a constant C' > 0 depending of a,b, M, T
such that v

2 G u@)||ps < C (3.19)

forr < s <ooandte(0,T]

Similarly, by the proof of the existence part

)1 u(t) = S(tyuo|| iy <1 (3.20)

for all ¢ € (0, 7] with 3 = CE mis) + %), m(s) is defined by (2.2) and s = . We will show

that (3.20) holds for some s =7’ > 7.
We consider first the case N > 2. From (3.18) we have

t
u(t) — S(t)ug = S(t/2)[u(t/2) — S(t/2)up] + S(t —o)laul (o) + bu(o)|do. (3.21)

t/2
By (ii) an ( v) of the Lemma 2.5 1t is posmble to choose ' > 7 such that £ <1land
o<l % — m(n <%,0<3% —|— B_ ( 7y < + so since that m(n’) > m(n) we have from (3.21)

I9u(t) = SEuallgmrs < (5)7F TV [ut/2) = v(t/ 2] i+
Clalle [ (¢ ) 4 FEH 500 o +
t/2

t 1 N /1 1
ClIbl s / (t— o) 3 F ) (o) | do
t/2
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so by (3.19) we concluded that for ¢t € (0,7

ﬂlL
27"’

N(1—q) _ N1, p-1
NIV [u(t) = SE)uo)l| pmiy < C + Cllal[pat' =25 4 C|[b]| ot~ 2 G

< C(T)

t

that is, we have that (3.20) holds for n’. Using the bootstrap argument we can conclude that
there exists a constant C' > 0 such that

£25 [V u(t) — S(t)uol|| v < C.

For the case N = 2 it is sufficient to replace the value N = 2 in the expression (3.20).

In the case N = 1 we use the following argument. From (i) and (ii) of Lemma 2.9 we have
é+%<land%+%<1. Let s > m(n) besuchthat%<é+%and%<%+%. Then by the
Lemma 2.1, (3.20) and (3.21)

N
1V [u(t) = SEuolllpe < ¢ = ||
_ 161,46 1
+Cllallie Jo(t = o) 7 2T fu(o)][f,+

_l_ﬁl D
!bHL@/O(t—U) = E G0 (o) 12, do

Then

-1

202D ||V u(t) — S(t)uo]||r: < C + Cti=3 G+5D L o2 G5 < (1),

Proof of the uniqueness of the Theorem 1.2. Assume that v € C([0,T],L"(Q)) N
L2 ((0,T), L*°(Q2)) with v(0) = ug is a solution of (1.3).

loc

We show first that there exists 77 > 0 such that v(¢t) = u(t) for all t € [0,7"]. Set K =
v([0,T]) and M = supycjo 7y |[v(t)|[zr. Since that K C L"(f2) is a compact, by the remark 3.1,
there exist a uniform 77 > 0 and for every 7 € (0,7) a solution v, € C([0,711], L"(£2)) of (1.3)
such that

ve € C((0,T1), () N C((0, Th), Wy ™™ () (3.22)

with v-(0) = v(7) and such that v, € K(11).
On the other hand, since that for 7 € (0,7) and 0 <t <T — 7

t
v(t+7)=S{t)v(r)+ / S(t —o)[avi(o + 1) + bvP (0 + 7)]do. (3.23)
0
Let M; = supycf- 7y |[u(t)|[n be for every 7 € (0,T). Proceeding as (3.4) we have

t
t [t + )| < tNSE ()| + t¥|al| 1o / (t — o) 2 "G T (g 4 )[4, do+
0

3 t _N(1,.p-1
bl [ (¢ =) EE ot + 7)o
0
< 4%||S(t)u(r)|| e + Ot AT PG IR0} yra oy A Y (G
and similarly, proceeding as (3.6)

tB”U(tJFT)_S(t)U(T)HWOl'W<Ct2+ﬁ+ v max(G =0 p 4 ot G =) e
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and therefore, by the Lemma 2.2, there exists 7, > 0 such that v(- + 7) € K(T,). By the
uniqueness in K(7)) with 7/ = min{T},T,} we conclude that v,(t) = v(t + 7) for all t €
[0, min{T}, T — 7}]. By the Proposition 2.10 we have that the uniqueness holds in the class
(3.22) and therefore, v, (t) = v(t+7) for all t € [0, min{7y,T —7}. Thus, since that v, € K(11),

3]0t +7)|zn < M +1

Blvt +7) — STl lyam < 1

for t € (0,min{7T,T — 7}). By the continuity of v, passing to the limit 7 — 0, we deduce
that t¥||v(t)||zn < M + 1, tﬁ||v(t) — S(t)v0||W01,m < 1 for all t € (0,min{7T,7T1}), that is,
v € K(min{7,T1}) and v is the solution obtained by the fixed point argument. Thus, v(t) = u(t)
for all t € [0,7'] with 7" = min{T, T }.

From (3.23) for 7 = T" we have

t JL1 N parl 1
ot +T7) = S@u(T)| |y 1.mc0 §C||a||La/(t—0) 272 MmO o (4 T[4 s do
0

e / (t — o) 2 F G Oy (4 )| B do
0
<o,

and by the uniqueness of the Proposition 2.10 for s = co we have that v is a unique solution
after 7" and therefore in [0, 7.
O

4 Proof of the Theorem 1.1

Proof of of the existence of the Theorem 1.1. We use the same argument that was used
for the show the Theorem 1.2. We assume first that

Case 1. %—i—p_l < %. Fix M > ||ug||rr and let E = L>°((0,T), L"(Q2)) where 7 is given by

r

the Lemma 2.9 with ¢ = 1, K = {u € E,t%||u(t)|[;n < M +1} and & = 5 (L - %) We equip K

with the distance d(u,v) = supge,cp t¥]|u(t) —v(t)||Ln so (K, d) is a nonempty complete metric
space. Given u € K, we set

t
pu(t) = S(t)uo + /0 S(t — o)[au(o) + blu(o) [P u(o)do.

Sincethaté+%<l,a>%,%4—%<land%+%<%wehaveforuel(

tllpu()llLr < lluollzr + llal zat® /0 (b= o) 2l
1Bl ot / (= o)y FEEN L, do
< luoller + Cllal i (M + DA~ 1 Clbll st E 301 4 19
Similarly, one shows that for u,v € K

- N -
t%|pu(t) — ¢v(t)||Ln < Cllal|pat' ™20 supye o) t%]|ult) — v(t)||La+
-S4+ p—1 &
Ct 238" bl s (M + 1)P™" supye o,y t|u(t) — v(#)]| Lo
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It follows from the above estimates that if 7' > 0 is small enough then ¢ : K — K and is a
strict contraction. Thus ¢ has a fixed point in K.
For the show that u € C([0,7T],L"(€2)) we proceed as in the proof of the Theorem 1.2.

Case 2. 1 +2 ;1 = % and r > 1. We proceeding as the anterior case considering 7 given

by the Lemma 2.5 and using the contraction mapping principle in the space

K = {u € E;t%|u(t)||zn < 6 for t € (0,T)}

Using a similar argument as in the anterior proof we have

Proposition 4.1 Assume that a € L*(Q),b € LA(Q) with o, 3 > %, a,6>1andgq=1. If
ug € L>®(Q) then there exist a unique function uw € L*°((0,T"), L>°(Q)) satisfying (1.3).

The uniqueness in the anterior proposition follows of the Proposition 2.11.

Proof of Regularity and uniqueness of the Theorem 1.1. We can proceed as in the
regularity part and uniqueness part of the proof of the Theorem 1.2, using the Proposition 4.1
in place of the Proposition 3.2.

O
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