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Abstract

We study the existence, uniqueness and regularity of solutions of the parabolic equation
ut − ∆u = a(x)uq + b(x)up in a bounded domain and with Dirichlet’s condition on the
boundary. We consider here a ∈ Lα(Ω), b ∈ Lβ(Ω) and 0 < q ≤ 1 < p. The initial data
u(0) = u0 is considered in the space Lr(Ω), r ≥ 1. In the main result(0 < q < 1), we assume
that a, b ≥ 0 a.e in Ω and we assume that u0 ≥ γdΩ for some γ > 0. We find a unique
solution C([0, T ], Lr(Ω)) ∩ L∞loc((0, T ), L∞(Ω)).

Key words and phrases: Heat equation; Existence and uniqueness; Concave-convex nonlinearity;
Singular initial data

1 Introduction

Let Ω be a bounded domain in RN , with smooth boundary ∂Ω and T > 0. We consider the
following nonlinear heat equation





ut −∆u = a(x)uq + b(x)up in Ω× (0, T )
u = 0 in ∂Ω× (0, T )

u(0) = u0 in Ω
(1.1)

with a ∈ Lα(Ω), b ∈ Lβ(Ω), α, β ≥ 1, 0 < q ≤ 1 < p.
The study of problems with the nonlinearity of (1.1) has been studied since the pioneering

work of Ambrosetti, Brezis and Cerami [1] and it is important because combines concavity and
convexity effects, see also [8]. The problem (1.1) for a = b = 1 and u0 ∈ L∞(Ω), u0 ≥ 0 was
studied by Cazenave, Dickstein and Escobedo [6] who showed the existence of a unique solution
positive u ∈ L∞((0, T ) × Ω) in a maximal time interval [0, Tm). Other problems for (1.1) as
continuation of solutions after Tm and a priori estimates for q = 1 has been considered by
Gómes and Quittner [10] and Quittner and Simondon [9].

In this paper we are interested in the existence, regularity and uniqueness of solution of
the problem (1.1) for initial data u0 ∈ Lr(Ω) with r ≥ 1. In the case that a = 0, b = 1 the
problem has been considered by different authors [2], [4], [7], [11], [13] since the pioneering work
of Weissler [14], [15]. We know that if r > N

2 (p− 1) or r = N
2 (p− 1) with r > 1 and u0 ∈ Lr(Ω)

then there exist a unique classical solution u of (1.1) such that

u ∈ C([0, T ], Lr(Ω)) ∩ L∞loc((0, T ), L∞(Ω)) (1.2)
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with u(0) = u0. Moreover, if u0 ≥ 0, then u is nonnegative.
In this work we find analogous conditions for the existence and uniqueness of a solution of

the problem (1.1) in the class (1.2).
If (S(t))t≥0 is the linear heat semigroup on Ω with the Dirichlet condition on ∂Ω, then the

problem (1.1) will be studied under the form of the(formally equivalent) integral equation

u(t) = S(t)u0 +
∫ t

0
S(t− σ)[auq(σ) + bup(σ)]dσ. (1.3)

When q = 1 < p, the study is easy because the nonlinearity satisfies the Lipschitz’s condi-
tion. Thus we have the following result.

Theorem 1.1 Let a ∈ Lα(Ω), b ∈ Lβ(Ω) with 1 < α, β ≤ ∞. Assume that u0 ∈ Lr(Ω),
1 ≤ r < ∞, α > N

2 and 1
α + 1

r ≤ 1 + 2
Np . If 1

β + p−1
r < 2

N or 1
β + p−1

r = 2
N with r > 1, then

there exist T > 0 and a unique function

C([0, T ], Lr(Ω)) ∩ L∞loc((0, T ), L∞(Ω)). (1.4)

with u(0) = u0 solution of (1). Moreover, there exists a positive constant C such that

t
N
2

( 1
r
− 1

s
)||u(t)||Ls ≤ C

for all t ∈ (0, T ] and r ≤ s ≤ ∞.

When 0 < q < 1 the nonlinearity is not Lipschtitz. In order to overcome the obstacle
generated by the lack of the Lipschtitz’s condition, we consider initial data in Lr(Ω) greater
than the distance function dΩ(x) = dist(x, ∂Ω). Also, we consider a, b ≥ 0 a.e in Ω. Thus, we
have.

Theorem 1.2 Let a ∈ Lα(Ω), b ∈ Lβ(Ω) with 1 < α, β ≤ ∞, a, b ≥ 0 a.e in Ω. Assume
that u0 ∈ Lr(Ω), 1 ≤ r < ∞, there exists γ > 0 such that u0 ≥ γdΩ(a.e in Ω), α > N

q+1

and 1
α + q

r ≤ q + 1−q
N + 2q

Np . If 1
β + p−1

r < 2
N or 1

β + p−1
r = 2

N and r > 1, then there exist
T = T (u0) > 0, 1 ≤ m < ∞ and a function

u ∈ C([0, T ], Lr(Ω)) ∩ C((0, T ],W 1,m
0 (Ω)) (1.5)

with u(0) = u0 solution of (1). Moreover, u(t) ≥ γ1dΩ,

t
N
2

( 1
r
− 1

s
)||u(t)||Ls ≤ C for all r ≤ s ≤ ∞,

for N ≥ 2,
t

N
2r ||u(t)− S(t)u0||W 1,N

0
≤ C,

for N = 1
t

1
2
+ 1

2
( 1

r
− 1

s
)||Dx[u(t)− S(t)u0]||Ls ≤ C for all m ≤ s ≤ ∞

with t ∈ (0, T ] and some C, γ1 > 0.
This solution is unique in the class of functions

C([0, T ], Lr(Ω)) ∩ L∞loc((0, T ), L∞(Ω))

such that u(t) ≥ γdΩ for t a.e in (0, T ) and some γ > 0.
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The space W 1,m
0 (Ω)(m ≥ 1) denotes the closure de C1

0 (Ω) in the Sobolev’s space W 1,m(Ω)
with the norm

||u||
W 1,m

0
= ||∇u||Lm

for all u ∈ W 1,m
0 (Ω). As we will see, the function u is valued in W 1,m

0 (Ω) because the proof of
the Theorem 1.2 relies in a fixed point argument and in our estimates we will use the Hardy’s
inequality.

For the case that a, b are positive constant, that is, α = β = ∞ we have that the Theorem
1.2 is optimal. This follows from [15](Theorem 1) because the nonlinearity of (1.3) is larger
than bup.

Remark 1.3 In the uniqueness part of Theorems 1.1 and 1.2, u being a solution of (1.3) in
the class (1.4) or (1.5) is understood in a very weak sense: the integral term in (1.3) should
simply be an improper Bochner integral in Lr(Ω) convergent to 0, as t → 0.

The plan of the paper is the following. In Section 2 we present some preliminary results
and in the Sections 3 and 4, we prove the Theorems 1.2 and 1.1 respectively.

2 Preliminary results

We will frequently use the smoothing effect of the semigroup (S(t))t≥0.

Lemma 2.1 Let Ω ⊂ RN be a bounded domain. If 1 ≤ r, s ≤ ∞ and u0 ∈ Lr(Ω), then
S(t)u0 ∈ Ls(Ω) and there exists a positive constant C = C(|Ω|) such that

||S(t)u0||Ls ≤ Ct−
N
2

max{ 1
r
− 1

s
,0}||u0||Lr

for all t > 0.

For the proof see [5].
Also we use the following.

Lemma 2.2 Given a compact set K ⊂ Lr(Ω) and 1 ≤ r < s ≤ ∞, there exists a function
γ : (0, 1] → (0,∞) with limt→0 γ(t) = 0 such that t

N
2

( 1
r
− 1

s
)||S(t)u0||Lr ≤ γ(t) for all t ∈ (0, 1)

and u0 ∈ K.

For the proof see Lemma 8 of [4].

Lemma 2.3 Let Ω ⊂ RN be a C1 bounded domain and f ∈ L1((0, T ), L1(Ω)), T > 0. Define
for t ∈ (0, T ),

w(t) =
∫ t

0
S(t− σ)f(σ)dσ.

If w(t) ∈ Lm(Ω) for some 1 < m < ∞ and ∇S(t − ·)f(·) ∈ L1((0, t), Lm(Ω)), then w(t) ∈
W 1,m

0 (Ω) for every t ∈ (0, T ).

Proof. Fix t ∈ (0, T ). Since that f ∈ L1((0, T ), L1(Ω)), we have S(t− ·)f ∈ L1((0, t), L1(Ω),
thus w(t) is well defined. Moreover, by the regularity of the Lemma 2.1, S(t−σ)f(σ) ∈ W 1,m

0 (Ω)
for all σ ∈ (0, t). On the other hand, we have that if u ∈ W 1,m

0 (Ω) and ϕ ∈ C1
0 (RN ) then

|
∫

Ω
u

∂ϕ

∂xi
| ≤ ||∇u||Lm ||ϕ||Lm′ , i = 1, 2, ..., N (2.1)
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This it is clear to u ∈ C∞
0 (Ω) and thus by density for u ∈ W 1,m

0 (Ω). Therefore, by Fubini’
Theorem and (2.1) we have that if ϕ ∈ C1

0 (RN ), then

|
∫

Ω
w(t)

∂ϕ

∂xi
| ≤ ||ϕ||Lm′

∫ t

0
||∇S(t− σ)f(σ)||Lmdσ

= Ct||ϕ||Lm′ .

Since that w(t) ∈ Lm(Ω), from the proposition IX.18 [3] we have the result.
2

We will use the following generalized Gronwall’s inequality.

Lemma 2.4 Let T > 0, A ≥ 0, α ≥ 0, 0 ≤ β, γ < 1. Consider ϕ ∈ L∞(0, T ) a nonnegative
function such that

ϕ(t) ≤ A + tα
∫ t

0
(t− σ)−βσ−γϕ(σ)dσ a.e in (0, T )

If 1 + α > β + γ, then there exists a positive constant C = C(T, α, β, γ) > 0 such that

ϕ(t) ≤ CA a.e in (0, T ).

For the proof of the Theorems 1.1 and 1.2 we need some technical results.

Lemma 2.5 Let 0 < q < 1 < p and α, β, s ≥ 1 satisfying 1
β + p

s < 1, 1
α + q

s < q + 1−q
N , α > N

q+1 ,
1
β + p−1

s < 2
N . Let m(s) given by

1
m(s)

=
{

min{1
s + 1

N , 1− 1
N } ;N ≥ 2

1− 1
α − q

s ;N = 1
(2.2)

then,

(i) 1
α + q

s + 1−q
m(s) ≤ 1,

(ii) 1
α + q

η − q
m(s) < 1

N

(iii) 1
m(s) < 1

s + 1
1−q ( 2

N − 1
α).

(iv) p
s + 1

β − 1
N < 1

m(s)

Proof. It follows directly.
2

Remark 2.6 Together with the properties of m gives by the Lemma 2.5 it is possible to find
β0 ∈ [1, β] satisfying (i)-(iv) and 1

m(s) ≤ 1
β0

+ p
s . Indeed, if 1

m(s) > 1
β + p

s , then choosing
β0 ∈ [1, β) such that 1

β0
+ p

s = 1
m(s) < 1 we have 1

β0
+ p

s ≤ 1
s + 1

N < 1
s + 2

N for N ≥ 2,
1
β0

+ p−1
s = 1− 1

α − 1+q
2 < 2 for N = 1 and the conditions of the Lemma 2.5 hold.

Remark 2.7 It is easy to observe that when N = 1 we can take any m ∈ (1,∞), in the
definition of m given by (2.2), such that only the property (i) of the Lemma 2.5 holds.
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Lemma 2.8 Assume the conditions of the Lemma 2.5. If m(s) > 1 is given by (2.2), β̃ =
1
2 + N

2r − N
2m(s) and α̃ = N

2 (1
r − 1

s ), then the expressions

(i) 1 + α̃(1− q)− N
2 max{ 1

α + q−1
s , 0},

(ii) 1
2 + β̃ − N

2 max{ 1
α + q

s − 1
m(s) , 0} − α̃q,

(iii) 1− N
2 max{ 1

α + q−1
s + 1−q

m(s) , 0}+ (1− q)(α̃− β̃),

(iv) 1
2 − N

2 max{ 1
α + q

s − q
m(s) , 0}+ q(β̃ − α̃)

are positives.

Proof. It is directly, using the fact 1 ≥ β̃ ≥ α̃.
2

Lemma 2.9 Assume that 0 < q ≤ 1 < p, α, β, r ≥ 1 with α > N
q+1 and 1

α + q
r < q + 1−q

N + 2q
Np .

If 1
β + p−1

r < 2
N or 1

β + p−1
r = 2

N and r > 1, then there exists η > r such that

(i) 1
α + q

η < q + 1−q
N ,

(ii) 1
β + p

η < 1,

(iii) 1
β + p−1

η < 2
N ,

(iv) pN
2 (1

r − 1
η ) < 1.

Proof. Since that 1
β + p−1

r < 2
N or 1

β + p−1
r = 2

N and r > 1 we have that 1
β + p

r < 1+ 2
N . This

together the other conditions it allow us to choose η > r such that 1
r − 2

Np < 1
η < 1

p−1( 2
N − 1

β ),
1
η < 1

pβ′ and 1
η < 1 + 1−q

Nq − 1
αq .

2

The following result, it will be necessary to show the uniqueness of the solution of (1.3).

Proposition 2.10 Assume that a ∈ Lα(Ω), b ∈ Lβ(Ω), 1 ≤ α, β, s ≤ ∞, 0 < q < 1 < p. If
u0 ∈ Ls(Ω), 1

β + p
s < 1, α > N

q+1 ,
1
α + q

s < q + 1−q
N and 1

β + p−1
s < 2

N , then the problem (1.3)
has a unique solution in the class of functions

u ∈ L∞((0, T ), Ls(Ω)) ∩ L∞loc((0, T ),W 1,m(s)
0 (Ω)) (2.3)

such that
sup esst∈(0,T )t

β̃||u(t)− S(t)u0||W 1,m(s)
0

< ∞,

u(t) ≥ γdΩ for some γ > 0 and t ∈ (0, T ). m(s) is defined by (2.2) and β̃ = 1
2 + N

2s − N
2m .

Proof. Let u and v be two solution of the equation (1.1) in the class (2.3). Then,

u(t)− v(t) =
∫ t

0
S(t− σ)a[uq(σ)− vq(σ)]dσ

︸ ︷︷ ︸
W1(t)

+
∫ t

0
S(t− σ)b[up(σ)− vp(σ)]dσ

︸ ︷︷ ︸
W2(t)

. (2.4)
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Let M = sup esst∈[0,T ]{||u(t)||Ls , ||v(t)||Ls} and

ϕ(t) = sup
σ∈[0,t]

||u(σ)− v(σ)||Ls + sup essσ∈[0,t]σ
β̃||u(σ)− v(σ)||

W 1,m
0

.

Since that u(t), v(t) ≥ γdΩ for t ∈ (0, T ), then

|uq − vq| ≤ qγq−1 |u− v|
d1−q

Ω

= C|u− v|q( |u− v|
dΩ

)1−q. (2.5)

By Lemma 2.5 (i)-(iii) 1
α + q

s + 1−q
m ≤ 1, 1

α + q−1
s + 1−q

m < 2
N , 1

α + q
s − q

m < 1
N , thus using the

Lemma 2.1 and Hardy’s inequality

||W1(t)||Ls ≤ C||a||Lα

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
s

+ 1−q
m

,0}||u− v||qLs ||∇(u− v)||1−q
Lm dσ

≤ C

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
s

+ 1−q
m

,0}σ−β̃(1−q)ϕ(σ)dσ

(2.6)

tβ̃||W1(t)||W 1,m
0

≤ C||a||Lαtβ̃
∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
+ q

s
− q

m
,0}||u− v||qLs ||u− v||1−q

W 1,m
0

dσ

≤ Ctβ̃
∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
+ q

s
− q

m
,0}ϕ(σ)dσ

(2.7)

Similarly, since that
|up − vp| ≤ C(|u|p−1 + vp−1)|u− v| (2.8)

and by (iv) of the lemma 2.5 and the remark (2.6), we have that p
s + 1

β − 1
N < 1

m ≤ 1
β + p

s , we
conclude

||W2(t)||Ls ≤ Mp−1||b||Lβ

∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
s

)||u− v||Lsdσ

≤ C

∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
s

)
ϕ(σ)dσ

(2.9)

tβ̃||W2(t)||W 1,m
0

≤ (M + 1)p−1||b||Lβ tβ̃
∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

s
− 1

m
)||u− v||Lsdσ

≤ Ctβ̃
∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

r
− 1

m
)
ϕ(σ)dσ

(2.10)

From (2.6), (2.7),(2.9) and (2.10)

ϕ(t) ≤ C

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
s

+ 1−q
m

,0}σ−β̃(1−q)ϕ(σ)dσ

+Ctβ̃
∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
+ q

s
− q

m
,0}σ−β̃(1−q)ϕ(σ)dσ

+C

∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
s

)
ϕ(σ)dσ

+Ctβ̃
∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

s
− 1

m
)
ϕ(σ)dσ

Since that by the Lemma 2.8(for r = s), 1 − N
2 max{ 1

α + q−1
r + 1−q

m , 0} − β̃(1 − q), 1
2 + β̃ −

N
2 max{ 1

α + q
r − q

m , 0}− β̃(1− q) are positive and 1
2 + β̃− N

2 ( 1
β + p

r − 1
m) = 1− N

2 ( 1
β + p−1

r ) > 0,
by the lemma 2.4 we have that ϕ(t) = 0, that is, u(t) = v(t) for t ∈ [0, T ].

2

Also for the case q = 1 we have the following result of uniqueness.
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Proposition 2.11 Assume that a ∈ Lα(Ω), b ∈ Lβ(Ω) with α, β ≥ 1, q = 1 and u0 ∈ Ls(Ω),
s ≥ 1. If 1

α + 1
s ≤ 1, 1

β + p
s ≤ 1, α > N

2 and 1
β + p−1

s < 2
N , then the problem (1.3) has a unique

solution in L∞((0, T ), Lσ(Ω)).

Proof. Let u, v ∈ L∞((0, T ), Lσ(Ω)) solutions of (1.3) with the same initial data u0. Let
M = sup esst∈(0,T ){||u(t)||Ls , ||v(t)||Ls}. Since that (2.8) holds, by the Lemma 2.1 we have

||u(t)− v(t)||Ls ≤ C||a||Lα

∫ t

0
(t− σ)−

N
2α ||u(σ)− v(σ)||Lsdσ

+CMp−1||b||Lβ

∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
s

)||u(σ)− v(σ)||Lsdσ

and so, the result follows of the Lemma 2.4.
2

3 Proof of Theorem 1.2

To show the Theorem 1.2 we follow the standard way to study problems with singular initial
data. We use the fixed point argument of the mapping u → Φ(u) defined by

Φ(u)(t) = S(t)u0 +
∫ t

0
S(t− σ)[auq(σ) + bup(σ)]dσ (3.1)

in a suitable complete metric space, see [4], [14], [15].
Proof of the existence part of the Theorem 1.2. We consider two situations.

Case 1. 1
β + p−1

r < 2
N . Let Cm be the positive constant such that

||∇S(t)φ||Lm ≤ Cmt−1/2||φ||Lm (3.2)

for all φ ∈ Lm(Ω) with m ≥ 1 and let C0, C1 > 0 be such that C0dΩ ≤ ϕ1 ≤ C1dΩ where ϕ1 is
the first eigenvector associated to the first eigenvalue λ1 of the operator −∆ in H1

0 (Ω).
Let η be given by Lemma 2.9 and let m = m(η) be where m is given by (2.2). Thus, the

results of Lemma 2.5, 2.8(for s = η) and 2.9 hold. On the other hand, since that Ω is bounded
we have the inclusion of the Lp spaces and by the remark 2.6 we can assume that

1
m
≤ 1

β
+

p

η
(3.3)

Fix M ≥ ||u0||Lr and let

E = C((0, T ), Lη(Ω)) ∩ C((0, T ),W 1,m
0 (Ω)),

K = {u ∈ E;u(t) ≥ γ1dΩ, tα̃||u(t)||Lη ≤ M + 1, tβ̃||∇(u(t)− S(t)u0)||Lm ≤ 1 for t ∈ (0, T )}
with α̃ = N

2 (1
r − 1

η ), β̃ = − N
2m + 1

2 + N
2r and γ1 = γ0C0C

−1
1 e−λ1 . We equip K with the distance

d(u, v) = max{ sup
0<t<T

tα̃||u− v||Lη , sup
0<t<T

tβ̃||∇(u− v)||Lm},

so (K, d) is a nonempty complete metric space.
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For u ∈ K we set φu defined by (3.1). We will show that φ : K → K and it is a contraction.
From Lemma 2.9 we have 1

α + q
η ≤ 1, 1

β + 1
η < 1, 1

α + q−1
η < 1

α < 2
N , 1

β + p−1
η < 2

N and
α̃p < 1. Thus, by Lemma 2.1

tα̃||φu(t)||Lη ≤ ||u0||Lr + Ctα̃||a||Lα

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
η

,0}||u(σ)||qLη+

Ctα̃||b||Lβ

∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
η

)||u(σ)||pLηdσ

≤ M + Ctα̃||a||Lα( sup
t∈(0,T )

tα||u(t)||Lη)q

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
η

,0}
σ−α̃qdσ+

Ctα̃||b||Lβ (supt∈(0,T ) tα̃||u(t)||Lη)p
∫ t
0 (t− σ)−

N
2

( 1
β

+ p−1
η

)
σ−α̃pdσ

≤ M + C||a||Lαt
1+α̃(1−q)−N

2
max{ 1

α
+ q−1

η
,0}(M + 1)q+

C||b||Lβ t
1−N

2
( 1

β
− p−1

r
)(M + 1)p.

(3.4)
From (ii) and (iv) of Lemma 2.5(with s = η) and (3.3) we have that 1

α + q
η − 1

m < 1
N and

1
β + p

η − 1
N < 1

m ≤ 1
β + p

η . By (3.2) and Lemma 2.1 we conclude

tβ̃
∫ t

0
||∇[S(t− σ)(auq + bup)]||Lm ≤ tβ̃C||a||Lα

∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
+ q

η
− 1

m
,0}||u||qLηdσ+

tβ̃CC||b||Lβ

∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

η
− 1

m
)||u||pLηdσ

≤ C||a||Lαt
1
2
+β̃−N

2
max{ 1

α
+ q

η
− 1

m
,0}−α̃q(M + 1)q+

C||b||Lβ t
1−N

2
( 1

β
− p−1

r
)(M + 1)p

(3.5)

tβ̃||
∫ t

0
S(t− σ)[auq + bup]dσ||Lm ≤ Ctβ̃||a||Lα

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q
η
− 1

m
,0}||u||qLηdσ+

tβ̃C||b||Lβ

∫ t

0
(t− σ)−

N
2

( 1
β

+ p
η
− 1

m
)||u||pLηdσ

≤ C||a||Lαt
1+β̃−N

2
max{ 1

α
+ q

η
− 1

m
,0}−α̃q(M + 1)q+

C||b||Lβ t
3
2
−N

2
( 1

β
− p−1

r
)(M + 1)p

thus, by the Lemma 2.3 we have that φu(t)− S(t)u0 ∈ W 1,m
0 (Ω) and by (3.5)

tβ̃||∇[φu(t)− S(t)u0]||Lm ≤ C||a||Lαt
1
2
+β̃−N

2
max{ 1

α
+ q

η
− 1

m
,0}−α̃q(M + 1)q+

C||b||Lβ t
1− N

2β
−α̃p(M + 1)p

(3.6)

Proceeding as (3.4) we have for 0 < τ < t < T ,

||
∫ t

τ
S(t− σ)(auq + bup)dσ||Lη ≤ ||a||Lα(M + 1)q

∫ t

τ
(t− σ)−

N
2

max{ 1
α

+ q−1
η

,0}
σ−α̃qdσ+

||b||Lβ (M + 1)p

∫ t

τ
(t− σ)−

N
2

( 1
β

+ p−1
η

)
σ−α̃pdσ

→ 0, as t → τ.

Therefore, u − S(·)u0 ∈ C((0, T ], Lη(Ω)) and so u ∈ C((0, T ], Lη(Ω)). Similarly, we can show
that

||
∫ t

τ
S(t− σ)(auq + bup)dσ||

W 1,m
0

→ 0, as t → τ > 0
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and therefore, u ∈ C((0, T ],W 1,m
0 (Ω)).

By the Lemma 2.3 φu(t) ∈ W 1,m
0 (Ω) for t ∈ (0, T ) and since that u, a, b ≥ 0 we have

φu(t) ≥ S(t)u0 ≥ γ1dΩ. From (3.4), (3.6) and (i), (ii) of the Lemma 2.8 we have that for T
sufficiently small φ : K → K.

To show that φ is a contraction, we consider u, v ∈ K and from (3.1) we have

φu(t)− φv(t) =
∫ t

0
S(t− σ)a[u(σ)q − v(σ)q]dσ

︸ ︷︷ ︸
W1(t)

+
∫ t

0
S(t− σ)b[u(σ)p − v(σ)p]dσ

︸ ︷︷ ︸
W2(t)

Since that u(t), v(t) ≥ γ1dΩ we have that (2.5) holds. Moreover, by (i)-(iii) of Lemma 2.5
we have 1

α + q
η + 1−q

m ≤ 1, 1
α + q−1

η + 1−q
m < 2

N and 1
α + q

r − q
m < 1

N . Thus, proceeding similarly
as (2.6) and (2.7)

tα̃||W1(t)||Lη ≤ γq−1
1 ||a||Lαtα̃

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
η

+ 1−q
m

,0}||u− v||qLη ||∇(u− v)||1−q
Lm dσ

≤ C||a||Lα(sup0<t<T tα̃||u(t)− v(t)||Lη)q(sup0<t<T tβ̃||∇(u(t)− v(t))||Lm)1−q

tα̃
∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
η

+ 1−q
m

,0}
σ−α̃q−β̃(1−q)dσ

≤ C||a||Lαd(u, v)t1−
N
2

max{ 1
α

+ q−1
η

+ 1−q
m

,0}+(1−q)α̃−β̃(1−q)

(3.7)

tβ̃||∇W1(t)||Lm ≤ C||a||Lαtβ̃
∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
+ q

η
− q

m
,0}||u− v||qLη ||∇(u− v)||1−q

Lη

≤ C||a||Lαd(u, v)t
1
2
−N

2
max{ 1

α
+ q

η
− q

m
,0}+q(β̃−α̃)

(3.8)

On the other hand, since that (2.8) holds, 1
β + p

η < 1 and 0 ≤ 1
β + p−1

η < 2
N (Lemma 2.9

(ii), (iii)) Proceeding as (2.9) and (2.10)

tα||W2(t)||Lη ≤ C||b||Lβ tα̃
∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
η

)(||u||p−1
Lη + ||v||p−1

Lη )||u− v||Lηdσ

≤ C||b||Lβ (M + 1)p−1 sup
0<t<T

tα̃||u(t)− v(t)||Lη tα̃
∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
η

)
σ−α̃p

≤ C||b||Lβd(u, v)t1−
N
2

( 1
β

+ p−1
r

)

(3.9)

tβ̃||∇W2(t)||Lm ≤ C||b||Lβ tβ̃
∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

η
− 1

m
)(||u||p−1

Lη + ||v||p−1
Lη )||u− v||Lη

≤ C||b||Lβ (M + 1)p−1d(u, v)t1−
N
2

( 1
β

+ p−1
r

)
(3.10)

Thus, we have that

tα̃||φ(u)(t)− φ(v)(t)||Lη ≤ C||a||Lαd(u, v)t1−
N
2

max{ 1
α

+ q−1
η

+ 1−q
m

,0}+(1−q)(α̃−β̃)+

C||b||Lβd(u, v)t1−
N
2

( 1
β

+ p−1
r

)
.

tβ̃||∇[φ(u)(t)− φ(v)(t)]||Lm ≤ C||a||Lαd(u, v)t
1
2
−N

2
max{ 1

α
+ q

η
− q

m
,0}+q(β̃−α̃)+

C||b||Lβ (M + 1)p−1d(u, v)t1−
N
2

( 1
β

+ p−1
r

)
.

and therefore, by (iii) and (iv) of Lemma 2.8 we have that φ is a contraction, for T possibly
smaller. Therefore, φ has a fixed point.
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To show the continuity of the solution u it is sufficient to show for t = 0, because u ∈
C((0, T ], Lη(Ω)) ⊂ C((0, T ], Lr(Ω)) since that η > r. Thus, since that α > N

q+1 , 1
α + q

η − 1
r < 2

N

and by (iii) of Lemma 2.9, 1
β + p

η − 1
r < 2

N . By Lemma 2.1

||u(t)− S(t)u0||Lr ≤ C||a||Lα

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q
η
− 1

r
,0}||u(σ)||qLηdσ+

C||b||Lβ

∫ t

0
(t− σ)−

N
2

max{ 1
β

+ p
η
− 1

r
,0}||u(σ)||pLηdσ

≤ C||a||Lα(M + 1)qt
1−N

2
max{ 1

α
+ q

η
− 1

r
,0}−α̃q

+C||b||Lβ (M + 1)pt
1−N

2
max{ 1

β
+ p

η
− 1

r
,0}−α̃p

→ 0, as t → 0.

(3.11)

In this way, u ∈ C([0, T ], Lr(Ω)).

Case 2. 1
β + p−1

r = 2
N with r > 1. The argument is similar to the previous case with

some minor technical differences. We only will show the existence of a solutions, because the
regularity and uniqueness part follow as in the anterior case.

Let η given by Lemma 2.9, m = m(η) given by (2.2) and

E = {u ∈ C((0, T ), Lη(Ω)); lim
t→0

tα̃u(t) = 0} ∩ C((0, T ), W 1,m
0 (Ω))

where α̃ = N
2 (1

r − 1
η ). Given δ > 0 to be chosen later, let

K = {u ∈ E;u(t) ≥ γ1dΩ, tα̃||u(t)||Lη ≤ δ, tβ̃||∇[u(t)− S(t)u0]||Lm ≤ 1},

γ1 is defined as the anterior case and β̃ satisfies: β̃+ N
2m = 1

2 + N
2r . We equip K with the distance

d(u, v) = max{ sup
0<t<T

tα̃||u(t)− v(t)||Lη , sup
0<t<T

tβ̃||∇[u(t)− v(t)]||Lm},

so (K, d) is a nonempty complete metric space. For u ∈ K we consider the application defined
by (3.1). As the anterior case, we have that φ(u)(t) ≥ γ1dΩ and φ(u)(t)− S(t)u0 ∈ W 1,m

0 (Ω)
Proceeding as in (3.4) and (3.6),

tα̃||φu(t)||Lη ≤ tα̃||S(t)u0||Lη + ||a||Lαtα̃
∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
η

,0}||u||qLη+

||b||Lβ tα̃
∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
η

)||u||pLη

≤ tα̃||S(t)u0||Lη + C||a||Lαδqt
1+α̃(1−q)−N

2
max{ 1

α
+ q−1

η
,0} + C1||b||Lβδp

(3.12)

tβ̃||∇[φu(t)− S(t)u0]||Lm ≤ tβ̃Cm||a||Lα

∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
+ q

η
− 1

m
,0}||u||qLη+

||b||LβCmtβ̃
∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

η
− 1

m
)||u||pLη

≤ C||a||Lαt
1
2
+β̃−N

2
max{ 1

α
+ q

η
− 1

m
,0}−α̃q

δq + C2||b||Lβδp

(3.13)

Moreover, proceeding as (3.7)-(3.10) we have for u, v ∈ K

tα̃||φu(t)− φv(t)||Lη ≤ C||a||Lαd(u, v)t1−
N
2

max{ 1
α

+ q−1
η

+ 1−q
m

,0}+(1−q)(α̃−β̃) + C3||b||Lβδp−1d(u, v)
(3.14)
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tβ̃||∇(φu(t)− φv(t))||Lm ≤ C||a||Lαd(u, v)t
1
2
−N

2
max{ 1

α
+ q

η
− q

m
,0}+q(β̃−α̃) + C4||b||Lβδp−1d(u, v)

(3.15)
Fix δ ∈ (0, 1) such that C||b||Lβδp−1 < δ

4 , C = max{C1, ..., C4}. By the Lemma 2.2 there exist
T > 0 such that tα̃||S(t)u0||Lη ≤ δ

4 . Thus, from (3.12) and (3.13) and the Lemma 2.8 we have
that tα̃||φu(t)||Lη ≤ δ, tβ̃||∇[φu(t)−S(t)u0]||Lm ≤ 1 for T > 0 small enough and so φ : K → K.
Moreover, from (3.14) and (3.15) choosing T possibly smaller we have that d(φu, φv) ≤ 1

2d(u, v),
that is, φ is a contraction and therefore, it has a fixed point.

We use the same argument as the previous case for to show that u ∈ C((0, T ], Lr(Ω)).
Proceeding as (3.11) we have

||u(t)− S(t)u0||Lr ≤ ||a||Lα(M + 1)qt
1−N

2
max{ 1

α
+ q

η
− 1

r
,0}−α̃q+

C||b||Lβ (sup0<σ<t σα̃||u(σ)||Lη)pt
1−N

2
max{ 1

β
+ p

η
− 1

r
,0}−α̃p

→ 0, se t → 0.

Therefore, u ∈ C([0, T ], Lr(Ω)).
2

Remark 3.1 It is possible to observe that the choice of T depends in the Case 1 of ||u0||Lr and
the Case 2 on the compact K ⊂ Lr(Ω) that contains u0.

When u0 ∈ L∞(Ω) we have the following result.

Proposition 3.2 Assume that a ∈ Lα(Ω), b ∈ Lβ(Ω), a, b ≥ 0 a.e in Ω, α > N
q+1 , β > N

2 with
α, β ≥ 1, 0 < q < 1 < p. If u0 ∈ L∞(Ω) and u0 ≥ γdΩ for some γ > 0 then there exist T > 0
and a function

u ∈ L∞((0, T ), L∞(Ω)) ∩ L∞loc((0, T ),W 1,m(∞)
0 (Ω)) (3.16)

satisfying the equation (1.3). This solution is unique in the class of functions (3.16) such that

sup esst∈(0,T )t
β̃||u(t)− S(t)u0||W 1,m(∞)

0

< ∞

and u(t) ≥ γ1dΩ a.e in (0, T )× Ω for some γ1 > 0. m is defined by (2.2).

Proof. To show the existence we can adapt the arguments of the anterior proof. The
uniqueness follows from the Proposition 2.10.

2

Proof of the regularity of the Theorem 1.2. We use the the bootstrap procedure of
[12]. The existence proof ensure that for all t ∈ (0, T ]

t
N
2

( 1
r
− 1

η
)||u(t)||Lη ≤ C (3.17)

with C = M + 1 in the Case 1 and C = δ in the Case 2. We will show that (3.17) continues
being valid for some η′ > η.

Let u be the solution obtained above, then for t ∈ (0, T ]

u(t) = S(t/2)u(t/2) +
∫ t

t/2
S(t− σ)[auq(σ) + bup(σ)]dσ. (3.18)
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By the proof of the Theorem 1.2, we have that 1
α + q

η − 2
N < 1

η and 1
β + p

η − 2
N < 1

η . Then there
exists η′ > η such that 1

α + q
η − 2

N < 1
η′ ≤ 1

α + q
η and 1

β + p
η − 2

N < 1
η′ ≤ 1

β + p
η . Since 1

β + p
η ≤ 1

and 1
α + q

η ≤ 1, we have from (3.18), (3.17)

||u(t)||Lη′ ≤ (t/2)−
N
2

( 1
η
− 1

η′ )||u(t/2)||Lη + ||a||Lα

∫ t

t/2
(t− σ)−

N
2

( 1
α

+ q
η
− 1

η′ )||u||qLηdσ

+||b||Lβ

∫ t

t/2
(t− σ)−

N
2

( 1
β

+ p
η
− 1

η′ )||u||pLηdσ

≤ (t/2)−
N
2

( 1
η
− 1

η′ )||u(t/2)||Lη + Cq||a||Lα

∫ t

t/2
(t− σ)−

N
2

( 1
α

+ q
η
− 1

η′ )σ
−Nq

2
( 1

r
− 1

η
)
dσ

+Cp||b||Lβ

∫ t

t/2
(t− σ)−

N
2

( 1
β

+ p
η
− 1

η′ )σ
−Np

2
( 1

r
− 1

η
)
dσ

Thus, since that the integrals
∫ 1

1/2
(1− σ)−

N
2

( 1
α

+ q
η
− 1

η′ )σ
−Nq

2
( 1

r
− 1

sη
)
dσ < ∞,

∫ 1

1/2
(1− σ)−

N
2

( 1
β

+ p
η
− 1

η′ )σ
−Np

2
( 1

r
− 1

η
)
dσ < ∞,

then

t
N
2

( 1
r
− 1

η′ )||u(t)||Lη′ ≤ Ct
N
2

( 1
r
− 1

η′ ) + C||a||Lαt1−
N
2α

+
N(1−q)

2r C||b||Lβ t
1−N

2
( 1

β
+ p−1

r
)

= C ′.

So we see that (3.17) holds for η′ > η and one can bootstrap in a finite number steps to obtain
that there exists a constant C > 0 such that t

N
2r ||u(t)||L∞ ≤ C. Since that ||u(t)||Lr ≤ M + 1,

using interpolation we concluded that there exists a constant C > 0 depending of a, b, M, T
such that

t
N
2

( 1
r
− 1

s
)||u(t)||Ls ≤ C (3.19)

for r ≤ s ≤ ∞ and t ∈ (0, T ].

Similarly, by the proof of the existence part

tβ̃||∇[u(t)− S(t)u0]||Lm(s) ≤ 1 (3.20)

for all t ∈ (0, T ] with β̃ = N
2 (1

r − 1
m(s) + 1

N ), m(s) is defined by (2.2) and s = η. We will show
that (3.20) holds for some s = η′ > η.

We consider first the case N > 2. From (3.18) we have

u(t)− S(t)u0 = S(t/2)[u(t/2)− S(t/2)u0] +
∫ t

t/2
S(t− σ)[auq(σ) + bup(σ)]dσ. (3.21)

By (ii) and (iv) of the Lemma 2.5 it is possible to choose η′ > η such that 1
η′ + 2

N ≤ 1 and
0 ≤ 1

α + q
η − 1

m(η′) < 1
N , 0 ≤ 1

β + p
η − 1

m(η′) < 1
N so since that m(η′) > m(η) we have from (3.21)

||∇[u(t)− S(t)u0]||Lm(η′) ≤ ( t
2)−

N
2

( 1
m(η)

− 1
m(η′) )||∇[u(t/2)− v(t/2)]||Lm(η)+

C||a||Lα

∫ t

t/2
(t− σ)−

1
2
−N

2
( 1

α
+ q

n
− 1

m(η′) )||u(σ)||qLη+

C||b||Lβ

∫ t

t/2
(t− σ)−

1
2
−N

2
( 1

β
+ p

η
− 1

m(η′) )||u(σ)||pLηdσ
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so by (3.19) we concluded that for t ∈ (0, T ]

t
N
2

( 1
r
− 1

η′ )||∇[u(t)− S(t)u0]||Lm(η′) ≤ C + C||a||Lαt1−
N
2α

+
N(1−q)

2r + C||b||Lβ t
1−N

2
( 1

β
+ p−1

r
)

≤ C ′(T )

that is, we have that (3.20) holds for η′. Using the bootstrap argument we can conclude that
there exists a constant C > 0 such that

t
N
2r ||∇[u(t)− S(t)u0]||LN ≤ C.

For the case N = 2 it is sufficient to replace the value N = 2 in the expression (3.20).
In the case N = 1 we use the following argument. From (i) and (ii) of Lemma 2.9 we have

1
α + q

η < 1 and 1
β + p

η < 1. Let s > m(η) be such that 1
s < 1

α + q
η and 1

s < 1
β + p

η . Then by the
Lemma 2.1, (3.20) and (3.21)

||∇[u(t)− S(t)u0]||Ls ≤ t
−N

2
( 1

m(η)
− 1

s
)||∇[u(

t

2
)− S(

t

2
)u0]||Lm(η)

+C||a||Lα

∫ t
0 (t− σ)−

1
2
− 1

2
( 1

α
+ q

η
− 1

s
)||u(σ)||qLη+

||b||Lβ

∫ t

0
(t− σ)−

1
2
−N

2
( 1

β
+ p

η
− 1

s
)||u(σ)||pLηdσ

Then

t
1
2
(1+ 1

r
− 1

s
)||∇[u(t)− S(t)u0]||Ls ≤ C + Ct1−

N
2

( 1
α

+ q−1
r

) + Ct
1−N

2
( 1

β
+ p−1

r
) ≤ C(T ).

2

Proof of the uniqueness of the Theorem 1.2. Assume that v ∈ C([0, T ], Lr(Ω)) ∩
L∞loc((0, T ), L∞(Ω)) with v(0) = u0 is a solution of (1.3).

We show first that there exists T ′ > 0 such that v(t) = u(t) for all t ∈ [0, T ′]. Set K =
v([0, T ]) and M = supt∈[0,T ] ||v(t)||Lr . Since that K ⊂ Lr(Ω) is a compact, by the remark 3.1,
there exist a uniform T1 > 0 and for every τ ∈ (0, T ) a solution vτ ∈ C([0, T1], Lr(Ω)) of (1.3)
such that

vτ ∈ C((0, T1], Lη(Ω)) ∩ C((0, T1],W
1,m(η)
0 (Ω)) (3.22)

with vτ (0) = v(τ) and such that vτ ∈ K(T1).
On the other hand, since that for τ ∈ (0, T ) and 0 < t < T − τ

v(t + τ) = S(t)v(τ) +
∫ t

0
S(t− σ)[avq(σ + τ) + bvp(σ + τ)]dσ. (3.23)

Let Mτ = supt∈[τ,T ] ||u(t)||Lη be for every τ ∈ (0, T ). Proceeding as (3.4) we have

tα̃||v(t + τ)||Lη ≤ tα̃||S(t)u(τ)||Lr + tα̃||a||Lα

∫ t

0
(t− σ)−

N
2

max{ 1
α

+ q−1
η

,0}||v(σ + τ)||qLηdσ+

tβ̃||b||Lβ

∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
η

)||v(σ + τ)||pLηdσ

≤ tα̃||S(t)u(τ)||Lr + Ct
1+α̃−N

2
max{ 1

α
+ q−1

η
,0}

M q
τ + Ct

1+α̃−N
2

( 1
β

+ p−1
η

)
Mp

τ

and similarly, proceeding as (3.6)

tβ̃||v(t + τ)− S(t)v(τ)||
W 1,m

0
≤ Ct

1
2
+β̃+−N

2
max{ 1

α
+ q

η
− q

m
,0}

M q
τ + Ct

1
2
+β̃−N

2
( 1

β
+ p

η
− 1

m
)
Mp

τ
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and therefore, by the Lemma 2.2, there exists Tτ > 0 such that v(· + τ) ∈ K(Tτ ). By the
uniqueness in K(T ′τ ) with T ′τ = min{T1, Tτ} we conclude that vτ (t) = v(t + τ) for all t ∈
[0, min{T ′τ , T − τ}]. By the Proposition 2.10 we have that the uniqueness holds in the class
(3.22) and therefore, vτ (t) = v(t+τ) for all t ∈ [0, min{T1, T −τ}. Thus, since that vτ ∈ K(T1),

tα̃||v(t + τ)||Lη ≤ M + 1

tβ̃||v(t + τ)− S(t)v(τ)||
W 1,m

0
≤ 1

for t ∈ (0,min{T1, T − τ}). By the continuity of v, passing to the limit τ → 0, we deduce
that tα̃||v(t)||Lη ≤ M + 1, tβ̃||v(t) − S(t)v0||W 1,m

0
≤ 1 for all t ∈ (0, min{T, T1}), that is,

v ∈ K(min{T, T1}) and v is the solution obtained by the fixed point argument. Thus, v(t) = u(t)
for all t ∈ [0, T ′] with T ′ = min{T, T1}.

From (3.23) for τ = T ′ we have

||v(t + T ′)− S(t)u(T ′)||
W

1,m(∞)
0

≤ C||a||Lα

∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

α
− 1

m(∞)
,0}||v(·+ T ′)||qL∞dσ

+C||b||Lβ

∫ t

0
(t− σ)−

1
2
−N

2
max{ 1

β
− 1

m(∞)
,0}||v(·+ T ′)||pL∞dσ

≤ C(T, T ′)

and by the uniqueness of the Proposition 2.10 for s = ∞ we have that v is a unique solution
after T ′ and therefore in [0, T ].

2

4 Proof of the Theorem 1.1

Proof of of the existence of the Theorem 1.1. We use the same argument that was used
for the show the Theorem 1.2. We assume first that

Case 1. 1
β + p−1

r < 2
N . Fix M ≥ ||u0||Lr and let E = L∞((0, T ), Lη(Ω)) where η is given by

the Lemma 2.9 with q = 1, K = {u ∈ E, tα̃||u(t)||Lη ≤ M + 1} and α̃ = N
2 (1

r − 1
η ). We equip K

with the distance d(u, v) = sup0<t<T tα̃||u(t)−v(t)||Lη so (K, d) is a nonempty complete metric
space. Given u ∈ K, we set

φu(t) = S(t)u0 +
∫ t

0
S(t− σ)[au(σ) + b|u(σ)|p−1u(σ)]dσ.

Since that 1
α + 1

η < 1, α > N
2 , 1

β + p
η < 1 and 1

β + p−1
η < 2

N we have for u ∈ K

tα̃||φu(t)||Lη ≤ ||u0||Lr + ||a||Lαtα̃
∫ t

0
(t− σ)−

N
2α ||u||Lη

+||b||Lβ tα̃
∫ t

0
(t− σ)−

N
2

( 1
β

+ p−1
η

)||u||pLηdσ

≤ ||u0||Lr + C||a||Lα(M + 1)t1−
N
2α + C||b||Lβ t

1−N
2

( 1
β

+ p−1
r

)(M + 1)p

Similarly, one shows that for u, v ∈ K

tα̃||φu(t)− φv(t)||Lη ≤ C||a||Lαt1−
N
2α supt∈(0,T ) tα̃||u(t)− v(t)||Lη+

Ct
1−N

2
( 1

β
+ p−1

r
)||b||Lβ (M + 1)p−1 supt∈(0,T ) tα̃||u(t)− v(t)||Lη
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It follows from the above estimates that if T > 0 is small enough then φ : K → K and is a
strict contraction. Thus φ has a fixed point in K.

For the show that u ∈ C([0, T ], Lr(Ω)) we proceed as in the proof of the Theorem 1.2.

Case 2. 1
β + p−1

r = 2
N and r > 1. We proceeding as the anterior case considering η given

by the Lemma 2.5 and using the contraction mapping principle in the space

K = {u ∈ E; tα̃||u(t)||Lη ≤ δ for t ∈ (0, T )}

where α̃ = N
2 (1

r − 1
η ) and E = {u ∈ L∞((0, T ), Lη(Ω)), limt→0 tα̃u(t) = 0}.

2

Using a similar argument as in the anterior proof we have

Proposition 4.1 Assume that a ∈ Lα(Ω), b ∈ Lβ(Ω) with α, β > N
2 , α, β ≥ 1 and q = 1. If

u0 ∈ L∞(Ω) then there exist a unique function u ∈ L∞((0, T ), L∞(Ω)) satisfying (1.3).

The uniqueness in the anterior proposition follows of the Proposition 2.11.

Proof of Regularity and uniqueness of the Theorem 1.1. We can proceed as in the
regularity part and uniqueness part of the proof of the Theorem 1.2, using the Proposition 4.1
in place of the Proposition 3.2.

2
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