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Abstract. We consider an optimal control problem governed by a systems of nonlinear partial
differential equations modeling viscous incompressible flows submitted to variations of temperature,
using a generalized Boussinesq approximation. We obtain existence for the optimal control as well
as first order optimality conditions of Pontriagyn type by using the formalism due to Dubovitskii
and Milyutin.
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1. Introduction. In this work we consider an optimal control problem governed
by the equations for the coupled mass and heat flow of a viscous incompressible fluid in
a generalized Boussinesq approximation by assuming that the viscosity is temperature
dependent.

In a loose way, we intend to discover the least amount of heat to be imparted in
the flow domain in order to the flow and temperature behavior be as near as possible
to prescribed ones in certain parts of the domain.

To precise this intention, let the flow domain be a bounded set Ω in RN , with
N = 2 or 3, and 0 < T < +∞ is the final time of interest. Consider also two fixed
subsets of Ω:

ωu, ωθ ⊂ Ω. (1.1)

Next, assume that are given a velocity field ud defined on ωu and a temperature
field θd, as well as two external fields h and f . The problem to be studied is that of
finding a suitable heat source (the control)

v ∈ U (1.2)

belonging to the set of admissible controls, U (that is, the set that will incorporate
certain suitable restrictions on the control,) in such way that the corresponding fluid
velocity u and temperature θ satisfy:





ut − div(ν(θ)∇u) + u · ∇u− αθg +∇p = h,
div u = 0,
θt − k ∆θ + u · ∇θ = f + v in (0, T )× Ω,
u = 0 , θ = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) and θ(0, x) = θ0(x) for x ∈ Ω,

(1.3)
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where the initial conditions u0, θ0 are given functions on Ω, and also in such way that
u θ and v minimize the functional

J(u, θ, v) = (α1/2)
∫ T

0

∫

ωu

|u− ud|2dxdt + (α2/2)
∫ T

0

∫

ωθ

|θ − θd|2dxdt

+(µ/2)
∫ T

0

∫

Ω

|v|2dxdt,

(1.4)

where α1 ≥ 0, α2 ≥ 0 and µ > 0 are given constants.
Thus, the first objective of this paper is to show that this problem admits an

optimal solution; the second is to caracterize such solution in terms of first order
optimality conditions, that is, we will obtain the system o equations that the solution
and the corresponding adjoint variables must satisfy. In the process, we will also
obtain the associated Pontriagyn minimum principle for the problem.

To show that there are optimal solutions, we will have to use suitable existence
results to obtain estimates that allow us to pass the limit along a minimizing sequence.

As for the optimality conditions, the situation is more complex. The techniques
that are usually employed in distributed control problems (see for instance Lions
[15], [16] are difficult to apply in the present highly nonlinear case. Thus, we use
an alternative technique: the so called formalism of Dubovitskii and Milyutin. This
approach was originally developed for application in mathematical programming, and
later on it showed very useful for the theory of optimal control of ordinary differential
equations. A good exposition of the use of this formalism in those areas can be found
for instance in Girsanov [9]; see also Flett [7]

Recently this formalism has been applied, in a promissing way, for distributed
control problems. For instance, the following articles use the formalism in this situa-
tion: De Aguiar et al. [4], Gayte et al. [8], [11] and Magalhães et al. [20].

In a very brief way, the basic idea that fundament the formalism is the follow-
ing: in a locally minimizing point, the descent set associated to the functional must
be disjoint of the intersection of the restriction sets of the problem. Then, the corre-
sponding cones of these sets at this optimal point must have the same property. Next,
Hahn-Banach theorem and additional arguments imply that there exist elements in
the associated dual cones, not all of them zero, that must add up to zero. This alge-
braic condition corresponds to the Euler-Lagrange equations for the problem at hand,
and in problems where it is possible to identify such cones and dual cones, it im-
plies in the required first order optimality conditions and also gives the corresponding
Pontriagyn minimum (maximum) principle is also obtained.

Thus, one major difficulty present in our problem is the identification of such cones
in terms of the involved partial differential equations. Since this difficulty is related to
the highly nonlinear behavior of (1.3), let us briefly comment on the physical meaning
of its several variables and constants and also comment on the some of mathematical
results that are known for these equations.

A derivation of the equations (1.3) can be found for instance in Drazin and Reid
[6]. The fields of interest are the following: u(x, t) ∈ RN denotes the velocity of
the fluid at point x ∈ Ω, at time t ∈ [0, T ]; p(x, t) ∈ R is the hydrostatic pressure;
θ(x, t) ∈ R is the temperature; g(x, t) is the external force by unit of mass; ν(·) > 0
and k > 0 are respectively the kinematic viscosity and thermal conductivity; α is a
positive constant associated to the coefficient of volume expansion. h and f are given
external fields. In this work, the expression ∇, ∆ and div denote the gradient, Laplace
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and divergence operator, respectively; the i-th component in cartesian coordinates of
u · ∇u is given by (u · ∇u)i =

∑N
j=1 uj∂xi

ui; also u · ∇θ =
∑n

j=1 uj∂xiθ.
For simplicity of exposition, in this work we consider homogeneous boundary con-

ditions; the general case can be reduced to this one by assuming suitable smoothness
on the boundary data (in connection to this, see for instance Lorca and Boldrini [19]).
Such a reduction leads only to change in the right-hand sides of (1.3), by addition of
linear and nonlinear terms, which do not influence the proofs of the final results in an
essential way.

We also remark that the classical Boussinesq equations correspond to the impor-
tant special case where ν and k are positive constants (see for instance Morimoto
[21], Óeda [22], Hishida [12] and Shinbrot and Kotorynski [24]. Concerning problems
involving questions of optimal control for the classical evolution Boussinesq equations,
see, for instance, Lee and Shin [13] Li and Wang [14]. For certain fluids, however,
we can not disregard the variation of the viscosity with temperature, this being im-
portant in the determination of the details of the flow. In particular, it is believed
that the temperature dependence of the viscosity is responsible for the fact that the
direction of the flow in the middle of a convection cell is usually different for gases
and liquids (see Lorca and Boldrini [17] and the references there in). Thus, it is also
important to know well the properties of equations (1.3).

From the mathematical point of view, equation (1.3) have been less studied, and
a rigorous mathematical analysis is more difficult for it than in the case of the clas-
sical Boussinesq equations. Concerning the existence of solution, by considering the
more general case where both the viscosity and thermal conductivity are temperature
dependent, the spectral Galerkin method was used by Lorca and Boldrini [17] to ob-
tain stationary solutions; they considered the corresponding local strong solutions in
[18]; global existence and regularity of solutions is considered in [19]. A related global
existence result is presented in Guillén-González, Climent-Ezquerra and Boldrini [10].
Another global existence result, under somewhat different conditions, is obtained in
Guillén-González, Climent-Ezquerra and Rojas-Medar [3]. Other existence results,
under different situations and conditions, are for instance Shilkin [23], Zabrodzki [25]
and Dı́az and Galiano [5].

Finally, we remark that in the last section of this work, we consider possible
extensions of our optimal control problem. In particular, the case of localized control
is considered.

2. Preliminaries and Hypotheses. We begin by fixing the notation and re-
calling certain definitions and facts to be used later on. In what follows the functions
are either R or RN valued (N = 2 or 3), and to easy the notation, sometimes we will
not distinguish them in our notation; this will be clear from the context. When O is
a domain, the L2(O)-product is denoted by (·, ·)O. Hm(Ω) = Wm,2(Ω) and W k,p(Ω)
are the usual Sobolev spaces (see Adams [1]; for their properties); H1

0 (Ω) is the closure
of C∞0 (Ω) in the H1-norm. When l is a nonnegative integer, Cl

b(O) denotes the set of
real functions with have bounded derivatives up to l-order.

Let B is any Banach space; then, its norm will be denoted ‖ · ‖B ; its topological
dual will be denoted by B′, and if K ⊂ B is a cone, the dual cone of K, is defined as
K∗ = {f ∈ B′ : f(x) ≥ 0, ∀x ∈ K}. Let x0 ∈ A ⊂ B, we say that a non zero f ∈ B′

is a support functional for A at x0 when f(x) ≥ f(x0) for all x ∈ A.
We denote by Lq(0, T ;B) the Banach space of the B-valued functions defined in

the interval (0, T ) that are Lq-integrable in the sense of Bochner, with the standard
norm.
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The next result, whose proof can be found for instance in Alexeév, Fomine and
Tikomirov [2], will be useful when we apply the Dubovitskii-Milyutin formalism.

Proposition 2.1. (Lyusternik) Let X and Z be Banach spaces and U be a
neighborhood of x0 ∈ X. Let P : U → Z be an operator such that P (x0) = 0, P is
strictly differentiable at x0 and P ′(x0)X = Z, that is, P ′ is an epimorphism, then the
set M = {x / P (x) = 0} has tangent space at x0 given by Tx0(M) = ker P ′(x0) =
{h ∈ X : P ′(x0)h = 0}.

Next, we introduce functional spaces that are useful for equations for flows of
incompressible fluids. Let C∞0,σ(Ω) = {v ∈ C∞0 (Ω); div v = 0 in Ω}; V be the
closure of C∞0,σ(Ω) in H1

0 (Ω), and H be the closure of C∞0,σ(Ω) in L2(Ω). We
denote by P the orthogonal projection from L2(Ω) onto H obtained by the usual
Helmholtz decomposition.

The following result, proved by Lorca and Boldrini (Lemma 3.4 in [19]), provides
a suitable estimate for the “pressures”associated to the Helmholtz decompositions. It
will be useful for obtaining higher order estimates for the fluid velocity.

Proposition 2.2. Let v ∈ V ∩H2(Ω) and consider the Helmholtz decomposition

of −∆v, i.e, −∆v = Av + ∇q, where q ∈ H1(Ω) is taken such that
∫

Ω

qdx = 0,

and A = −P∆ is the Stokes operator. Then, for every ε > 0 there exists a positive
constant Cε independent of v such that ||q||L2(Ω) ≤ Cε||∇v||L2(Ω) + ε||Av||L2(Ω).

Now consider the equations that govern the mass and heat flow in a slightly more
general form:





∂tu − div(ν(θ)∇u) + u · ∇u− αθg +∇p = h,
div u = 0,
∂tθ − k∆θ + u · ∇θ = f in (0, T ]× Ω,
u = 0 and θ = 0 on (0, T )× ∂Ω;
u(x, 0) = u0(x) and θ(x, 0) = θ0(x) for x ∈ Ω.

(2.1)

Since in the above equations the thermal conductivity k is constante, by using
spectral Galerkin approximations, similarly as in Climent-Esquerra, Guillén-González
and Rojas-Medar [3] (see also Lorca and Boldrini [18], [19], or Guillén-González,
Climent-Ezquerra and Boldrini [10],) the following existence theorem holds.

Proposition 2.3. Let Ω be a bounded domain in RN , where N = 2 or 3, with a
C4 boundary; suppose that

k is a positive constant
ν ∈ C2

b (R) such that 0 < ν0 < ν(σ) < ν1 < +∞ for all σ ∈ R.
g ∈ L∞(0, T ; L3(Ω)),
h ∈ L2(0, T ;L2(Ω));
f ∈ L∞(0, T ;L2(Ω)), ∇f ∈ L2(0, T ; L2(Ω));
u0 ∈ V ,
θ0 ∈ H1

0 (Ω) ∩H2(Ω).
Then there exists a positive number T ∗ ≤ T such that the Problem 2.1 has a

unique solution (u, θ) satisfying

u ∈ L∞(0, T ∗; V ) ∩ L2(0, T ∗; H2(Ω));
ut ∈ L2(0, T ∗;L2(Ω)),
θ ∈ L∞(0, T ∗; H2(Ω)) ∩ L2(0, T ;H3(Ω));
θt ∈ L∞(0, T ∗; L2(Ω)),
u(t) → u0 strongly in V and
θ(t) → θ0 weakly in H2(Ω) as t → 0+.
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Also, there is a constant C depending only on T ∗, k, ν0, ν1, ||ν||C2
b (R), ||g||L∞(0,T ;L3(Ω)),

||h||L2(0,T ;L2(Ω)), ||f ||L∞(0,T ;L2(Ω)), ||∇f ||L2(0,T ;L2(Ω)), ||u0||V and ||ϕ0||H2(Ω) such
that

||u||L∞(0,T∗;V )∩L2(0,T∗;H2(Ω)) ≤ C,
||ut||L2(0,T∗;L2(Ω)) ≤ C,
||θ||L∞(0,T∗;H2(Ω))∩L2(0,T ;H3(Ω)) ≤ C,
||θt||L∞(0,T∗;L2(Ω)) ≤ C.

Moreover, there is δ > 0 such that when ||h||L2(0,T ;L2(Ω)), ||f ||L∞(0,T ;L2(Ω)),
||∇f ||L2(0,T ;L2(Ω)), ||u0||V and ||ϕ0||H2(Ω) are less than or equal to δ, then the so-
lution (u, θ) exists globally in time; that is, we can take T ∗ = T .

As mentioned before, the proof of Proposition 2.3 can be done by proving the
corresponding estimates for spectral Galerkin approximations; since these estimates
are uniform with respect to the approximations, they are carried to a solution of the
original problem in the limit.

We note that when there is a maximum principle for θ in (2.1), then the assump-
tion for ν can be weakened. In this case it is sufficient to suppose ν( · ) > 0, besides
the C2 regularity, because in this case it is possible to transform problem into an
equivalent one under the conditions of the previous proposition (see for instance [17],
[18] for details). For example, we have this kind of maximum principle when f ≤ 0
and θ0 ∈ L∞(Ω).

To close this section, we summarize the hypotheses that will hold throughout this
paper.

2.1. Technical Hypotheses.
(H1) Ω is a bounded domain of class C4 in RN , n = 2 or 3;
(H2) k is a positive constante;
(H3) ν ∈ C2

b (R) is such that 0 < ν0 < ν(σ) < ν1 < +∞ for all σ ∈ R.
(H4) g ∈ L∞(0, T ; L3(Ω)),
(H5) δ > 0 is the constant appearing in Proposition 2.3;
(H6) u0 ∈ V is such ‖u0‖V ≤ δ;
(H7) θ0 ∈ H1

0 (Ω) ∩H2(Ω) is such that ‖θ0‖H2(Ω) ≤ δ;
(H8) h ∈ L2(0, T ; L2(Ω)) is such that ‖h‖L2(0,T ;L2(Ω)) ≤ δ;
(H9) f ∈ L∞(0, T ;L2(Ω)) and ∇f ∈ L2(0, T ; L2(Ω)) are such that

‖f‖L∞(0,T ;L2(Ω)) + ‖∇f‖L2(0,T ;L2(Ω)) ≤ δ/2;
(H10) ud ∈ L2(0, T ; L2(ωu)), θd ∈ L2(0, T ; L2(ωθ)).

3. Setting of the Problem and Existence of Optimal Solutions. In this
section we will define in precise mathematical terms the optimal control problem
associated to (1.3), (1.4) and associated restrictions and conditions.

Now, we define the following functional spaces:

Wu = {w ∈ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)); wt ∈ L2(0, T ;L2(Ω))}, (3.1)

Wθ = {φ ∈ L∞(0, T ; H1
0 (Ω) ∩H2(Ω)) ∩ L2(0, T ;H3(Ω));

φt ∈ L∞(0, T ;L2(Ω))∩ ∈ L2(0, T ;H1(Ω))}, (3.2)

Wc = {f ∈ L∞(0, T ;L2(Ω)) : ∇f ∈ L2(0, T ; L2(Ω)). (3.3)
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(Wu, ‖ · ‖Wu), with the norm

‖w‖Wu = ‖w‖L∞(0,T ;V ) + ‖w‖L2(0,T ;H2(Ω)) + ‖wt‖L2(0,T ;L(Ω)),

(Wθ, ‖φ‖Wθ
), with the norm

‖φ‖Wθ
= ‖φ‖L∞(0,T ;H2(Ω)) + ‖φ‖L2(0,T ;H3(Ω))

+‖φt‖L∞(0,T ;L2(Ω)) + ‖∇φt‖L2(0,T ;L2(Ω)),

and (Wc, ‖ · ‖), with the norm

‖v‖Wc = ‖v‖L∞(0,T ;L2(Ω)) + ‖∇v‖L2(0,T ;L2(Ω)),

are Banach spaces.
Let also Wicu = V and Wicθ = H2(Ω), with the natural norms.
Next, we define the our set of admissible controls:

U = {v ∈ Wc; ‖v‖Wc ≤ δ/2}. (3.4)

We remark that under hypotheses (H1)–(H10), and controls in the previous U , accord-
ing to Proposition 2.3, (1.3) admits unique strong solutions since ‖h‖L∞(0,T ;L2(Ω)) ≤ δ
and ‖f + v‖Wc ≤ δ.

Next, we write the equations in operational form. Consider the operator

M : Wu ×Wθ ×Wc → L2(0, T ; H)×Wc ×Wicu ×Wicθ, (3.5)

defined by

M(w, φ, v) = (ψ1, ψ2, ψ3, ψ4),

where (ψ1, ψ2, ψ3, ψ4) are define by




∂tw− P (div(ν(φ)∇w) + w · ∇w− αφg− h) = ψ1 in Q,
∂tφ− k∆φ + w · ∇φ− f − v = ψ2 in Q,
w|t=0 − u0 = ψ3 in Ω,
φ|t=0 − θ0 = ψ4 in Ω.

(3.6)

We remark that the operator M is well defined due to the definitions of Wu, Wθ

and standard Sobolev imbedding results.
Thus, our optimal control problem can be written as the following optimization

problem: find u ∈ Wu, θ ∈ Wθ and v ∈ Wc such that

J(u, θ, v) = min
(w,ψ,v̄)∈Q

J(w, ψ, v̄), (3.7)

where Q is the non-void set given by

Q = {(w, ψ, f) ∈ Wu ×Wθ × U : M(w, ψ, f) = 0} . (3.8)

Thus, we have:
Theorem 3.1. Under hypotheses (H1)–(H10), problem (3.7) admits optimal

solution.
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Proof. The proof is standard; so we just sketch it. Since Q is non-void and
J(·) ≥ 0, we can take a minimizing sequence {(un, θn, vn)}∞n=1 ⊂ Q such that

lim
n→∞

J(un, θn, vn) = inf{J(w, ψ, v̄) : (w, ψ, v̄) ∈ Q}.

Since {(un, θn, vn)}∞n=1 ⊂ Q, we have that ‖f + vn‖Wc ≤ δ, for all n. Thus, from
Proposition 2.3, we obtain that ‖un‖Wu and ‖θn‖Wθ

are also uniformly bounded with
respect to n. Thus, by using these estimates and Aubin-Lions Lemma, we conclude
that there is (u, θ, v) ∈ Wu×Wθ×U and a subsequence {(unk

, θnk
, vnk

)}∞k=1 converging
to (u, θ, v) is several topologies. These and the convexity and continuity of J (see
(1.4), are enough to conclude that lim infk→∞ J(unk

, θnk
, vnk

) ≥ J(u, θ, v). Since
M(unk

, θnk
, vnk

) = 0; the definition of M (see (3.5) and the previous convergences
are enough to pass to the limit and obtain that M(u, θ, v) = 0. Thus, (u, θ, v) ∈ Q
and we conclude that J(u, θ, v) = inf{J(w, ψ, v̄) : (w, ψ, v̄) ∈ Q}.

4. First Order Optimality Conditions and Minimum Principle. Our
main result is the following theorem.

Theorem 4.1. Assume hypotheses (H1)–(H10), and let (u, θ, v) ∈ Wu×Wθ×Wc

be an optimal solution of problem (3.7). Then, they satisfy




ut − P (div(ν(θ)∇u) + u · ∇u− αθg) = h,
θt − k ∆θ + u · ∇θ = f + v in (0, T )× Ω,
u = 0 , θ = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) and θ(0, x) = θ0(x) for x ∈ Ω

and there are adjoint variables q ∈ L2(0, T ;H) and ζ ∈ L2(0, T ; L2(Ω)), solution by
transposition of the following adjoint equations:





−q
(i)
t − P

(
div(ν(θ)∇q(i))− u · ∇q(i) −∑N

j=1 u(j)q
(j)
xi − θζxi

)

+P (α1(u− ud)χωu) = 0, for i = 1, . . . , N,
−ζt − k∆ζ − u · ∇ζ + ν′(θ)∇u : ∇q + α2(θ − θd)χωθ

= 0,
q = 0; ζ = 0, on ∂Ω× (0, T )
q(t = T ) = 0; ζ(t = T ) = 0,

(4.1)

where the z(i) denotes the i− th-component of z.
Moreover, there holds the following minimum principle:

(−ζ + µv, v̄ − v)Q ≤ 0 ∀v̄ ∈ U , (4.2)

where U is defined in (3.4).
Remark 4.1. The previous solution (q, ζ) of the adjoint equation is in fact more

regular, as will be proved in Lemma 4.7.

Before we prove this theorem, we need some auxiliary results that will be impor-
tante for the application of the Dubovitskii and Milyutin formalism.

Lemma 4.2. The operator M defined in (3.5) is of class C1 at any point (u, θ, v) ∈
Wu ×Wθ ×Wc. Moreover, its Fréchet derivative is

DM(u, θ, v) : Wu ×Wθ ×Wc → L2(0, T ; H)×Wc ×Wicu ×Wicθ,

with components given by

DM (1)(u, θ, v)(w, φ, v̄) = wt − Pdiv(ν(θ)∇w + ν′(θ)φ∇u)
+P (u · ∇w + w · ∇u− αφg),

(4.3)
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DM (2)(u, θ, v)(w, φ, v̄) = φt − k∆φ + u · ∇φ + w · ∇θ − v̄, (4.4)

DM (3)(u, θ, v)(w, φ, v̄) = w|t=0, (4.5)

DM (4)(u, θ, v)(w, φ, v̄) = φ|t=0. (4.6)

Proof. First of all, we observe that DM (1)(u, θ, v)(w, φ, v̄), DM (2)(u, θ, v)(w, φ, v̄),
DM (3)(u, θ, v)(w, φ, v̄), DM (4)(u, θ, v)(w, φ, v̄) are linear operators satisfying

‖DM (1)(u, θ, v)(w, φ, v̄)‖L2(0,T ;H) ≤ C(‖w‖Wu + ‖φ‖Wθ
+ ‖v̄‖Wc

),

‖DM (2)(u, θ, v)(w, φ, v̄)‖Wc
≤ C(‖w‖Wu + ‖φ‖Wθ

+ ‖v̄‖Wc
),

‖DM (3)(u, θ, v)(w, φ, v̄)‖Wicu ≤ C(‖w‖Wu + ‖φ‖Wθ
+ ‖v̄‖Wc),

‖DM (4)(u, θ, v)(w, φ, v̄)‖Wicθ
≤ C(‖w‖Wu + ‖φ‖Wθ

+ ‖v̄‖Wc),

with suitable constants C depending on ||u||Wu , ||θ||Wθ
, ||v||Wc .

In fact, just as an example, we show the second of the above inequality. We have

||φt − k∆φ + u · ∇φ + w · ∇θ − v̄||L2(Ω)

≤ ||φt||L2(Ω) + k||∆φ||L2(Ω) + ||u||L4(Ω)||∇φ||L4(Ω)

+||w||L4(Ω)||∇θ||L4(Ω) − ||v̄||L2(Ω)

≤ ||φt||L2(Ω) + k||∆φ||L2(Ω) + ||u||L∞(0,T ;V )||φ||H2(Ω)

+||w||V ||θ||L∞(0,T ;H2(Ω)) + ||v̄||L2(Ω)

Thus,

‖DM (2)(u, θ, v)(w, φ, v̄)‖L∞(0,T ;L2(Ω))

= ||φt − k∆φ + u · ∇φ + w · ∇θ − v̄||L∞(0,T ;L2(Ω))

≤ ||φt||L∞(0,T ;L2(Ω)) + k||∆φ||L∞(0,T ;L2(Ω))

+||u||L∞(0,T ;V )||φ||L∞(0,T ;H2(Ω))

+||w||L∞(0,T ;V ||θ||L∞(0,T ;H2(Ω)) + ||v̄||L∞(0,T ;L2(Ω))

≤ C(1 + k + ||u||Wu + ||θ||Wθ
+ ||v̄||Wc)(‖w‖Wu + ‖φ‖Wθ

+ ‖v̄‖Wc).

Similarly, we have:

||∇(φt − k∆φ + u · ∇φ + w · ∇θ − v̄)||L2(Ω)

≤ ||∇φt||L2(Ω) + k||∇∆φ||L2(Ω)

+||∇u||L4(Ω)||∇φ||L4(Ω) + ||u||L4(Ω)||∇2φ||L4(Ω)

+||∇w||L4(Ω)||∇θ||L4(Ω) + ||w||L4(Ω)||∇2θ||L4(Ω)

+||∇v̄||L2(Ω)

≤ ||∇φt||L2(Ω) − k||∇∆φ||L2(Ω)

+C||u||H2(Ω)||φ||L∞(0,T ;H2(Ω)) + C||u||L∞(0,T ;V )||φ||H3(Ω)

+C||w||H2(Ω)||θ||L∞(0,T ;H2(Ω)) + C||w||L∞(0,T ;V )||θ||H3(Ω)

+||∇v̄||L2(Ω)
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Thus,

‖∇DM (2)(u, θ, v)(w, φ, v̄)‖L2(0,T ;L2(Ω))

= ||∇(φt − k∆φ + u · ∇φ + w · ∇θ − v̄)||2L2(0,T ;L2(Ω))

≤ C||∇φt||2L2(0,T ;L2(Ω)) + Ck2||φ||2L2(0,T ;H3(Ω))

+C||u||2L2(0,T ;H2(Ω))||φ||2L∞(0,T ;H2(Ω)) + C||u||2L∞(0,T ;V )||φ||2L2(0,T ;H3(Ω))

+C||w||2L2(0,T ;H2(Ω))||θ||2L∞(0,T ;H2(Ω)) + C||w||2L∞(0,T ;V )||θ||2L2(0,T ;H3(Ω))

+||∇v̄||2L2(Ω).

Therefore, the second inequality is proved. The other inequalities are similarly proved.
Now, we have that

M (1)(u + w, θ + φ, v + v̄)−M (1)(u, θ, v)−DM (1)(u, θ, v)(w, φ, v̄)
= I1 + I2 + I3 + I4 + I5 + I6 + I7,

where

I1 = −(ν(θ + φ)− ν(θ)− ν′(θ) φ)∆u,

I2 = −(ν(θ + φ)− ν(θ))∆w,

I3 = −(ν′(θ + φ)− ν′(θ))− ν′′(θ)φ))∇θ∇u,

I4 = −(ν′(θ + φ)− ν′(θ))∇θ∇w,

I5 = −(ν′(θ + φ)− ν′(θ))∇φ∇u,

I6 = −ν′(θ + φ)∇φ∇w,

I7 = w · ∇w.

Now, we can estimate the previous terms as follows.

‖I1‖2L2(0,T ;L2(Ω)) ≤
∫ T

0

∫

Ω

(ν(θ + φ)− ν(θ)− ν′(θ) φ)2|∆u|2

≤ C

∫ T

0

∫

Ω

|φ|4|∆u|2

≤ C||φ||4L∞(0,T ;L∞(Ω))||∆u||2L2(0,T ;L2(Ω))

≤ C||φ||4Wθ
||∆u||2Wu

‖I2‖2 ≤
∫ T

0

∫

Ω

(ν(θ + φ)− ν(θ))2|∆w|2

≤ C

∫ T

0

∫

Ω

|φ|2|∆w|2

≤ C||φ||2L∞(0,T ;L∞(Ω))‖∆w||2L2(0,T ;L2(Ω))

≤ C||φ||2Wθ
‖w||2Wu
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‖I3‖2 ≤
∫ T

0

∫

Ω

(ν′(θ + φ)− ν′(θ))− ν′′(θ)φ)2|∇θ|2|∇u|2

≤
∫ T

0

∫

Ω

|φ|4|∇θ|2|∇u|2

≤
∫ T

0

||φ||4L∞(Ω)||∇θ||2L4(Ω))||∇u||2L4(Ω)

≤ C

∫ T

0

||φ||4H2(Ω)||θ||2H2(Ω))||u||2H2(Ω)

≤ C||φ||4L∞(0,T ;H2(Ω))||θ||2L∞(0,;H2(Ω)))||u||2L2(0,T ;H2(Ω))

≤ C||θ||2Wθ
||u||2Wu

||φ||4Wθ

‖I4‖2 ≤
∫ T

0

∫

Ω

(ν′(θ + φ)− ν′(θ))2|∇θ|2|∇w|2

≤
∫ T

0

∫

Ω

|φ|2|∇θ|2|∇w|2

≤
∫ T

0

||φ||2L∞(Ω)||∇θ||2L4(Ω)||∇w||2L4(Ω)

≤
∫ T

0

||φ||2H2(Ω)||θ||2H2(Ω)||w||2H2(Ω)

≤ ||φ||2L∞(0,T ;H2(Ω))||θ||2L∞(0,T ;H2(Ω))||w||2L2(0,T ;H2(Ω))

≤ ||φ||2Wθ
||θ||2Wθ

||w||2Wu

‖I5‖2 ≤
∫ T

0

∫

Ω

(ν′(θ + φ)− ν′(θ))2|∇φ|2|∇u|2

≤
∫ T

0

∫

Ω

|φ|2|∇φ|2|∇u|2

≤
∫ T

0

||φ||2L∞(Ω)||∇φ||2L4(Ω)||∇u||2L4(Ω)

≤
∫ T

0

||φ||2H2(Ω)||φ||2H2(Ω)||u||2H2(Ω)

≤ ||φ||4L∞(0,T ;H2(Ω))||u||2L2(0,T ;H2(Ω))

≤ ||u||2Wu
||φ||4Wθ

‖I6‖2 ≤
∫ T

0

∫

Ω

|ν′(θ + φ)|2|∇φ|2|∇w|2

≤ C

∫ T

0

∫

Ω

|∇φ|2|∇w|2

≤ C

∫ T

0

||∇φ||2L4(Ω)||∇w||2L4(Ω)

≤ C

∫ T

0

||φ||2H2(Ω)||w||2H2(Ω)

≤ C||φ||2L∞(0,T ;H2(Ω))||w||2L2(0,T ;H2(Ω))

≤ C||φ||2Wθ
||w||2Wu
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‖I7‖2 ≤
∫ T

0

∫

Ω

|w|2|∇w|2

≤
∫ T

0

||w||2L∞(Ω)||∇w||2L2(Ω)

≤ C

∫ T

0

||w||2H2(Ω)||w||2V
≤ C||w||2L2(0,T ;H2(Ω))||w||2L∞(0,T ;V )

≤ C||w||4Wu
.

From these estimates for I1 – I7, we conclude that M (1) is Fréchet differentiable
and its derivative is DM (1)(u, θ, v)(w, φ, v̄).

Next, we consider the case of M (2). We have the following.

M (2)(u + w, θ + φ, v + v̄)−M (2)(u, θ, v)−DM (2)(u, θ, v)(w, φ, v̄) = w · ∇φ

Since ‖w · ∇φ‖2L2(Ω) ≤
∫

Ω

|w|2|∇φ|2 ≤ ‖w‖2L4(Ω)‖∇φ‖2L4(Ω) ≤ C‖w‖2V ‖φ‖2H2(Ω), we

obtain

‖w · ∇φ‖L∞(0,T ;L2(Ω)) ≤ C‖w‖L∞(0,T ;V )‖φ‖L∞(0,T ;H2(Ω)) ≤ C‖w‖Wu‖φ‖Wθ
.

Also,

‖∇(w · ∇φ)|2L2(Ω) ≤
∫

Ω

|∇(w · ∇φ)|2

≤ C

∫

Ω

|∇w|2|∇φ|2 + C

∫

Ω

|w|2|∇2φ|2

≤ C‖∇w‖2L4(Ω)‖∇φ‖2L4(Ω) + C‖w‖2L∞(Ω)‖φ‖2L2(Ω)

≤ C‖w‖2H2(Ω)‖φ‖2H2(Ω).

Therefore,

‖∇(w · ∇φ)|2L2(0,T ;L2(Ω)) ≤ C‖φ‖2L∞(0,T ;H2(Ω))

∫ T

0

‖w‖2H2(Ω)

≤ C‖φ‖2Wθ
‖w‖2Wu

Thus M (2) is Fréchet differentiable and its derivative is DM (2)(u, θ, v)(w, φ, v̄).
The fact that M (3) is Fréchet differentiable and its derivative is given by DM (3)(u, θ, v)(w, φ, v̄)

is obviously consequence of its linearity and continuity. Analogous results hold for
M (4).

We conclude that M is Fréchet differentiable and its derivative is given by DM(u, θ, v)(w, φ, v̄).
Now we proceed by proving the continuity of DM(u, θ, v) with respect to (u, θ, v).
For this, let (u, θ, v), (u1, θ1, v1) and (w, φ, v̄) ∈ Wu×Wθ×Wc and observe that:

DM (1)(u1, θ1, v1)(w, φ, v̄)−DM (1)(u, θ, v)(w, φ, v̄)
= −P ((ν(θ1)− ν(θ))∆w

+(ν′(θ1)− ν′(θ))∇θ1 · ∇w + ν′(θ)(∇θ1 −∇θ) · ∇w
+(ν′(θ1)− ν′(θ))∇φ · ∇u1 + ν′(θ)∇φ · (∇u1 −∇u)
+(ν′(θ1)− ν′(θ))φ ∆u1 + ν′(θ)φ (∆u1 −∆u)
+(u1 − u) · ∇w + w · (∇u1 −∇u2))
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Thus, after estimating the terms in the right-hand side of this last equality,

||DM (1)(u1, θ1, v1)(w, φ, v̄)−DM (1)(u, θ, v)(w, φ, v̄)||L2(0,T ;H)

≤ C||θ1 − θ||Wθ
||w||Wu

+C||θ1||Wθ
||θ1 − θ||Wθ

||w||Wu + C||θ1 − θ||Wθ
||w||Wu

+C||u1||Wu ||θ1 − θ||Wθ
||φ||Wθ

+ C||u1 − u||Wu ||φ||Wθ

+C||u1||Wu ||θ1 − θ||Wθ
||φ||Wθ

+ C||u1 − u||Wu ||φ||Wθ

+2C||u1 − u||Wu ||w||Wθ

Now,

DM (2)(u1, θ1, v1)(w, φ, v̄)−DM (2)(u, θ, v)(w, φ, v̄)
= (u1 − u) · ∇φ + w · (∇θ1 −∇θ)

Estimating the terms in the right-hand side, we get

||DM (2)(u1, θ1, v1)(w, φ, v̄)−DM (2)(u, θ, v)(w, φ, v̄)||L∞(0,T ;L2(Ω)

≤ C||u1 − u||Wu ||φ||Wθ
+ C||θ1 − θ||Wθ

||w||Wθ
,

and also

||∇ (
DM (2)(u1, θ1, v1)(w, φ, v̄)−DM (2)(u, θ, v)(w, φ, v̄)

) ||L2(0,T ;L2(Ω)

≤ 2C||u1 − u||Wu ||φ||Wθ
+ 2C||θ1 − θ||Wθ

||w||Wθ
,

Since the corresponding estimates are trivial for DM (3) and DM (3), from the
previous inequalities, we obtain

||DM (2)(u1, θ1, v1)−DM (2)(u, θ, v)||
= sup

{||DM (2)(u1, θ1, v1)(w, φ, v̄)−DM (2)(u, θ, v)(w, φ, v̄)||W̃ :
∀(w, φ, v̄) ∈ Wu ×Wθ ×Wc such that
||w||Wu ≤ 1, ||ψ||Wθ

≤ 1, ||v̄||Wc ≤ 1}
≤ C(1 + ||θ1||Wθ

+ ||u1||Wu)(||θ1 − θ||Wθ
+ ||u1 − u||Wu),

where W̃ = L2(0, T ; H)×Wc ×Wicu ×Wicθ

Therefore,DM(·) is continuous and the lemma is proved.

We also have the following result.
Lemma 4.3. At any point (u, θ, v) ∈ Wu × Wθ × Wc the operator DM(u, θ, v)

defined in Lemma 4.2 is onto.
Proof. Given (u, θ, v) ∈ Wu×Wθ ×Wc and (ψ1, ψ2, ψ3, ψ4) ∈ L2(0, T ;H)×Wc×

Wicu ×Wicθ, we have to prove that there exists (w, φ, v̄) ∈ Wu ×Wθ ×Wc such that

wt − Pdiv(ν(θ)∇w + ν′(θ)φ∇u) + P (u · ∇w + w · ∇u = ψ1,
φt − k∆φ + u · ∇φ + w · ∇θ − v̄ = ψ2,
w|t=0 = ψ3,
φ|t=0 = ψ4,

(4.7)

We take v̄ = −ψ2 in these equations and proceed to find the corresponding v and
φ.

The proof of existence of solutions for the above problem proceeds in standard
way: one uses the spectral Faedo-Galerkin method, i.e,, the Faedo-Galerkin method
using the eigenfunctions of the Stokes operator A as a basis for the finding w and the
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eigenfunctions of −∆ as a basis for finding φ. The local existence in time of the ap-
proximate solutions are then consequence of existence results for ordinary differential
equations; then, one proceeds to finding enough estimates for those approximate so-
lutions to ensure that they exist globally in time and at least a subsequence converge
to a solution of the original equations in the required functional spaces. Since most
of the arguments to complete the proof are standard, in the following we just obtain
the necessary estimates. To ease the notation, since the formal computations are the
same, we will obtain the estimates by working with (4.7) instead the of the associated
Faedo-Galerkin approximations. We will call the reader attention to specific points
where we have to be careful.

We start by multiplying the first equation by w, integrating over Ω and proceed
as usual to obtain:

d

dt
||w(t)||2L2(Ω) + νo||∇w||2L2(Ω)

≤ C||u||2H2(Ω)||∇φ||2L2(Ω) + C||u||2H2(Ω)||w||2L2(Ω) + C||ψ1||2L2(Ω).
(4.8)

Now, we multiply the second equation in (4.7) by φ, integrate over Ω and proceed
as usual to obtain:

d

dt
||φ(t)||2L2(Ω) + k||∇φ||2L2(Ω) ≤ C||θ||2H2(Ω)||∇w||2L2(Ω) (4.9)

Next, we multiply the the second equation in (4.7) by −∆φ (remember that we
are using the spectral Faedo-Galerkin method,) integrate over Ω and proceed as usual
to obtain:

d

dt
||∇φ(t)||2L2(Ω) + k||∆φ||2L2(Ω)

≤ C||u||2H2(Ω)||∇φ||2L2(Ω) + C̄||θ||2L∞(0,T ;H2(Ω))||∇w||2L2(Ω)

(4.10)

By adding (4.9) to (4.10) and to (4.8) multiplied by a constant D such that
ν0D ≥ 2C̄||θ||L∞(0,T ;h2(Ω), we obtain:

d

dt
(||w(t)||2L2(Ω) + ||φ(t)||2L2(Ω) + ||∇φ(t)||2L2(Ω))

+D̄(||∆w||2L2(Ω) + ||∇φ||2L2(Ω) + ||∆φ||2L2(Ω))
≤ F (u, θ)(||w||2L2(Ω) + ||φ||2L2(Ω) + ||∇φ||2L2(Ω) + C||ψ1||2L2(Ω),

(4.11)

where F (u, θ) = C(||u||2H2(Ω) + ||θ||2H2(Ω))). Since F (u, θ) is integrable, by using
Gronwall’s inequality in the last inequality to obtain that there is a constant C such
that

||w||L∞(0,T ;L2(Ω)) ≤ C (4.12)
||φ||L∞(0,T ;L2(Ω)) ≤ C (4.13)
|∇w||L2(0,T ;L2(Ω)) ≤ C (4.14)
||∇φ||L∞(0,T ;L2(Ω)) ≤ C (4.15)
||∆φ||L2(0,T ;L2(Ω)) ≤ C (4.16)

We proceed by trying to find higher order estimates. For this, we recall that
actually we working with the spectral approximations, and since the eigenfunctions
are invariant by powers of ∆ (up to power four because Ω is of class C4,) then ∆2φ
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belongs appropriate approximation subspace. So, we multiply the second equation in
(4.7) by ∆2φ, integrate over Ω and proceed as usual with integration by parts and
estimations to get:

d

dt
||∆φ||2L2(Ω) + k||∇∆φ||2L2(Ω)

≤ C||u||2H2(Ω)||∆φ||2L2(Ω) + C̃||θ||2L∞(0,T ;H2(Ω))||Aw||2L2(Ω),
(4.17)

where we used the fact that ||w||H2(Ω) ≤ C||Aw||L2(Ω).
To obtain higher order estimates for w we have to be a little more careful; so we

will describe it with a little more detail. We start by rewriting the first equation in
(4.7) as

wt − P (ν(θ)∆w + ν′(θ)∇θ · ∇w + ν′′(θ)∇θ φ∇u + ν′(θ)∇φ∇u + ν′(θ)φ∆u)
+P (u · ∇w + w · ∇u) = ψ1

Then, we multiply the above equation by Aw = −P∆w, and integrate the result
over Ω. Next,by using the the Helmholtz decomposition for −∆w, that is, −∆w =
Aw +∇η for a suitable η, and proceeding as usual, we obtain:

1
2

d

dt
||∇w||2L2(Ω)+ ν0||Aw||2L2(Ω) ≤ −

∫

Ω

ν(θ)∇ηAw

+
∫

Ω

ν′(θ)∇θ∇wAw +
∫

Ω

ν′′(θ)∇θ φ∇uAu

+
∫

Ω

ν′(θ)∇φ∇uAw +
∫

Ω

ν′(θ)φ∆uAw

+
∫

Ω

u · ∇wAw +
∫

Ω

w · ∇uAw

+
∫

Ω

ψ1Aw

(4.18)
Next, we will have to estimate each one of the terms to the left of the last in-

equality.

We observe that the first term to the left can be written as
∫

Ω

ν(θ)∇ηAw =
∫

Ω

∇(ν(θ)η)Aw−
∫

Ω

ν′(θ)∇θ η Aw = −
∫

Ω

ν′(θ)∇θ η Aw since Aw and ∇(ν(θ)η) are

orthogonal in (L2(Ω))N . Thus, by using interpolation, the result of Proposition 2.2
and the fact that C||n||H1(Ω) ≤ C||Aw||L2(Ω), we obtain for any ε > 0 the following:

|
∫

Ω

ν(θ)∇ηAw| ≤
∫

Ω

|ν′(θ)||∇θ| |η| |Aw|
≤ C||∇θ||L4(Ω)||η||L4(Ω)||Aw||L2(Ω)

≤ C||∇θ||L4(Ω)||η||1/4
L2(Ω)||η||

3/4
H1(Ω)||Aw||L2(Ω)

≤ C||∇θ||L4(Ω)(Cε||w||L2(Ω) + ε||Aw||L2(Ω))1/4C||Aw||3/4
L2(Ω)||Aw||L2(Ω)

≤ Cε||∇θ||L4(Ω)||w||1/4
L2(Ω)||Aw||7/4

L2(Ω) + ε||∇θ||L4(Ω)||Aw||2L2(Ω)

≤ Cε||θ||8L∞(0,T ;H2(Ω))||w||2L2(Ω) + ε||Aw||2L2(Ω) + ε||θ||L∞(0,T ;H2(Ω))||Aw||2L2(Ω).
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By using again interpolation, we obtain:

|
∫

Ω

ν′(θ)∇θ∇wAw| ≤ C

∫

Ω

|∇θ||∇w||Aw|
≤ ||∇θ||L4(Ω)||∇w||L4(Ω)||Aw||L2(Ω)

≤ ||θ||H2(Ω)||∇w||1/4
L2(Ω)||Aw||7/4

L2(Ω)

≤ Cε||θ||8L∞(0,T ;H2(Ω))||∇w||2L2(Ω) + ε||Aw||2L2(Ω).

Now,

|
∫

Ω

ν′′(θ)∇θ φ∇uAu| ≤ C

∫

Ω

|∇θ| |φ| |∇u||Au|
≤ C||∇θ||L4(Ω) ||φ||L∞(Ω) ||∇u||L4(Ω)||Au||L2(Ω)

≤ C||θ||H2(Ω) ||∆φ||L2(Ω) ||u||H2(Ω)||Au||L2(Ω)

≤ Cε||θ||2L∞(0,T ;H2(Ω))||u||2H2(Ω) ||∆φ||2L2(Ω) + ε||Au||2L2(Ω).

Next,

|
∫

Ω

ν′(θ)∇φ∇uAw| ≤ C

∫

Ω

|∇φ||∇u||Aw|
≤ C||∇φ||L4(Ω)||∇u||L4(Ω)||Aw||L2(Ω)

≤ C||∆φ||L2(Ω)||u||H2(Ω)||Aw||L2(Ω)

≤ Cε||u||2H2(Ω)||∆φ||2L2(Ω) + ε||Aw||2L2(Ω).

Also,

|
∫

Ω

ν′(θ)φ∆uAw| ≤ C

∫

Ω

|φ||∆u||Aw|
≤ C||φ||L∞(Ω)||∆u||L2(Ω)||Aw||L2(Ω)

≤ C||∆φ||L2(Ω)||u||H2(Ω)||Aw||L2(Ω)

≤ Cε||u||2H2(Ω)||∆φ||2L2(Ω) + ε||Aw||2L2(Ω).

Next,

|
∫

Ω

u · ∇wAw| ≤
∫

Ω

|u||∇w||Aw|
≤ ||u||L4(Ω)||∇w||L4(Ω)||Aw||L2(Ω)

≤ C||u||H1(Ω)||∇w||1/4
L2(Ω)||Aw||3/4

L2(Ω)||Aw||L2(Ω)

≤ Cε||u||8L∞(0,T ;H1(Ω))||∇w||2L2(Ω) + ε||Aw||2L2(Ω).

Now,

|
∫

Ω

w · ∇uAw| ≤ ||w||L4(Ω)||∇u||L4(Ω)||Aw||L2(Ω)

≤ C||∇w||L2(Ω)||u||H2(Ω)||Aw||L2(Ω)

≤ Cε||u||2H2(Ω)||∇w||2L2(Ω) + ε||Aw||2L2(Ω).

Finally,

|
∫

Ω

ψ1Aw| ≤ ||ψ1||L2(Ω)||Aw||L2(Ω) ≤ Cε||ψ1||2L2(Ω) + ε||Aw||2L2(Ω).
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Using these estimates in (4.18) and choosing ε small enough, we obtain:

d

dt
||∇w||2L2(Ω) + ν0||Aw||2L2(Ω)

≤ C||θ||8L∞(0,T ;H2(Ω))||w||2L2(Ω)

+C||θ||8L∞(0,T ;H2(Ω))||∇w||2L2(Ω)

+C||θ||2L∞(0,T ;H2(Ω))||u||2H2(Ω) ||∆φ||2L2(Ω)

+C||u||2H2(Ω)||∆φ||2L2(Ω)

+C||u||2H2(Ω)||∆φ||2L2(Ω)

+C||u||8L∞(0,T ;H1(Ω))||∇w||2L2(Ω)

+C||u||2H2(Ω)||∇w||2L2(Ω)

+C||ψ1||2L2(Ω).

Now, we multiply this last inequality by a constant D̄ such that ν0D̄ ≥ 2C̃||θ||2L∞(0,T ;H2(Ω)),
where C̃ is the constant appearing in (4.17), and add the result to (4.17); simplifying
and rearranging the resulting terms, we obtain:

d

dt

(
||∆φ||2L2(Ω) + ||∇w||2L2(Ω)

)
+ C1

(
||∇∆φ||2L2(Ω) + ||Aw||2L2(Ω)

)

≤ F1(u, θ)
(
||∆φ||2L2(Ω) + ||∇w||2L2(Ω)

)
+ F2(ψ1, θ,w)

(4.19)

where

F1(u, θ) = C[(1 + ||θ||2L∞(0,T ;H2(Ω)))||u||2H2(Ω)

+||θ||8L∞(0,T ;H2(Ω)) + ||u||8L∞(0,T ;H1(Ω))]

and

F2(ψ1, θ,w) = C||ψ1||2L2(Ω) + C||θ||8L∞(0,T ;H2(Ω))||w||2L2(Ω),

are positive integrable functions due to the properties of u ∈ Wu, θ ∈ Wθ, ψ ∈ Wc

and the estimates for w in (4.12).
With the last inequality and the help of Gronwall’s inequalities, we finally obtain

the following estimates:

||φ||L∞(0,T ;H2(Ω) ≤ C, ||φ||L2(0,T ;H3(Ω) ≤ C,
||w||L∞(0,T ;H1(Ω) ≤ C, ||w||L2(0,T ;H2(Ω) ≤ C,

Using these estimates and the second equation in (4.7), we easily get that

||wt||L2(0.,T ;L2(Ω) ≤ C

and

||φt||L∞(0.,T ;L2(Ω) ≤ C.

Thus, as mentioned before, with the previous estimates proved for the spectral
Faedo-Galerkin approximations, it is standard procedure to pass to the limit and
obtain the existence of a solution for (4.7) in Wu ×Wθ ×Wc as required (recall that
we took v̄ = −ψ1.)

The previous proof for existence of solutions w and φ corresponding to the choice
v̄ = −ψ2 holds almost without any modifications if we had taken any other v̄ ∈ Wc.
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Moreover, using the estimates proved there it is easy to see that for a fixed v̄ the
solution is unique. For future reference, let us state this as:

Lemma 4.4. Given u ∈ Wu, θ ∈ Wθ, v ∈ Wc, v̄ ∈ Wc, ψ1 ∈ L2(0, T ;H),
ψ2 ∈ Wc, ψ3 ∈ Wicu and ψ4 ∈ Wicθ, there exists an unique (w, φ) ∈ Wu×Wθ solution
of (4.7). Moreover, such solution satisfies the following estimates:

||w||L∞(0,T ;H)∩L2(0,T ;V ) + ||φ||L∞(0,T ;H1
0 (Ω))∩L2(0,T ;H2(Ω))

≤ C
(||ψ1||L2(0,T,H) + ||ψ2||L2(0,T ;L2(Ω))

+||v̄||L2(0,T ;L2(Ω)) + ||ψ3||Wicu + ||ψ4||Wicθ

)
.

(4.20)

||w||Wu + ||φ||Wθ

≤ C
(||ψ1||L2(0,T ;H) + ||ψ2||Wc

+ ||v̄||Wc
+ ||ψ3||Wicu + ||ψ4||Wicθ

)
.

(4.21)

The next result is easily proved by proceeding as in Lemma 4.2.
Lemma 4.5. The functional J : Wu×Wθ ×Wc → R is Fréchet differentiable and

its derivative is given by

DJ(u, θ, v)(w, φ, v̄) = α1(u− ud,w)ωu×(0,T )

+α2(θ − θd, φ)ωθ×(0,T ) + µ(v, v̄)Ω×(0,T ).

We will also need the following lemma associated to the last two results:
Lemma 4.6. Given u ∈ Wu, θ ∈ Wθ, there exists an unique (q, ζ) ∈ L2(0, T ; H)×

L2(0, T ; L2(Ω)) solution by transposition of the adjoint equation (4.1). That is,

(q, ψ1)Q + (ζ, ψ2)Q = −(α1(u− ud)χωu , w)− α2(θ − θd)χωθ
, φ), (4.22)

for any ψ1 ∈ L2(0, T ;H) and ψ2 ∈ Wc, with (w, φ) being the unique solution of

wt − Pdiv(ν(θ)∇w + ν′(θ)φ∇u) + P (u · ∇w + w · ∇u) = ψ1,
φt − k∆φ + u · ∇φ + w · ∇θ = ψ2,
w|t=0 = 0,
φ|t=0 = 0.

(4.23)

Proof. It is enough to observe that the linear functional G(ψ1, ψ2)defined by the
right-hand side of (4.22) satisfies

|G(ψ1, ψ2)| ≤ α1(||u||L2(0,T ;H) + ||ud||L2(0,T ;L2(ωu))||w||L2(0,T ;H)

+α2(||θ||L2(0,T ;L2(Ω) + ||θd||L2(0,T ;L2(ωθ))||φ||L2(0,T ;L2(Ω))

≤ C(||u||L2(0,T ;H) + ||ud||L2(0,T ;L2(ωu))||ψ1||L2(0,T ;H)

+C(||θ||L2(0,T ;L2(Ω) + ||θd||L2(0,T ;L2(ωθ))||ψ2||L2(0,T ;L2(Ω)),

by using estimates (4.20). Thus, Riez Theorem guarantees the existence of unique q
and ζ satisfying (4.22).

In fact, the solution obtained in the last lemma is more regular.
Lemma 4.7. Given u ∈ Wu, θ ∈ Wθ, the unique weak solution (q, ζ) of the

Lemma 4.6 is such that q ∈ L∞(0, T ; V )∩L2(0, T ; (H2(Ω))N ), ζ ∈ L∞(0, T ; L2(Ω))∩
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L2(0, T ; H1(Ω)) and satisfies the adjoint equation (4.1) in the following sense:
∫

Q

qwt +
∫

Q

∇q : (ν(θ)∇w + ν′(θ)φ∇u) +
∫

Q

q(u · ∇w + w · ∇u)

+
∫

Q

ζφt + k

∫

Q

∇ζ∇φ +
∫

Q

ζ (u · ∇φ + w · ∇θ)

= −α1

∫

Q

(u− ud)χωuw− α2

∫

Q

(θ − θd)χωθ
φ,

(4.24)

for any w ∈ L2(0, T ; V ) such that wt ∈ L2(0, T ; L2(Ω)) and w(t = 0) = 0 and any
φ ∈ L2(0, T ;H1

0 (Ω) such that φt ∈ L2(0, T ; L2(Ω), and φ(t = 0) = 0.
Proof. The proof starts by using the same spectral Faedo-Galerkin method used

in the proof of Lemma 4.3 to the form of the adjoint equations as expressed in (4.1)
to construct a suitable weak solution. As in Lemma 4.3, the local existence in time
of the approximate solutions are then consequence of standard existence results for
ordinary differential equations; then, one proceeds to finding enough estimates for
those approximate solutions to ensure that they exist globally in time and at least
a subsequence converge to a solution of the weak form of the original equations in
the required functional spaces. Again, since most of the arguments to complete the
proof are standard, in the following we just obtain the necessary estimates. To ease
the notation, since the formal computations are the same, we will obtain those es-
timates by working directly with (4.1) instead the of the associated Faedo-Galerkin
approximations.

We start as follows.
For each i = 1, . . . , N , we multiply the first equation in (4.1) by q(i) and add the

resulting equations, proceeding then as usual, to obtain for any ε > 0:

− d

dt
||q||2L2(Ω) + ν0||∇q||2L2(Ω) ≤ C||u||2H2(Ω)||q||2L2(Ω)

+C(||u||2L2(Ω) + ||ud||2L2(ωu)) + Cε||θ||2H2(Ω)||q||L2(Ω) + ε||∇ζ||2L2(Ω).
(4.25)

Now, we multiply the second equation in (4.1) by ζ, and proceed as usual to
obtain:

− d

dt
||ζ||2L2(Ω) + k||∇ζ||2L2(Ω) ≤ C||u||2H2(Ω)||∇q||2L2(Ω)

+C(||θ||2L2(Ω) + ||θd||2L2(ωu)).
(4.26)

Next, For each i = 1, . . . , N , we multiply the first in 4.1) by −(Aq)(i) (i.e, the
i-th component of −Aq, and add the resulting equations. We use the Helmholtz
decomposition to write −∆q = Aq + ∇η̄, for a suitable η̄, and then proceed as in
Lemma 4.3 to estimate the terms with this “artificial pressure” η̄ using Proposition
2.2. After some estimations and computations using interpolation to estimate all the
appearing terms, we obtain:

− d

dt
||∇q||2L2(Ω) + ν0||Aq||2L2(Ω)

≤ C(||θ||8L∞(0,T ;H2(Ω)) + ||u||8L∞(0,T ;H1(Ω)))||q||2L2(Ω)

+C(||u||2L2(Ω) + ||ud||2L2(ωu)) + C̄||θ||2L∞(0,T ;H2(Ω))||∇ζ||L2(Ω).

(4.27)

By adding (4.25) to (4.27) and to (4.26) multiplied by a constant D so large that
kD ≥ 2C̄||θ||2L∞(0,T ;H2(Ω)), where C̄ is the constant appearing in (4.27), after some
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simplification and grouping, we obtain:

− d

dt

(
||q||2L2(Ω) + ||ζ||2L2(Ω) + ||∇q||2L2(Ω)

)

+ν0||∇q||2L2(Ω) + C1||∇ζ||2L2(Ω) + ν0||Aq||2L2(Ω)

≤ Cε||θ||2H2(Ω)||q||L2(Ω) + ε||∇ζ||2L2(Ω).

+C||u||2H2(Ω)||∇q||2L2(Ω)

+C(||θ||8L∞(0,T ;H2(Ω)) + ||u||8L∞(0,T ;H1(Ω)) + ||u||2H2(Ω))||q||2L2(Ω)

+C(||u||2L2(Ω) + ||ud||2L2(ωu) + ||θ||2L2(Ω) + ||θd||2L2(ωu)).

By taking ε > 0 sufficiently small, we finally obtain:

− d

dt

(
||q||2L2(Ω) + ||ζ||2L2(Ω) + ||∇q||2L2(Ω)

)

+C2

(
||∇q||2L2(Ω) + ||∇ζ||2L2(Ω) + ||Aq||2L2(Ω)

)

≤ F3(θ,u))(||q||2L2(Ω) + ||ζ||2L2(Ω) + ||∇q||2L2(Ω)) + F3(θ,u),

where F3(θ,u)) = C(||θ||8L∞(0,T ;H2(Ω))+||θ||2H2(Ω)+||u||8L∞(0,T ;H1(Ω))+||u||2H2(Ω)) and
F4(θ,u) = C(||u||2L2(Ω) + ||ud||2L2(ωu) + ||θ||2L2(Ω) + ||θd||2L2(ωu)).

With the help of Gronwall’s inequality, we obtain for the spectral approximations
(qn, ζn) the following estimates, where C is independent of n:

||qn||L∞(0,T ;,V ) ≤ C, ||qn||L2(0,T ;,H2(Ω)) ≤ C,
||ζn||L∞(0,T ;,L2(Ω)) ≤ C, ||ζn||L2(0,T ;,H1(Ω)) ≤ C.

(4.28)

Moreover, by taking any w and φ as in the statement of the lemma, multiplying
the first equation in (4.1) by w(i), integrating over Q; taking the second equation
in (4.1) by φ, integrating over Q, by adding the corresponding results, after suitable
integrations by parts using the properties of qn, ζn w and φ, we obtain that qn and
ζn satisfy

∫

Q

qnwt +
∫

Q

∇qn : (ν(θ)∇w + ν′(θ)φ∇u) +
∫

Q

qn(u · ∇w + w · ∇u)

+
∫

Q

ζnφt + k

∫

Q

∇ζn∇φ +
∫

Q

ζn (u · ∇φ + w · ∇θ)

= −α1

∫

Q

(u− ud)χωuw− α2

∫

Q

θ − θd)χωθ
φ,

(4.29)

Now, by using (4.28) and the spectral approximations corresponding to the equa-
tions in (4.1), it is easy to obtain estimates for qn,t and ζn,t in suitable dual spaces.
Using this, (4.28) again and the Aubin-Lions lemma, we extract a subsequence of
(qn, ζn) converging in suitable topologies to (q, ζ), in such way that q and ζ) satisfy
estimates (4.28), and we can pass to the limit in (4.29) to obtain (4.24).

Next, we describe the formalism of Dubovitskii and Milyutin as applied to our
specific problem.

First of all, we associate to (u, θ, v) ∈ Wu × Wθ × Wc the cone of decreasing
directions of J as:

DC(J, (u, θ, v)) = {(w, φ, v̄) ∈ Wu ×Wθ ×Wc : ∃δ > 0 such that
J((u, θ, v) + λ(w, φ, v̄) < J((u, θ, v)) for 0 < λ ≤ δ.}
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Thus, the Fréchet differentiability of J obtained in our last lemma and the char-
acterization of the cone of decreasing directions, gives:

Lemma 4.8. The cone of decreasing directions associated to the functional J(·, ·)
at (u, θ, v) is given by

DC(J, (u, θ, v)) = {(w, φ, v̄) ∈ Wu ×Wθ ×Wc : DJ(u, θ, v)(w, φ, v̄) < 0} .

The corresponding dual cone is

[DC(J, (u, θ, v))]∗ = {f ∈ (Wu ×Wθ ×Wc)′ : ∃λ ≥ 0 such that
f(w, φ, v̄) = −λDJ(u, θ, v)(w, θ, v̄)}

Now we introduce the cone of feasible directions at (u, θ, v) ∈ Wu ×Wθ × U :

FC(Wu ×Wθ × U , (u, θ, v)) = {(w, φ, v̄) ∈ Wu ×Wθ ×Wc : ∃δ > 0
such that (u, θ, v) + λ(w, φ, v̄) ∈ Wu ×Wθ × U for 0 < λ ≤ δ} .

Since U is a convex set with nonempty interior, it is not difficult to check that
Lemma 4.9. Consider the requirement that (u, θ, v) ∈ Wu×Wθ×U , with U given

by (3.4), then its cone of feasible directions at (u, θ, v) is given by

FC(Wu ×Wθ × U , (u, θ, v)) = Wu ×Wθ × {λ(v̄ − v) : ∀λ > 0, ∀v̄ ∈ intU}

Its dual cone is given by

[FC(Wu ×Wθ × U , (u, θ, v))]∗

= {(0, 0, f) : such that f ∈ W ′
c is a support functional for U at v}

Finally, let us consider the cone of tangent directions at a (u, θ, v) ∈M, where

M = {(u, θ, v) ∈ Wu ×Wθ× : Wc : M(u, θ, v) = 0} . (4.30)

This is defined as

TC(M, (u, θ, v)) = {(w, φ, v̄) ∈ Wu ×Wθ× : Wc : ∃λn, (un, θn, vn)
for n = 1, 2, . . . , with λn → 0+, (un, θn, vn) ∈M

and limn→+∞[(un, θn, vn)− (u, θ, v)]/λn = (w, φ, v̄)}.

Since from Lemma 4.2 M is a C1-operator, in particular strictly differentiable;
Lemma 4.3 guarantees that M is also onto; thus, Lyusternik Theorem (Theorem 2.1)
gives that TC(M, (u, θ, v)) is characterized by the following:

Lemma 4.10. Let (u, θ, v) ∈ M, where M is given by (4.30). Then its cone of
tangent directions is the following vectorial subspace:

TC(M, (u, θ, v)) = {(w, φ, v̄) ∈ Wu ×Wθ× : Wc : DM((u, θ, v))(w, φ, v̄) = 0} .

As consequence, for any f belonging to the dual cone [TC(M, (u, θ, v))]∗, we have
f(w, φ, v̄) = 0 for any (w, φ, v̄) ∈ TC(M, (u, θ, v)).
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4.1. Proof of Theorem 4.1. Let (u, θ, v) be an optimal solution of Problem
3.7, which exists by Theorem 3.1. Then, by the results of the Dubovitskii-Milyutin
formalism (Girsanov [9], Flett [7],) we know that

DC(J, (u, θ, v)) ∩ FC(Wu ×Wθ × U , (u, θ, v)) ∩ TC(M, (u, θ, v)) = ∅
Follows form the Dubovitskii-Milyutin Theorem (see for instance Teorema 6.1 in

Girsanov [9]) that there are f1 ∈ [DC(J, (u, θ, v))]∗, f2 ∈ [FC(Wu×Wθ×U , (u, θ, v))]∗,
f3 ∈ [TC(M, (u, θ, v))]∗, not all null, such that there holds the Euler-Lagrange equa-
tion:

f1 + f2 + f3 = 0. (4.31)

Now, let v̄ ∈ Wc be arbitrary and consider (w, φ) ∈ Wu ×Wθ solution of

wt − Pdiv(ν(θ)∇w + ν′(θ)φ∇u) + P (u · ∇w + w · ∇u = 0,
φt − k∆φ + u · ∇φ + w · ∇θ − v̄ = 0,
w|t=0 = 0,
φ|t=0 = 0,

(4.32)

which exists due to Corollary 4.4
Thus, (w, φ, v̄) ∈ TC(M, (u, θ, v)), and by Lemma 4.10, f3(w, φ, v̄) = 0. There-

fore, for such (w, φ, v̄), the Euler-Lagrange equations implies that:

(f1 + f2)(w, φ, v̄) = 0 (4.33)

From Lemmas 4.8 and 4.9, we know that

f1(w, φ, v̄) = −λDJ(u, θ, v)(w, θ, v̄), for some λ ≥ 0;

f2(w, φ, v̄) = f(v̄), for somef ∈ W ′
c.

We remark that the above λ cannot be zero, otherwise we had f1 = 0, and from
(4.33), we concluded that f2(w, φ, v̄) = f(v̄) = 0. Since v̄ ∈ Wc was arbitrary, we had
that f = 0, and so also f2 = 0, in contradiction to Dubovistskii-Milyutin Theorem.
Thus we must have λ > 0, and without loosing generality we can take λ = 1 (just
re-scale in (4.31)

Now, (4.33), the previous characterizations and Lemma 4.5 imply that for any
v̄ ∈ Wc

f(v̄) = α1(u− ud,w)ωu×(0,T ) + α2(θ − θd, φ)ωθ×(0,T ) + µ(v, v̄)Ω×(0,T ), (4.34)

where, we recall, w and φ are the solutions of (4.32) corresponding to v̄.
Now, let (q, ζ) be the solution of the adjoint equations (4.1), which exists by

Lemma 4.6. and take ψ1 = 0 and ψ2 = −v̄ in (4.1). This implies that

(ζ, v̄)Q = −(α1(u− ud),w)ωu×(0,T ) − α2(θ − θd), φ)ωθ×(0,T ).

Substituting this last result back in (4.34) gives:

f(v̄) = −(ζ, v̄)Q + µ(v, v̄)Ω×(0,T ) = (−ζ + µv, v̄)Q.

Since f is a support functional for U , we obtain (4.2), and the proof is finished.
¤
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5. Extensions and Remarks. The problem considered in the previous sections
can be generalized in several ways. For instance, we could consider the case of localized
controls, that is, the controls act only on a small part ωc of Ω. In this case, our
problem becomes that of finding a suitable heat source v belonging to a suitable set
of admissible controls, U , in such way that the corresponding fluid velocity u and
temperature θ satisfy the following equations:





ut − div(ν(θ)∇u) + u · ∇u− αθg +∇p = h,
divu = 0,
θt − k ∆θ + u · ∇θ = f + vχωc

in (0, T )× Ω,
u = 0 , θ = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) and θ(0, x) = θ0(x) for x ∈ Ω,

(5.1)

in such way that u θ and v minimize the functional

J(u, θ, v) = (α1/2)
∫ T

0

∫

ωu

|u− ud|2dxdt + (α2/2)
∫ T

0

∫

ωθ

|θ − θd|2dxdt

+(µ/2)
∫ T

0

∫

ωc

|v|2dxdt.

(5.2)

Here χωc denotes the characteristic function of the set ωc; all the other symbols have
the same meaning as before.

For this case, we have to introduce an extra functional space for the localized
controls:

Wcl = {f ∈ L∞(0, T ; L2(ωc) : f ∈ L2(0, T ; H1
0 (ωc)). (5.3)

(Wcl, ‖ · ‖), with the norm

‖v‖Wcl
= ‖v‖L∞(0,T ;L2(ωc)) + ‖∇v‖L2(0,T ;L2(ωc)),

is a Banach spaces. Moreover, with the trivial extension as zero outside ωc, we can
consider Wcl ⊂ Wc.

In this case, the set of admissible controls will be:

Ul = {v ∈ Wcl; ‖v‖Wcl
≤ δ/2}. (5.4)

Again under hypotheses (H1)–(H10), and controls in the previous Ul, Proposition
2.3 implies that problem (1.3) admits unique strong solutions since we have that
‖h‖L∞(0,T ;L2(Ω)) ≤ δ and ‖f + vχωc‖Wc ≤ δ.

Next, the operator to be considered is

M : Wu ×Wθ ×Wcl → L2(0, T ; H)×Wc ×Wicu ×Wicθ, (5.5)

defined by

Ml(w, φ, v) = (ψ1, ψ2, ψ3, ψ4),

where (ψ1, ψ2, ψ3, ψ4) are define by




∂tw− P (div(ν(φ)∇w) + w · ∇w− αφg− h) = ψ1 in Q,
∂tφ− k∆φ + w · ∇φ− f − vχωc = ψ2 in Q,
w|t=0 − u0 = ψ3 in Ω,
φ|t=0 − θ0 = ψ4 in Ω.

(5.6)
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Then, all the previous results hold with the obvious modifications, and thus we
obtain the existence of an optimal control in this localized case, as well as optimality
conditions similar to the ones in Theorem 4.1. The modifications are just the following:
where v appears, replace it for vχωc

; the associated minimum principle is replaced by
(−ζ + µv, v̄ − v)ωc×(0,T ) ≤ 0 ∀v̄ ∈ Ul.

The same sort of results also hold for the problem of the previous sections, and
also for the previous case of localized controls if we considered other possibilities for
the functional J . For instance, this is true for

J(u, θ, v) = (α/2)
∫

ωu

|u(T )− ud(T )|2dxdt + (β/2)
∫

ωθ

|θ(T )− θd(T )|2dxdt

+(µ/2)
∫ T

0

∫

ωc

|v|2dxdt.

Also, we can replace the smallness conditions present in the definition of U by
other condition requiring smallness of final time. In fact, given R > 0, not necessarily
small, we can take the set of admissible controls as UR = {v ∈ Wc; ‖v‖Wc

≤ R}.
Then, the previous results for the associated optimal problem hold when T ≤ T∗,
where T ∗, which depends on R, ||f ||Wc

, ||h||L2(0,T ;L2(Ω)), ||u0||Wicu , ||θ0||Wicθ
) is the

time for which the solutions exist.
As for nonhomogeneous boundary conditions for the problem, the same sort of

analysis applies with the proper regularity and smallness conditions.
Concerning future investigation, probably similar results are true for boundary

controls. As for the corresponding optimal problem for weak solutions, instead of
strong ones, we do not know whether similar results hold.

As for the corresponding problems for the more general Boussinesq model, that is,
the one for which the thermal conductivity also depends on the temperature, k = k(θ),
and Dirichlet boundary conditions as in (1.3), the situation is also unclear. In fact,
for this problem, does not hold a local existence theorem for strong solutions like
Proposition 2.3. The existence results of Lorca and Boldrini, [18] and [19], require
different conditions for the external field f (they impose conditions on ft instead of on
∇f), and consequently obtain slightly different estimates. Unfortunately, in this case
we still could not find a proper functional setting for rigorous the application of the
Dubovitskii-Milyutin formalism. However, still for the general Boussinesq model with
the temperature dependent thermal conductivity, but now with Neumann boundary
conditions, the situation is hopeful. In fact, in this case, there is a existence result
for strong solutions by Climent-Ezquerra, Guillén-González and Rojas-Medar, [3], as
the one in Proposition 2.3; thus, one expects all the results of the present work to be
true. This is presently under investigation.
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[19] S.A. Lorca, J.L. Boldrini, The initial value problem for a generalized Boussinesq model, Non-

linear Analysis 36, pp. 457-480, 1999.
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