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Abstract
We introduce the notion of KKT-invexity for nonsmooth continuous-time nonlin-

ear optimization problems and prove that this notion is a necessary and sufficient
condition for global optimality of a Karush-Kuhn-Tucker point.
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1 Introduction

We regard the continuous-time nonlinear programming problem below.
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T
Minimize ¢(x) = / f(t,
0

(CNP)
subject to g(t,z(t)) <0 a.e. in [0, T,
r e X.

Here X is a nonempty open convex subset of the Banach space L [0,T], ¢ :
X > R, glt,a(t) = 1)), ft.a(t) = E@)E), 7 : X — AP[O,T] and
£ : X — A}0,7T], where L™ [0,T] denotes the space of all n-dimensional
vector valued Lebesgue measurable functions, which are essentially bounded,
defined on the compact interval [0, 7] C R, with norm || - ||« defined by

]l = pmasx esssup{fe (1), 0 <+ < T},

where for each t € [0, 7], x;(t) is the j-th component of z(¢) € R™ and A*[0, T']
denotes the space of all m-dimensional vector functions which are essentially

bounded and Lebesgue measurable, defined on [0, 7], with the norm | - ||
defined by

Iyl = max / ()l

This class of problems was introduced in 1953 by Bellman [2] in connection
with production-inventory “botleneck processes”. Optimality conditions in the
spirit of Kuhn-Tucker type for continuous nonlinear problems were first inves-
tigated by Hanson and Mond [7]. Farr and Hanson [6] obtained necessary
and sufficient optimality conditions for a more general class of continuous-
time nonlinear problems (both cost function and constraints were nonlinear).
Assuming some kind of constraint qualifications and using direct methods,
further generalizations of the theory of optimality conditions for continuous-
time nonlinear problems are to be found in Scott and Jefferson [11], Abraham
and Buie [1], Reiland and Hanson [9] and Zalmai [12], [13], [14], [15]. The de-
velopment of nonsmooth necessary optimality conditions for problem (CNP)
was given in [3]. The sufficient conditions for the nonsmooth case was given
n [10]. Related results can be found in Craven [5]. However, his arguments
are via approximation of smooth functions rather than alternative theorems.
None the above works established necessary and sufficient conditions for a
Karush-Kuhn-Tucker point be a global solution of (CNP). We observe that in
the case of mathematical programming these results was given by Martin [8].
In this work we obtain a similar result for (CNP).



2 Preliminaries

Let F be the set of all feasible solutions to Problem (CNP) (which we suppose
nonempty), i.e., F={x € X : g(t,z(t)) <0 a.e. in [0,T]}.

Let V' be an open subset of R™ containing the set {z(t) e R" : x € X, t €
[0,T]}. We assume that f and g; (the i-th component of g), 7 € I = {1,2,...,m},
are real functions defined on V' x [0,7]. The functions ¢ — f(z(t),t) and
t— g(x(t),t) are assumed to be Lebesgue measurable and integrable for all
r € X.

We assume that, given a € V, there exist an € > 0 and a positive number &
such that for all ¢ € [0,T], and for all z,y € a + B (B denotes de unit ball
of R™) we have|f(t,z) — f(t,y)| < k||z — y||. Similar hypotheses are assumed
for g;, ¢ € I. Hence, f(t,-) and g;(t,-), @ € I, are locally Lipschitz on V
throughout [0, 7).

Let z € X and h € L2 [0, T]. We denote by ¢°(x; h) and g (¢, z(t); h(t)), i € 1,
the Clarke generalized directional derivative of ¢ and ¢;, ¢ € I, at  on the
direction h, respectively. See [4] for more details.

Given x € F, we define for each ¢ € I, the sets A;(z) = {t € [0,T] : g:(x(t),t) =
0} and A(z) = Ujer Ai(x).

3 Invex characterization of KKT points

In [8] Martin introduced the notion of KKT-invexity for the mathematical
programming problems. In this section we extend this concept to the (CNP)
problem.

Definition 3.1 The problem (CNP) is called Karush-Kuhn-Tucker invex (or
KKT-invex) if there exists a functionn : V xV — R™ such that n(z(t),y(t)) €
L]0, T) and

o(x) — ¢(y) > ¢°(y;n(x,y)), (1)
—g: (ty@);n(y(t),z(t) > 0 a.e in Ai(y), i € 1. (2)

forall z,y € .

Definition 3.2 We say that a point y € F is a Karush-Kuhn-Tucker point
(or KKT point) for (CNP) if there exist \; € Ly[0,T], i € I, such that



T

S(sh) + [ X N0)aE (0 ) > 0, i € L0, ®)
Ni(t)gi(t,y(t)) =0 a.e. in [0,T], i € I, (4)
Ai(t) >0 a.e. in [0,T), i € 1. (5)

Definition 3.3 We say that the constraint g satisfies the constraint qualifi-
cation at y € F if there do not exist u; € Ly[0,T], u; > 0,1 € I, not all zero,
such that

[ ui®)g2 (e y(0); h(e)dt = 0 for all h € L2 (A(y)).
A(y)

Lemma 3.4 Lety € F and assume that g satisfies the constraint qualification
at y. If y is not a KKT point of (CNP) then there exists h € L [0,T] such
that

¢°(y; h)) <0, (6)
g (ty(t); h(t)) <0 a.e in Aj(x), i € 1. (7)

Proof. In fact, if such solution does not exist then, by the Generalized Gordan
Theorem (see [13]), there exist uy € R and w; € Lo [0,T], i € I, with uy >
0, u;(t) > 0 a.e. in A(y),i € I, not all zero, such that

uod*(yih) + [ X wilt)gg (t y(®): hD)dt = 0, Vh € LL(A(y)).

If up = 0 we have a contradiction with the constraint qualification. Hence
up > 0. Setting \; = u;/ug, ¢ € I, and defining \;(t) =0, t € [0,T]\ A, i € I,
we obtain

T

6 (1) + [ 30 N(B)g7 (. y(2): hD)dt > 0,1 € LL[0,T].

0 el

So we have

T

#(: 1)+ [ SO N(B)g: (8 y(b): h(B)dt > 0,¥h € LL[0,T]

Xi(t)gi(y(t),t) =0 a.e. in [0,T], i € I,
Ai(t) >0 ae. in [0,T], i € I.

Then y is a KKT point, which contradicts the hypothesis. The contradiction
has occurred because we suppose that does not exist h € L7 [0, T] satisfying



(6) and (7).

Theorem 3.5 We assume that g satisfies the constraint qualification at each
y € F. Then, every KKT point of (CNP) is a global minimizer if and only if
(CNP) is KK T-invex.

Proof. (Necessity) First we suppose that z,y € F and ¢(x) < ¢(y). Thence
y is not a global minimizer, and so, by hypothesis, y is not a KKT point of
(CNP). Then, by Lemma 3.4, there exists h € L7 [0, T] satisfying (6) and (7).

Set a = ¢°(y; h) and n(z(t),y(t)) = {d(x) — é(y) o~ h(t). Because of (6) we
know that {¢(x) — ¢(y)}a~! > 0. Hence

O°(ysn(z,y)) = ¢°(y; {o(x) — d(y) Yo' h) = {(x) — d(y) b ¢°(y; h),

and therefore

o (y;n(z,y)) = d(x) — d(y). (8)

Because of (7) we get
g7 (y(t), tim(a(t), (1)) ={6(x) — é(y) o g7 (y(1), £; h(1))
<0 a.e. in A;(y), i € 1.

Therefore

—g; (y(t), t;n(x(t),y(t))) = 0 ae. in Ai(y), i € I. (9)
By (8) and (9) we conclude that for ¢(z) < ¢(y) (CNP) is KKT-invex. The
cases ¢(x) > ¢(y) or x € F or y ¢ F are covered taking n = 0.

(Sufficiency) It follows from (4) that \;(t) =0, t € [0,T]\ A;(y), ¢ € I. Then
by (1), (2) and (5) we have

o(x) — o(y) — ¢°(y; (=, y)) — Z Ai(t) g (8, y(t);n(x(t),y(t)))dt > 0,
for all z € F. So
o(x) — o(y) > ¢°(y;n(z,y)) + /ZAi(t)g?(t,y(t);n(aﬁ(t%y(t)))dt-

By (3) and it follows that ¢(z) > ¢(y), Vz € F.
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