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Abstract. Let M and N be manifolds equipped with connections ΓM and
ΓN respectively and F : M → N be a smooth map. Let X be an M -valued
semimartingale and Θ be an 1-form on N . We prove the following Itô formula
in the context of Schwartz (second order) geometry,Z

Θ dΓN
F (X) =

Z
F ∗Θ dΓM

X +
1

2

Z
β∗F Θ(dX, dX)

where the integrals are in the Itô sense, and βF is the fundamental form of F .
Some applications are discussed.

1. Introduction

We recall the Itô formula for continuous semimartingales, which in the real valued
case is

(1) F (Xt) = F (X0) +
∫ t

0

F ′(X)dX +
1
2

∫ t

0

F ′′(X)d[X, X]

for X a continuous semimartingale and F a twice continuously differentiable func-
tion (see for instance Ph. Protter [11]). The equation (1) stands at the heart
of stochastic calculus. It shows that C2 functions of continuous semimartingales
are also semimartingales, and provides explicitly the Doob-Meyer decomposition of
f(X). Thus it allows calculations to be made, playing a role analogous to that of
the fundamental theorem of ordinary calculus.

The aim of this work is to extend the formula (1) to the stochastic differential
geometry context. More precisely, we prove the following geometric Itô formula.
Let M and N be manifolds endowed with connections ΓM and ΓN respectively and
F : M → N be a smooth map. Let X be an M -valued semimartingale and Θ be
an 1-form on N . Then

(2)
∫

Θ dΓN

F (X) =
∫

F ∗Θ dΓM

X +
1
2

∫
β∗F Θ(dX, dX)

where the integrals are in the Itô sense, and βF is the fundamental form of F . In the
special case that M = N = R (equipped with the usual connection) and Θ = dx,
we recovery the classical Itô formula (2).

In the literature there are two versions of (2), one of J. M. Bismut for Itô pro-
cesses (see [1] pp 407, Théorème 3.5) and another of J. R. Norris (see [10] pp 207).
Both using covariant differentials and Stratonovich to Itô conversion rules. Our
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formulation and proof are different, we write the geometric Itô formula in terms of
Itô integrals and give an intrinsic stochastic proof.

We apply the formula (2) to obtain the Bismut characterization of harmonic maps
(see [8] pp 52), a stochastic characterization of the solutions of the heat equation,
and we show that a smooth map is an harmonic Riemannian submersion if and only
if sends Brownian motions into Brownian motions (this affirmation appear without
proof in [10] pp 207).

The paper is organized as follows: In Section 2, we review some of the standard
facts on Schwartz geometry and stochastic calculus on manifolds (see for instance
M. Emery [4], [5], P. Meyer [7], [9] and L. Schwartz [13], [14]). In section 3 we prove
our principal results.

2. Schwartz Geometry and Stochastic Calculus

Throughout this paper all the geometrical objects like manifolds, maps and func-
tions will always be assumed to be smooth. As to manifolds and stochastic differ-
ential geometry, we shall use freely concepts and notations of Emery [4].

Let x be a point in a manifold M . The second order tangent space to M at x,
τxM is the vector space of all differential operators on M at x of order at most two
without a constant term. Let (U, xi) be a local coordinate system around x. Every
L ∈ τxM can be written in a unique way as

L = aiDi + aijDij

where aij = aji, Di =
∂

∂xi
and Dij =

∂

∂xi∂xj
are differential operators at x (we

shall use the convention of summing over repeated indices). The elements of τxM
are called second order tangent vectors at x, the elements of the dual vector space
τ∗xM are called second order forms at x. Every θ ∈ τ∗xM can be written in a unique
way as

θ = θid
2xi + θijdxi · dxj

where θij = θji and {d2xi, 2dxi · dxj : i ≤ j} is the dual basis of {Di, Dij : i ≤ j}.
The disjoint union τM =

⋃
x∈M τxM (respectively τ∗M =

⋃
x∈M τ∗xM) is canon-

ically endowed with a vector bundle structure over M , it is called the second order
tangent fiber bundle (respectively second order cotangent fiber bundle) of M .

The relation between second order geometry and stochastic calculus on manifolds
is based in two fundamentals observations of L. Schwartz [13]: the Itô formula
shows that M -valued semimartingales are well defined, and, secondly, means the
Itô’s differentials dXi and d[Xi, Xj ] (where (xi) is a local chart and Xi the i-th
coordinate of the M -valued semimartingale X in this chart) behave under a change
of coordinates as the coefficients of a second order tangent vector. This means that
second order forms can be integrated along semimartingales. More formally,

Definition 1. A continuous random process X on a manifold M is a semimartin-
gale if its composition f(X) with any f ∈ C∞(M) is a real valued semimartingale.

Let ΘXt ∈ τ∗Xt
M be an adapted stochastic second order form along Xt, an M -

valued semimartingale. The integral of the form Θ along X was proposed by P.
Meyer [7] (see also M. Emery [4] and [5]). Locally this integral can be describe
as: let (U, xi) be a local coordinate system in M . With respect to this chart the
second order form Θ can be written as Θx = θi(x)d2xi+θij(x)dxi ·dxj where θi and
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θij = θji are (C∞ say) functions in M . Then the integral of Θ along X is defined
by: ∫ t

0

Θ d2X =
∫ t

0

θi(Xs)dXi
s +

∫ t

0

θij(Xs)d[Xi, Xj ]s

We recall that a classical geometric connection Γ on M is equivalent to a section
of the vector bundle Hom(τM, TM) such that Γ|TM = IdTM (see for instance [7]
pp 52).

Let M be a manifold endowed with a connection Γ. Let θXt
∈ T ∗Xt

M be an
adapted stochastic 1-form along Xt, an M -valued semimartingale. The Itô integral
of the form Θ along X is defined by:

∫ t

0

Θ dΓX =
∫ t

0

Γ∗Θ d2X

where Γ∗(x) : T ∗x M → τ∗xM is the pull-back of Γ(x) (see [7], [4] and [5]).
We say that a M -valued semimartingale X is a Γ-martingale if for any 1-form

Θ the Itô integral
∫ t

0
Θ dΓX is a local martingale.

Let F : M → N be a smooth map, and L ∈ τxM . We have that F∗(x)L ∈
τF (x)N , the differential of F is given by

F∗(x)L(f) = L(f ◦ F )

where f ∈ C∞(N). A covector θ ∈ τ∗F (x)N is pulled back into F ∗(x)θ ∈ τ∗xM by

〈F ∗(x)θ, L〉 = 〈θ, F∗(x)L〉
where L ∈ τxM .

In terms of stochastic integrals the pull-back is well comported. In fact, let X
be an M -valued semimartingale and Θ ∈ τ∗F (X)N be an adapted stochastic second
order form along F (X), we have that

(3)
∫

F ∗Θ d2X =
∫

Θ d2F (X).

Let L be a smooth section of τM . The squared field operator associated to L,
denoted by QL, is the symmetric tensor given by

QL(f, g) =
1
2
(L(fg)− fL(g)− gL(f))

where f, g ∈ C∞(M). We can consider Qx : τxM → TxM ¯TxM as the linear map
defined by

Qx(L = aiDi + aijDij) = aijDi ¯Dj .

Pushing forward of second order vectors by smooth maps is related to the so called
Schwartz morphisms between second order tangent vector bundles.

Definition 2. Let M and N be manifolds and take x ∈ M and y ∈ N . A linear
map f : τxM → τyN is called a Schwartz morphism if

i) f(TxM) ⊂ TyN and
ii) for every L ∈ τxM we have that Q(fL) = (f ⊗ f)(QL).

We remark that if F : M → N is a smooth map between manifolds, then its
differential is a Schwartz morphism.
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Definition 3. Let M and N be manifolds equipped with connections ΓM and ΓN

respectively and F : M → N be a smooth map. The section αF of τ∗M ⊗ F ∗TN
is defined by

αF = ΓN ◦ F∗ − F∗ ◦ ΓM .

The fundamental form of F , βF is the unique section of (TM ¯ TM)∗ ⊗ F ∗TN
such that αF = βF ◦ Q. The map F is said to be affine if its fundamental form
vanishes i.e. βF = 0. In the case that M is a Riemannian manifold and ΓM is the
Levi-Civita connection, the tension field of F , τF : M → TN is given by

τF = trβF .

The map F is said to be harmonic if its tension field vanish i.e. τF = 0.

The following linear algebra lemma shows that βF is well defined.

Lemma 1. Let E be a vector bundle and α be a section of τ∗M ⊗ E such that
α|TM = 0. Then there exists an unique section β of (TM ¯ TM)∗ ⊗ E such that
α = β ◦Q.

Proof. Since Ker Q = TM ⊂ Ker α, the lemma follows from the first isomorphism
theorem (see [12] pp 67). ¤

Proposition 1. Let M , N and L be manifolds equipped with connections ΓM , ΓN

and ΓL respectively. Let F : M → N and G : N → L be smooth maps. Then

βG◦F = G∗ ◦ βF + βG ◦ (F∗ ⊗ F∗)

Proof. We first compute αG◦F .

αG◦F = ΓL ◦ (G ◦ F )∗ − (G ◦ F )∗ ◦ ΓM

= ΓL ◦G∗ ◦ F∗ −G∗ ◦ ΓN ◦ F∗ + G∗ ◦ ΓN ◦ F∗ −G∗ ◦ F∗ ◦ ΓM

= G∗ ◦ (ΓN ◦ F∗ − F∗ ◦ ΓM ) + (ΓL ◦G∗ −G∗ ◦ ΓN ) ◦ F∗
= G∗ ◦ αF + αG ◦ F∗

From the definition of β, using the expression for αG◦F and the fact that F∗ is a
Schwartz morphism, we have that

βG◦F ◦Q = αG◦F
= G∗ ◦ αF + αG ◦ F∗
= G∗ ◦ βF ◦Q + βG ◦Q ◦ F∗
= (G∗ ◦ βF + βG ◦ F∗ ⊗ F∗) ◦Q.

This establish the formula. ¤

3. The geometric Itô formula

We can now formulate our main result.

Theorem 1. Let M and N be manifolds equipped with connections ΓM and ΓN re-
spectively and F : M → N be a smooth map. Let X be an M -valued semimartingale
and Θ be an 1-form on N . Then

∫
Θ dΓN

F (X) =
∫

F ∗Θ dΓM

X +
1
2

∫
β∗F Θ(dX, dX)
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Proof. We calculate
∫

Θ dΓN

F (X) =
∫

(ΓN )∗Θ d2F (X)
=

∫
F ∗(ΓN )∗Θ d2X

=
∫

F ∗(ΓN )∗Θ d2X +
∫

(ΓM )∗F ∗Θ d2X − ∫
(ΓM )∗F ∗Θ d2X

=
∫

(ΓM )∗F ∗Θ d2X +
∫ (

F ∗(ΓN )∗Θ− (ΓM )∗F ∗Θ
)

d2X

=
∫

F ∗Θ dΓM

2 X +
∫

α∗F Θ d2X

=
∫

F ∗Θ dΓM

2 X + 1
2

∫
β∗F Θ(dX, dX),

where we use the formula (3) in the second line. The last equality is a consequence
of the lemma below. ¤

Lemma 2.
∫

α∗F Θ d2X = 1
2

∫
β∗F Θ(dX, dX)

Proof. By the definition of βF , we have that

1
2

∫
β∗F Θ(dX, dX) =

∫
Q∗β∗F Θ d2X =

∫
(βF ◦Q)∗Θ d2X =

∫
α∗F Θ d2X.

For the first equality see [4] Proposition 6.31. ¤

The following result is well known in the literature (see [4] pp 40 proposition
4.32, [2] pp 234 among others).

Proposition 2. Let M and N be manifolds equipped with connections ΓM and ΓN

respectively and F : M → N be a smooth map. Then F is affine if and only if, for
every ΓM -martingale X, F (X) is a ΓN -martingale.

Proof. It is clear from the theorem and the definitions. ¤

Corollary 1. Let M be a Riemannian manifold, N be a manifold endowed with a
connection ΓN and F : M → N be a smooth map. Let B be an M -valued Brownian
motion and Θ be an 1-form on N . Then

∫
Θ dΓN

F (B) =
∫

F ∗Θ dΓM

B +
1
2

∫
τ∗F Θ(B) dt

where ΓM is the Levi-Civita connection associated to the Riemannian metric.

Proof. By the definition of τF , we have that
∫

β∗F Θ(dB, dB) =
∫

trβ∗F Θ(B) dt =
∫

τ∗F Θ(B) dt.

For the first equality see [4] Proposition 5.18. The result follows from the geometric
Itô formula.

¤

Corollary 2. Let M be a Riemannian manifold, N be a manifold endowed with a
connection ΓN and F : M × [0, T ] → N be a smooth map. Let B be an M -valued
Brownian motion and Θ be an 1-form on N . Then

∫
Θ dΓN

F (B, S) =
∫

F ∗SΘ dΓM

B +
∫ (

− dFS

dt
+

1
2
τFS

)∗
Θ(B) dt

where St is the finite variation processes T −t and ΓM is the Levi-Civita connection
associated to the Riemannian metric.
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Proof. We consider in M × [0, T ] the product connection ΓN × Γ where Γ is the
standard connection of the interval [0, T ], the geometric Itô formula gives

(4)
∫

Θ dΓN

F (B, S) =
∫

F ∗Θ dΓM×Γ(B,S) +
1
2

∫
β∗F Θ(d(B,S)d(B, S)).

By the good properties of the Itô integral respect to the product connection ( see
[5] Proposition 3.15 pp 50),∫

F ∗Θ dΓM×Γ(B, S) =
∫

F (·, S)∗Θ dΓM

B +
∫

F (B, ·)∗Θ dΓS(5)

=
∫

F ∗SΘ dΓM

B −
∫

Θ(
dF

dt
(B, S)) dt.

As S is a finite variation processes an easy calculation shows that

∫
β∗F Θ(d(B, S), d(B, S)) =

∫
β∗FS

Θ(dB, dB)(6)

=
∫

τ∗FS
Θ(B) dt

Substituting (5) and (6) in (4) we conclude that∫
Θ dΓN

F (B, S) =
∫

F ∗SΘ dΓM

B +
∫ (

− dFS

dt
+

1
2
τFS

)∗
Θ(B) dt.

¤

As a direct consequence of Corollary 1, we have the following result of Bismut
(see e.g. [8] pp 54, [2] pp 224 and [4] Proposition 5.28).

Proposition 3. Let M be a Riemannian manifold, N be a manifold equipped with
a connection ΓN and F : M → N be a smooth map. Then F is harmonic if and
only if, for every M -valued Brownian motion B, F (B) is a ΓN -martingale.

Proof. Let F be harmonic and B be an M -valued Brownian motion. Let Θ be an
1-form on N . From τF = 0 and the Corollary 1, it follows that∫

Θ dΓN

F (B) =
∫

F ∗Θ dΓM

B.

Hence
∫

Θ dΓN

F (B) is a local martingale.
Conversely, if F transforms Brownian motions into ΓN -martingales, from the

Corollary 1 and the Doob-Meyer decomposition we have that τ∗F Θ = 0 for every
1-form Θ on N . We conclude that τF = 0. ¤

From the Corollary 2 and the Doob-Meyer decomposition we obtain the following
stochastic characterization of the solutions of the heat equation,

Proposition 4. Let M be a Riemannian manifold, N be a manifold endowed with
a connection ΓN and F : M × [0, T ] → N be a smooth map. Then F is solution of
the heat equation dFt

dt = 1
2τFt if and only if, for every M -valued Brownian motion

B, F (Bt, T − t) is a ΓN -martingale.

We recall that a smooth map F : M → N between Riemannian manifolds is a
Riemannian submersion if F∗(x)|(Ker F∗)⊥ is an isometry for every x ∈ M (see
[3]).
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The following proposition states that a smooth map is a harmonic Riemannian
submersion if and only if it sends Brownian motions into Brownian motions (see [10]
pp 207). Let us mention a simple consequence of this, a smooth map F : M → M
is an isometry if and only if sends Brownian motions into Brownian motions.

Proposition 5. Let M and N be Riemannian manifolds and F : M → N be a
smooth map. Then F is a harmonic Riemannian submersion if and only if, for
every M -valued Brownian motion B, F (B) is a N -valued Brownian motion.

Proof. Let F be a harmonic Riemannian submersion and B be an M -valued Brow-
nian motion, from the above proposition, we have that F (B) is a ΓN -martingale.
Let f ∈ C∞(N), we first observe that ∇(f ◦ F ) = F †(∇ f) where F † is the ad-
joint of F∗. Applying the Levy characterization of Brownian motions (see e.g. [4]
Proposition 5.18) we obtain that

[f ◦ F (B), f ◦ F (B)] = [(f ◦ F )(B), (f ◦ F )(B)] =
∫
‖∇(f ◦ F )‖2(B)dt.

On the other hand,

‖∇(f ◦ F )‖2 = ‖F †(∇f)‖2 ◦ F = ‖(∇f)‖2 ◦ F

since F † is an isometry. We conclude that

[f ◦ F (B), f ◦ F (B)] =
∫
‖(∇f)‖2(F (B))dt,

and a new application of the Levy characterization gives the result.
Conversely, if F transforms M -valued Brownian motions into N -valued Brownian

motions, from the above proposition we have that τF = 0. Let Θ = df , then∫
df dΓN

F (B) =
∫

d(f ◦ F ) dΓM

B.

From the properties of the Itô integral (see [4] Proposition 7.34) and the fact that
B and F (B) are Brownian motions,

f◦F (B)−f◦F (B0)−1
2

∫
∆Nf(F (B))dt = f◦F (B)−f◦F (B0)−1

2

∫
∆M (f◦F )(B)dt.

It follows that (∆Nf)◦F = ∆M (f ◦F ) and taking the product f = g ·h, we obtain
that

< ∇(g ◦ F ),∇(h ◦ F ) >=< ∇g,∇h > ◦F.

We conclude that F∗|(KerF∗)⊥ is an isometry, i.e. F is a Riemannian submersion.
¤

Example 1. Let F : R3 → R2 be a smooth map such that it transforms Brow-
nian motions into Brownian motions, we have that F is a harmonic Riemannian
submersion. Applying Theorem 2.1 of [15] we have that F−1(x), for x ∈ R2 are 1-
dimensional minimal submanifolds of R3, hence F−1(x)is a line. Let H be a plane
orthogonal to F−1(x), and PH be the orthogonal projector onto H. Obviously, PH

is an harmonic Riemannian submersion and F = (F |H) ◦ PH . Identifying H with
R2 we have that F |H send R2-Brownian motions into R2-Brownian motions, else
is an isometry. We obtain that

F (x1, x2, x3) = (a11x1 + a12x2 + a13x3 + b1, a21x1 + a22x2 + a23x3 + b2)

where {(a11, a12, a13), (a21, a22, a23)} is an orthonormal set.



8 PEDRO CATUOGNO

References
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