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Universidade de São Paulo, São Carlos, SP, Brazil

Abstract

In this article we prove that the Lyapunov semi-graphs associated to periodic orbits are
realizable by constructing isolating blocks Nn for periodic orbits of Morse-Smale flows. We
analyze the effects on the Betti numbers of a manifold after a round handle operation is
performed and a variety of situations are considered. Since we are concerned in showing the
existence of certain blocks we keep the complexity of the manifolds in consideration under con-
trol by considering essentially manifolds with free homology groups, in particular we consider
connected sums of tori manifolds.

Introduction

In [As] round handles were introduced and it was proved that flow manifolds admit round handle
decompositions. In [F], Franks constructed isolating blocks for non-singular Morse-Smale flows on
S3. In this same article, [F], Lyapunov graphs were introduced and in [CrRez] these graphs were
generalized to represent flows on n-manifolds using Conley homology indices, [Co]. Furthermore,
in [CrRez] a classification is obtained describing the possible homological effect on the boundary of
a manifold after attaching handles and round handles and this is coded in Lyapunov semi-graphs.
However, isolating blocks realizing these Lyapunov semi-graphs were not constructed.

In this paper, we prove the following theorem:

Theorem: Given an abstract Lyapunov semi-graph L labelled with a periodic orbit it can be realized
as a Morse-Smale flow on an isolating neighborhood which respects the homological information on
L.

An abstract Lyapunov graph (semi-graph)1 is an oriented graph (semi-graph) with no ori-
ented cycles such that each vertex v is labelled with a list of non-negative integers {h0(v) =
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1Given a finite set V we define a directed semi-graph G′ = (V ′, E′) as a pair of sets V ′ = V ∪{∞}, E′ ⊂ V ′×V ′.

As usual, we call the elements of V ′ vertices and since we regard the elements of E′ as ordered pairs, these are
called directed edges. Furthermore the edges of the form (∞, v) and (v,∞) are called semi-edges (or dangling edges
as in [Rez]). Note that whenever G′ does not contain semi-edges, G′ is a graph in the usual sense. The graphical
representation of the graph will have the semi-edges cut short.
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k0, . . . , hn(v) = kn}. Also, the labels on each edge {β0 = 1, β1, . . . , βn−2, βn−1 = 1} must be a
collection of non-negative integers satisfying the Poincaré duality (i.e. βj = βn−j−1 for all j’s) and
if n = 2i + 1 then βi must be even.

Passing through a vertex labelled with hk = 1 along the opposite orientation of the graph
corresponds to attaching a handle of index k. As for the boundary, it was classified in [CrRez]
that, keeping away from the β-invariant case which occurs in the middle dimension in an ambient
manifold of dimension zero mod 4, the attachment of a handle of index j (j = 1 . . . n− 1) can have
one of the following effects:

1. the j-th Betti number of the boundary is increased by 1 and the handle will be said of type
j-d (d standing for disconnecting);

2. the (j − 1)-th Betti number of the boundary is decreased by 1 and the handle will be said of
type (j − 1)-c (c standing for connecting).

Also, whenever the ambient dimension n = 2k + 1, k-d increases by 2 and k-c decreases by 2.
Based on Asimov’s result [As] which asserts roughly that two consecutive singularities p of

index k + 1 and q of index k with Wu(p) ∩ W s(q) = ∅ can be replaced by a round handle of
index k, it is shown in [CrRez] that a Lyapunov semi-graph with a vertex labelled with a periodic
orbit of index k is derived from a Lyapunov semi-graph consisting of two vertices labelled with
singularities of consecutive indices. Later this notion of derivation was generalized in [BeMRez] as
graph continuation. Combining the possible effects of these singularities (keeping away from the
β-invariant case) the following table was produced:

p/q k-d (k − 1)-c
(k + 1)-d (k + 1)-d; k-d (k + 1)-d; (k − 1)-c

k-c k-c; k-d k-c; (k − 1)-c

We consider the following types of periodic orbits:

Rk-disconnecting (k + 1)-d; k-d
Rk-disconnecting/connecting (k + 1)-d; (k − 1)-c

Rk-invariant k-c; k-d
Rk-connecting k-c; (k − 1)-c

This article is divided in two sections. In Section 1 we define round surgeries and present the
embeddings which will be used in our constructions. In Section 2 we prove the main theorem by
constructing blocks realizing all the possibilities in the table above.

1 Round Surgeries

The space Rn
k = S1 × Dk × Dn−k−1 or R for short is called an n-round handle of index k. Its

boundary ∂R is made up of two parts, the attaching region which is ∂AR = S1 × Sk−1 ×Dn−k−1

and the belt region which is ∂BR = S1 ×Dk × Sn−k−2 which intersect in ∂A∩BR = ∂BR∩ ∂AR =
S1 × Sk−1 × Sn−k−2.

Given an n-dimensional manifold Y n and Xn−1 a component of its boundary ∂Y , we have that
the gluing of R to Y is performed by identifying ∂AR to a correspondent diffeomorphic image of
S1×Sk−1×Dn−k−1 in Xn−1 and we refer to this operation as “adding an n-round handle of index
k to Y ”. It is essentially defined by the embedding ϕ : S1 × Sk−1 ×Dn−k−1 ↪→ X which defines
where the attaching region of R, ∂AR, will be attached to Y . This surgery changes the manifold
Y and its boundary component X.

In this work we are interested in describing the changes that occur to the collar of X in some
special situations, namely when certain controlled changes in the homology of X is required (as
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coded in the Lyapunov semi-graph). For this purpose it is enough to consider Y = X × [0, 1] and
do the handle operation in one of the components of its boundary.

Given ϕ as before, we denote X∗ = X \ ϕ(S1 × Sk−1 × int(Dn−k−1)) which is a manifold
with boundary and gluing S1 ×Dk × Sn−k−2 to X∗ by the identity diffeomorphism on ∂A∩BR =
S1 × Sk−1 × Sn−k−2 we obtain the manifold X+ = X∗ ⋃

∂A∩BR

∂BR. We call this process “round

surgery of index k on X”.
Two (n − 1)-manifolds X1 and X2 are called round cobordant if X2 is obtained from X1 by

a finite number of round surgeries defining the round cobordism Nn. We also refer to Nn as the
trace of the round surgery.

Since we will use these round surgeries to construct isolating blocks we adopt the usual notation
where X = N− which will be the exiting set of the flow defined in N after the surgery. Also N+

which is round cobordant to N− will be the entering set of the flow. In what follows we define X∗

above as N∗. Hence N− = N∗ ∪ ∂AR and N+ = N∗ ∪ ∂BR.
In the following, we will consider the restriction ϕ0 of ϕ to S1×Sk−1 in order to define several

embeddings which will be useful in the construction of isolating blocks in Section 2.

Trivial Embedding

Consider a disc Dn−1 ⊂ N−. The trivial embedding ϕ maps the attaching region S1 × Sk−1 ×
Dn−k−1 into Dn−1.

Small Handle Embedding

Consider N− = Sr1×Sr2× . . . Srt an (n−1)-dimensional torus, where k = rj for some j, n−k ≥ 3.
N− is a product of spheres with the possibility of repeating factors. Fix a factor Sk which will
be called Sk

0 , it has trivial normal bundle in N−. Let V = Sk
0 × Dn−k−1 ⊂ N− be a tubular

neighborhood of Sk
0 . Take v ∈ Dn−k−1, v 6= 0, and denote by Sk

v = Sk
0 × {v} another copy of Sk

in V . Consider the cylinder C = Sk × [0, 1] embedded in V with boundary Sk
0 ∪ Sk

v , given by the
embedding

i : Sk × [0, 1] −→ V = Sk
0 ×Dn−k−1

(x, t) 7−→ (x, tv)

Take a small disc Dn−1 ⊂ V centered in a point of Sk
v such that Dk

s = Dn−1 ∩ Sk
v is a small disk

of Sk
v . Attach a handle (small handle) D1 ×Dk ⊂ Dn−1 to C at S0 ×Dk ⊂ Dk

s (this construction
is made inside of the tubular neighborhood V ). Let W k+1 = C ∪S0×Dk (D1 ×Dk)v be the trace
of the ambient surgery, where ∂W k+1 = Sk

0 t (S1 × Sk−1)v. Hence the k-th homology class of
Sk

0 , [Sk
0 ], is represented also by the k-th homology class of S1

v × Sk−1
v , [S1 × Sk−1]v. We call the

embedding of S1 × Sk−1 in N− by ϕ0 : S1 × Sk−1 ↪→ N−. The construction can be performed
so that S1

v × Sk−1
v has trivial normal bundle. Hence, it is possible to extend ϕ0 to an embedding

ϕ : S1 × Sk−1 ×Dn−k−1 ↪→ N still inside V .

Essential Embedding

Suppose that N− is a torus that has Sk−1 as a factor. Let Sk−1
0 = {p0}×Sk−1 where p0 is a point of

the complementary factors of the torus. Take a tubular neighborhood V of Sk−1
0 , V = Sk−1

0 ×Dn−k

(suppose n − k ≥ 2) and inside it consider V1 = Sk−1
0 ×D2 ⊂ V . Let ϕ0 : S1 × Sk−1 → N− be

a embedding describing ∂V1. Since ∂V1 also has a trivial normal bundle, ϕ0 can be extended to
ϕ : S1×Sk−1×Dn−k−1 ↪→ N− which will be called an essential embedding of type 1 for the gluing
of the n dimensional round handle of index k along Sk−1.

Suppose that N− = Sk × Sn−k−1]Sk−1 × Sn−k. Let p0 ∈ Sn−k, q0 ∈ Sn−k−1 and define
Sk

0 = Sk×{q0} and Sk−1
0 = Sk−1×{p0}. Note that [Sk

0 ] is a generator of a free direct summand of
Hk(N−). Also, Sk−1

0 has trivial normal bundle in Sk−1 × Sn−k. Therefore there is an embedding
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Figure 1: Small handle embedding.

v
v

Dn−1
D1

V

Ck+1

Sk
v

Sk
v

Sk
0

W k+1

S0 ×Dk

Dk
s

Sk−1
0 ×D2 ⊂ Sk−1×Sn−k as a disk sub-bundle with boundary Sk−1

0 ×S1
0 . Choose a point A in Sk

0

and B in Sk−1
0 ×S1

0 and join them by differentiable simple path α transversal to Sk
0 and Sk−1

0 ×S1
0 .

Take a tubular neighborhood T k+1
α of this path that establishes an embedded connected sum of

Sk
0 and Sk−1

0 × S1
0 . Denote this connected sum by Sk−1

1 × S1
1 . Hence, [Sk

0 ] = [Sk−1
1 × S1

1 ] which is
the generator of the direct summand of Hk(N−) above mentioned. Let ϕ0 : S1 × Sk−1 → N− be
the embedding that defines Sk−1

1 × S1
1 which will be called an essential embedding of type 2.

Figure 2: Essential embedding of type 2.

A B

Sk
0

Sn−k−1 Dn−1
0

Sn−k Sk−1
0 ×D2

Sk−1
0

2 Construction of Isolating Blocks

In this section we want to consider the realization of isolating blocks for periodic orbits. For this
purpose we analyze the possible effects on the Betti numbers of N+ once a round handle R of
index k is attached to N−.

The non trivial homology groups of the various regions of the round handle which we will use
in our analysis are:

∗ k k − 1 1 0
H∗(∂AR) Z Z Z Z
H∗(∂BR) 0 0 Z Z

H∗(∂A∩BR) Z Z Z Z

We use the following Mayer-Vietoris sequence to compute the homology of N∗:

· · · → Hi+1(N−) → Hi(∂A∩BR) ιi−→ Hi(N∗)⊕Hi(∂AR) σi−→ Hi(N−) δi−→ Hi−1(∂A∩BR) → · · · (1)
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Once we have the computation of the homology groups of N∗ by using sequence (1), we can
consider the following Mayer-Vietoris sequence to compute the homology of N+.

· · · → Hi+1(N+) → Hi(∂A∩BR)
ηi−→ Hi(N∗)⊕Hi(∂BR)

ξi−→ Hi(N+) ∆i−−→ Hi−1(∂A∩BR) → · · · (2)

In the following subsections several realizations of Lyapunov semi-graphs for periodic orbits
will be constructed. The algebraic effects labelled on the semi-graphs were described in [CrRez].
All long exact sequence analysis will be done up to middle dimension.

2.1 Disconnecting case

In this case we will use the trivial embedding described in Section 1 to construct an isolating
block with the effect described in the Lyapunov semi-graph in Figure 3. See Figure 4 for a three-
dimensional disconnecting isolating block.

βk + 1, βk+1 + 1

βk, βk+1

Rk continues tor
?

?
βk + 1, βk+1 + 1

βk, βk+1

hk = 1 k-d

hk+1 = 1 (k + 1)-d
βk + 1, βk+1r

r

?

?

Figure 3: k-d and (k + 1)-d, or k and (k + 1)-disconnecting.

Figure 4: Disconnecting isolating block N− = T 2
1 and N+ = T 2

1 ] T 2
2 t S2.

R1
β1 = 2

β1 = 4 β1 = 0

Analyzing sequence (1) for i 6= k − 1, k, k + 1 we obtain Hi(N∗) ≈ Hi(N−).
We now consider the cases i = k − 1, k, k + 1 in sequence (1) obtaining:

0
ιk+1−−−→ Hk+1(N∗)⊕ 0

σk+1−−−→ Hk+1(N−)
δk+1−−−→

δk+1−−−→ Z ιk−→ Hk(N∗)⊕ Z σk−→ Hk(N−) δk−→
δk−→ Z

ιk−1−−−→ Hk−1(N∗)⊕ Z
σk−1−−−→ Hk−1(N−)

δk−1−−−→ 0

For i = k − 1, k or k + 1 we have that δi = 0 since any homology class of N− in these dimensions,
can be kept away from the disk Dn−1 where the trivial embedding took place. This implies that
ιj(x) = (0, x) for j = k − 1, k, k + 1. Hence, Hi(N∗) ≈ Hi(N−) for i = k − 1, k, k + 1.

We now consider sequence (2) in order to calculate the homology of N+:

0
ηk+1−−−→ Hk+1(N∗)⊕ 0

ξk+1−−−→ Hk+1(N+)
∆k+1−−−→

∆k+1−−−→ Z
ηk−→ Hk(N∗)⊕ 0

ξk−→ Hk(N+) ∆k−−→
∆k−−→ Z

ηk−1−−−→ Hk−1(N∗)⊕ 0
ξk−1−−−→ Hk−1(N+)

∆k−1−−−→ 0
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Because of the definition of ι∗ in sequence (1) we have that η∗ = 0. Hence, by exactness we
have that

Hk+1(N+) ≈ Hk+1(N∗)⊕ Z

and
Hk(N+) ≈ Hk(N∗)⊕ Z.

Therefore,
Hk+1(N+) ≈ Hk+1(N−)⊕ Z

Hk(N+) ≈ Hk(N−)⊕ Z

Hi(N+) ≈ Hi(N−), i 6= k, k + 1, i < bn− 1
2

c.

The manifold N+ = N−]
[
(Sk × Sn−k−1)](Sk+1 × Sn−k−2)

]
.

2.2 Invariant case - N− = Sk × Sn−k−1

In this case we will use the small handle embedding to construct an isolating block with the
invariant effect described in the Lyapunov semi-graph in Figure 5. See Figure 6 for a three-
dimensional invariant isolating block.

βk

βk

Rk continues tor
?

?
βk

βk

hk = 1 k-d

hk+1 = 1 k-c
βk + 1r

r

?

?

Figure 5: Invariant effect.

Figure 6: Invariant isolating block N− = N+ = ]2T 2 = T 2
1 ] T 2.

R1
β1 = 4

β1 = 4

Analyzing the Mayer Vietoris sequence (1) we have that Hi(N∗) ≈ Hi(N−) for 0 ≤ i ≤ k − 2.
Analyzing the sequence in dimension k we have:

0
δk+1−−−→ Z〈[S1

v × Sk−1
v ]〉 ιk−→ Hk(N∗)⊕ Z〈[S1

v × Sk−1
v ]〉 σk−→ Z〈[Sk]〉 δk−→

δk−→ Z〈[Sk−1
v ]〉 ιk−1−−−→ Hk−1(N∗)⊕ Z〈[Sk−1

v ]〉 σk−1−−−→ 0

Note that the connection map δk([Sk]) = [Sk ∩ ∂A∩BR] = 0. Hence, ιk−1 is an isomorphism
and Hk−1(N∗) = 0. Because of the choice of embedding the map ιk satisfies ιk(x) = (x,−x).
By exactness of the sequence Hk(N∗) ≈ Hk(N−) ≈ Z〈[Sk]〉 ≈ Z〈[S1

v × Sk
v ]〉, where the last

isomorphism is induced by the small handle embedding. Also, Hk(N∗) = 0.
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We now analyze the Mayer Vietoris sequence for N+ in (2) which reduces to:

0
ξk+1−−−→ Hk+1(N+)

∆k+1−−−→ Z〈[S1 × Sk−1
v ]〉 ηk−→

ηk−→ Z〈[Sk]〉 ⊕ 0
ξk−→ Hk(N+) ∆k−−→ Z〈[Sk−1

v ]〉 ηk−1−−−→ 0 (3)

ηk is an isomorphism because ιk is non-zero onto the first factor. Hence, we have that Hk+1(N+) =
0 and Hk(N+) = Z.

The manifold N+ in this case is diffeomorphic to Sk × Sn−k−1 and Nn is diffeomorphic to
Sk × Sn−k−1 × [0, 1].

Invariant case in the middle dimension

The analysis is slightly more delicate in the middle dimension and we illustrate it with the case
Sk−1 × Sk.

Figure 7: Middle-dimensional Case: Sk × Sk−1.

S1
v × Sk−1

v

Sk−1

{p}

{p} ×Dk−1
v

S1
v × Sk−1

v ×Dk−1
v

Sk

We glue a round handle Rk to N− = Sk−1 × Sk by using the small handle embedding. In this
case the round handle is of dimension 2k and of index k. The attaching region is ∂AR is attached
to S1

v × Sk−1
v ×Dk−1

v . We will now analyze the Mayer Vietoris sequence in (1).

0
δk+1−−−→ Z〈[S1

v × Sk−1
v ]〉 ιk−→ Hk(N∗)⊕ Z〈[S1

v × Sk−1
v ]〉 σk−→ Z〈[Sk]〉 δk−→

δk−→ Z〈[Sk−1
v ]⊕ Z〈[S1

v × Sk−2
v ]〉 ιk−1−−−→ Hk−1(N∗)⊕ Z〈[Sk−1

v ]〉 σk−1−−−→ Z〈[Sk−1]〉 δk−1−−−→
δk−1−−−→ Z〈[Sk−2

v ]〉 ιk−2−−−→ Hk−2(N∗)⊕ 0
σk−2−−−→ 0

The connection map δk−1 is an isomorphism since δk−1([Sk−1]) = [Sk−1 ∩ ∂A∩BR] = [Sk−1 ∩
S1

v × Sk−1
v × Sk−2

v ]. To see that this intersection is [Sk−2
v ], consider a tubular neighborhood

S1
v × Sk−1

v ×Dk−1
v of S1

v × Sk−1
v × Sk−2

v . Let {p} = Sk ∩ Sk−1 = (S1
v × Sk−1

v ) ∩ Sk−1. Hence, this
tubular neighborhood intersects Sk−1 in {p} × Sk−2

v . See Figure 7.
We claim that δk = 0. Consider the tubular neighborhood S1

v × Sk−1
v × Dk−1

v of ∂A∩BR. It
can be chosen so that the intersection with Sk is empty. Hence, δk([Sk]) = [Sk ∩ ∂A∩BR] = 0.
By exactness we obtain that Hk(N∗) ≈ Z〈[Sk]〉 ≈ Z〈[S1

v × Sk−1
v ]〉 where the last isomorphism is

induced by the small handle embedding.
By exactness we have that Z〈[Sk−1

v ]〉 ⊕ Z〈[S1
v × Sk−2

v ]〉 ≈ Hk−1(N∗)⊕ Z〈[Sk−1
v ]〉.
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Now consider the Mayer Vietoris sequence in (2):

0
ξk+1−−−→ Hk+1(N+)

∆k+1−−−→ Z〈[S1
v × Sk−1

v ]〉 ηk−→ Z〈[S1
v × Sk−1

v ]〉 ⊕ 0
ξk−→ Hk(N+) ∆k−−→

∆k−−→ Z〈[Sk−1]⊕ Z〈[S1
v × Sk−2

v ]〉 ηk−1−−−→ Z〈[S1
v × Sk−2

v ]⊕ Z〈[S1
v × Sk−2

v ]
ξk−1−−−→ Hk−1(N+)

∆k−1−−−→
∆k−1−−−→ Z〈[Sk−2

v ]〉 ηk−2−−−→ 0⊕ Z〈[Sk−2
v ]〉 ξk−2−−−→ Hk−2(N+)

∆k−2−−−→ 0 (4)

Note that ηk is an isomorphism, hence Hk+1(N+) = 0. Also, ηk−2 is an isomorphism, hence
Hk−2(N+) = 0. The sequence reduces to

0
ξk−→ Hk(N+) ∆k−−→ Z〈[Sk−1]〉 ⊕ Z〈[S1

v × Sk−2
v ]〉 ηk−1−−−→

ηk−1−−−→ Z〈[S1
v × Sk−2

v ]〉 ⊕ Z〈[S1
v × Sk−2

v ]〉 ξk−1−−−→ Hk−1(N+)
∆k−1−−−→ 0 (5)

The inclusion ηk−1 is defined by ηk−1((0, x)) = (x,−x). Hence, Im ∆k = ker ηk−1 ≈ Z〈[Sk−1]〉.
Hence, Hk(N+) ≈ Z〈[Sk−1]〉. By a similar argument we obtain that Hk−1(N+) ≈ Z.

The manifold N+ is diffeomorphic to Sk ×Sk−1 and Nn is diffeomorphic to Sk ×Sk−1× [0, 1].

2.3 Connecting-Disconnecting case - N− = Sn−k × Sk−1

In this case the essential embedding of type 1 described in Section 1 will be used to construct an
isolating block with the effect described in the Lyapunov semi-graph in Figure 8.

βk−1 − 1, βk+1 + 1

βk−1, βk+1

Rk continues tor
?

?
βk−1 − 1, βk+1 + 1

βk−1, βk+1

hk = 1 (k − 1)-c

hk+1 = 1 (k + 1)-d
βk−1 − 1, βk+1r

r

?

?

Figure 8: (k − 1)-c and (k + 1)-d, or (k − 1)-connecting and (k + 1)-disconnecting.

Sequence (1) reduces to

0
δk+1−−−→ Z〈[S1

0 × Sk−1
0 ]〉 ιk−→ Hk(N∗)⊕ Z〈[S1

0 × Sk−1
0 ]〉 σk−→ 0 δk−→

δk−→ Z〈[Sk−1
0 ]〉 ιk−1−−−→ Hk−1(N∗)⊕ Z〈[Sk−1

0 ]〉 σk−1−−−→ Z〈[Sk−1
0 ]〉 δk−1−−−→ 0

(6)

The essential embedding induces the isomorphism ιk−1(x) = (x,−x). Hence, Hk−1(N∗) ≈ Z〈[Sk−1
0 ]〉.

By exactness, Hk(N∗) = 0.
With the computations above we have that sequence (2) reduces to:

0
ξk+1−−−→ Hk+1(N+)

∆k+1−−−→ Z〈[S1
0 × Sk−1

0 ]〉 ηk−→ 0
ξk−→ Hk(N+) ∆k−−→

∆k−−→ Z〈[Sk−1
0 ]〉 ηk−1−−−→ Z〈[Sk−1

0 ]〉 ⊕ 0
ξk−1−−−→ Hk−1(N+)

∆k−1−−−→ 0 (7)

Hence, by exactness Hk+1(N+) ≈ Z〈[S1
0 × Sk−1

0 ]〉. Also since from our definition of ιk−1, we have
that ηk−1 is an isomorphism. Hence, Hk(N+) = Hk−1(N+) = 0.

Note that Sn−k = (S1 × Dn−k−1) ∪ (D2 × Sn−k−2). For any x ∈ Sk−1 we have, Sn−k
x =

(S1
x ×Dn−k−1

x ) ∪ (D2
x × Sn−k−2

x ). So, Sk−1 × Sn−k = Sk−1 × [(S1 ×Dn−k−1) ∪ (D2 × Sn−k−2].
Since ∂R = S1 × Sk−1 ×Dn−k−1 ∪ S1 ×Dk × Sn−k−2 by attaching ∂R to Sk−1 × Sn−k we obtain
N with N+ = (S1 ×Dk)× Sn−k−2 ∪ (D2 × Sk−1)× Sn−k−2 = Sk+1 × Sn−k−2.
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βk−1 − 1, βk − 1

βk−1, βk

Rk continues tor
?

?
βk−1 − 1, βk − 1

βk−1, βk

hk = 1 (k − 1)-c

hk+1 = 1 k-c
βk−1 − 1, βkr

r

?

?

Figure 9: (k − 1)-c and k-c, or (k − 1)-connecting and k-connecting.

Figure 10: Connecting isolating block N− = ]2T 2 t ]3T 2 and N+ = ]4T 2.

R1

β1 = 4 β1 = 6

β1 = 6

2.4 Connecting case

In this case the essential embedding of type 2 described in Section 1 will be used to construct an
isolating block with the effect described in the Lyapunov semi-graph in Figure 9. See Figure 10
for a three-dimensional connected isolating block. Let N− = Sk × Sn−k−1]Sk−1 × Sn−k and
N∗ = N− \ S1

1 × Sk−1
1 ×Dn−k−1. Since Hk+1(N−) = 0 sequence (1) reduces to

0 → Z〈[S1
1 × Sk−1

1 ]〉 ιk−→ Hk(N∗)⊕ Z〈[S1
1 × Sk−1

1 ]〉 σk−→ Z〈[Sk
0 ]〉 δk−→ Z〈[Sk−1

1 ]〉 →
ιk−1−−−→ Hk−1(N∗)⊕ Z〈[Sk−1

1 ]〉 σk−1−−−→ Z〈[Sk−1
1 ]〉 δk−1−−−→ 0 (8)

Note that Hk(∂A∩BR) ≈ Z〈[S1
1 × Sk−1

1 ]〉 is mapped isomorphically to Hk(∂AR) ≈ Z〈[S1
1 × Sk−1

1 ]〉.
Hence, Hk(N∗) ≈ Z〈[S1

1 ×Sk−1
1 ]〉 ≈ Z〈[Sk

0 ]〉 where the last isomorphism follows from our construc-
tion using the essential embedding of type 2. The sequence separates at δk and the analysis of
the short exact sequence follows trivially since the generator of Hk−1(∂A∩BR) ≈ Z〈[Sk−1

1 ]〉 maps
isomorphically to the generator of Hk−1(∂AR) ≈ Z〈[Sk−1

1 ]〉. Hence, Hk−1(N∗) ≈ Z〈[Sk−1
1 ]〉.

Now we will analyze sequence (2).

0 → Hk+1(N+) → Z〈[S1
1 × Sk−1

1 ]〉 ηk−→ Z〈[S1
1 × Sk−1

1 ]〉 ⊕ 0
ξk−→ Hk(N+) ∆k−−→

→ Z〈[Sk−1
1 ]〉 ηk−1−−−→ Z〈[Sk−1

1 ]〉 ⊕ 0
ξk−1−−−→ Hk−1(N+)

∆k−1−−−→ 0 (9)

Since ηk is an isomorphism and Hk(∂BR) = 0 we have that Hk+1(N+) = 0. Hence, the sequence
separates at ξk. Since ηk−1 is also an isomorphism we have that Hk(N+) = 0 and Hk−1(N+) = 0.

The manifold N+ is Sn−1 and this case is the inverse operation of the disconnecting case.
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