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Abstract

This paper studies semiflows on topological spaces. A concept of
chain recurrence, based on families of coverings, is introduced and
related to Morse decomposition. The chain transitive components are
studied via semigroup theory by the introduction of the shadowing
semigroups associated to a semiflow.
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1 Introduction

In this paper we study chain recurrence of semiflows on topological space.
We consider a very general situation of a discrete or continuous-time semiflow
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σt evolving on a topological space X which do not need to be a metric space
(although we assume most of the time that X a compact Hausdorff space).

Our purpose is foundational. First we develop a concept of chain (and
chain recurrence) of a semiflow by allowing jumps within open sets of families
of open coverings of X. This extends the usual concept of chains for flows
in metric spaces as well as the original definition of Conley [4] that takes the
family of all open coverings of X. We prove that our concept of chain recur-
rence yields Morse decompositions of the semiflow (see [11]), so that it has
dynamical significance. Let us mention that this general context is not vacu-
ous, since semiflows appear naturally in practice, while abstract topological
spaces arise, for instance, in compactifications of dynamical systems.

Secondly, and more relevant for us here is to study chain recurrence via
semigroup theory. The semigroup method to chain recurrence was developed
in [2] (see also [1]). It consists in replacing the jumps in the chains by con-
tinuous selfmaps of X. These maps generate semigroups under composition
(the shadowing semigroups) in such a way that the chain attainable sets
of σt are obtained by intersecting the orbits of the shadowing semigroups.
This permits to get the chain recurrent set as well as the chain transitive
components of the semiflow σt via semigroup actions.

This semigroup approach to chain recurrence was used successfully in
[2] to describe the chain transitive components for flows on certain types
of fiber bundles. There the continuous selfmaps are assumed to be local
homeomorphisms which caused a restriction to the class of topological spaces
allowed as base spaces of the fiber bundle. Although the results of [2] include
interesting base spaces like the compact differentiable manifolds they do not
include arbitrary metric spaces, not to say more general topological spaces.

Here we enhance the theory of shadowing semigroups by using families
of continuous (partially defined) maps of X. The use of maps which are not
local homeomorphisms improves substantially the applicability of the results.
This requires however the foundational work made in this paper. Application
to flows and semiflows on fiber bundles will be given in the forthcoming paper
[12].

We describe now the contents of the paper. In Section 3 we develop our
concept of chain transitivity on a topological space X. The ingredients are
a semiflow σt on X and a family O of open coverings of X, satisfying some
admissibility conditions (see Definition 3.1). Then we consider O-chains of σt

by allowing jumps within open sets belonging to the coverings U ∈ O. This
approach recovers the more common situation for flows on metric spaces if
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we take the coverings in O to be the totality of balls of a fixed radius, which
is an admissible family in our sense. Outside the scope of metric spaces,
Conley [4] considers chains on a topological space X by taking the family O
of all open coverings of X. This family is admissible too. However for our
purposes we needed to take more restricted families of coverings, specially
for the relation with the shadowing semigroups and for the applications to
semiflows on fiber bundles we have in mind.

After selecting our admissible families of coverings we derive the basic
properties of O-chains as well as their relation to Morse decomposition.
When X is compact Hausdorff, we show that the chain recurrent set and
the chain transitive components are independent of the particular admissible
family O. We show that in this general compact situation the chain tran-
sitive components are internally chain transitive, which is an extension of a
well known result for flows on metric spaces (cf. [3]). As a corollary, we get
an extension of a result presented in [6] about the internal chain transitivity
of the omega limit sets. Finally we prove the also well know theorem which
relates the chain transitive components with the finest Morse decomposition
for general semiflows on compact Hausdorff spaces.

In Section 4 we study semigroups of continuous (partially defined) maps
of X. We define the concept of control set for these semigroups and establish
their basic properties. The control sets will be used to describe the maximal
chain recurrent components of the semiflows. Most of the results in this
section are known for semigroups of local homeomorphisms. However their
proofs for continuous maps are not always straighforward since there are
subtleties to be overcome, specially when the backward orbits are involved.

Finally in Section 5 we introduce the shadowing semigroups of the semi-
flow and relate them to chain transitivity. The main result is Theorem 5.8
which shows that the chain transitive components of the semiflow are the
intersections of the control sets of the shadowing semigroups. This result
will be applied to flows on fiber bundles in the forthcoming paper [12].

2 Preliminaries

Let X paracompact topological space. A semiflow on X is a continuous map
σ : T×X → X, where T may be the set of positive integers Z+ or the set of
the positive real numbers R+, such that

(i) σ0 = idX , and
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(ii) σt+s = σt ◦ σs, for all s, t ∈ T.

As usual we write σt for the map σt : X → X defined by σt(x) = σ(t, x).
The maps σt, t ∈ T, are continuous, but we do not assume them to be
invertible.

Given a subset Y ⊂ X and t ∈ T we write Y +
t =

⋃
s≥t σs(Y ) and Y −

t =⋃
s≥t σ

−1
s (Y ). We also write Y t

+ =
⋃

0≤s≤t σs(Y ) and Y t
− =

⋃
0≤s≤t σ

−1
s (Y ). In

particular, the forward orbit of Y under the semiflow is Y +
0 and Y −

0 is the
backward orbit.

The ω-limit set of the subset Y ⊂ X is defined in the usual way as

ω(Y ) =
⋂

t∈T
cl

(
Y +

t

)
.

Also the ω∗-limit set of Y is

ω∗(Y ) =
⋂

t∈T
cl

(
Y −

t

)
.

If x ∈ X we write more simpler x+
t = {x}+

t , x−t = {x}−t , xt
+ = {x}t

+ and
xt
− = {x}t

−. A sequence Λ = (xk) in X is called x-admissible if x0 = x and
σ1(xk) = xk−1, for all k ∈ N. We define the Λ-backward orbit of x as

Λ(x) =
∞⋃

k=1

⋃

s∈[0,1]

σs(xk).

It is evident that the backward orbit of x is the union of all Λ-backward
orbits of x, where Λ is an x-admissible sequence. Given t ∈ T we write

Λ(x)t = Λ(x) ∩ x−t
and

Λ(x)t =
⋃

s∈[0,t]

σs(x
t),

where xt ∈ Λ(x) and σt(x
t) = x. The ω∗Λ-limit set of a given Λ-backward

orbit of x is defined as

ω∗Λ(x) =
⋂

t∈T
cl (Λ(x)t) .
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For semiflows the subsets ω∗ (x) and ω∗Λ (x) are in general not the same
although they coincide in case σ is a flow.

A subset Y ⊂ X is (forward) invariant if σt(Y ) = Y for all t ∈ T. The
subset is backward invariant if σ−1

t (Y ) = Y for all t ∈ T. Note that in both
case we require equalities and not just inclusions. It is clear that if Y is
backward invariant, then it is also invariant.

The concept of Morse decomposition for semiflows is analogous as for
flows (cf. [11]). Recall that a collection {M1, . . . ,Mn} of non-void, pairwise
disjoint and compact invariant subsets of X is a Morse decomposition if

(i) for all x ∈ X and all x-admissible sequence Λ one has that ω(x) and
ω∗Λ(x) belong to

⋃n
i=1Mi;

(ii) If ω(x) and ω∗Λ(x) belong to Mi, for some x-admissible sequence Λ, then
x ∈Mi;

(iii) {M1, . . . ,Mn} can be ordered in such way that, for all x ∈ X and all
x-admissible sequence Λ, there are integers i and j with i ≤ j such that
ω(x) ⊂Mi and ω∗Λ(x) ⊂Mj.

3 Chain transitivity

In the following sections, we develop a more abstract theory of chain transi-
tivity and chain recurrence than the usual ones. We construct chains based
on admissible families of open coverings of X. Among them there are the
family of all open coverings of a topological space X (as considered in [4])
and the family of open balls of a metric space.

Let U and V be open coverings of X. We say that V is a refinement of U
and write V ≤ U if for each V ∈ V , there exists U ∈ U such that V ⊂ U . This
is clearly a pre-order relation. Also we write V ≤ 1

2
U if for every V, V ′ ∈ V

with V ∩V ′ 6= ∅, there exists U ∈ U with V ∪V ′ ⊂ U . We define inductively
the relation V ≤ 1

2n U if V ≤ W and W ≤ 1
2n−1 U .

Given an open covering U of X and a compact subset K ⊂ X we write

[U , K] = {U ∈ U : K ∩ U 6= ∅}.

If N ⊂ X is open with K ⊂ N we say that U is K-subordinated to N if, for
each U ′ ∈ [U , K] we have U ′ ⊂ N .
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Now we can introduce the conditions on the families of open coverings of
X which will be used in our concept of chains of a semiflow.

Definition 3.1 Let O be a family of open coverings of X. We say that O
is admissible if

(i) for each U ∈ O there exists V ∈ O such that V ≤ 1
2
U .

(ii) Let N ⊂ X be an open set and K ⊂ N be compact. Then there exists
U ∈ O which is K-subordinated to N .

The following standard examples of admissible families of coverings show
that they appear in very general contexts.

1. Denote byO (X) the family of all open coverings ofX. IfX is Hausdorff
and paracompact then O (X) is admissible. The proof a result stated
in [8], page 170.

2. Let X be a compact Hausdorff space and denote by Of (X) the family
of all finite open coverings of X. Then Of (X) is admissible.

3. In a metric space (X, d) let Od(X) be the family whose members are
the coverings by the totality of ε-balls of X with arbitrary ε > 0.
Then Od (X) is clearly an admissible family. By the way, the notation
V ≤ 1

2
U is inspired by this case.

In [12] we construct a different admissible family of coverings of fiber
bundles which is adapted to the semiflows of endomorphisms of the fiber
bundles.

Now we can start to look at chains for semiflows, based on admissible
open coverings of the state space X.

Definition 3.2 Let φ be a semiflow on X and U and open covering of X.
Given x, y ∈ X and t ∈ T a (U , t)-chain from x to y means a sequence of
points {x = x1, . . . , xn+1 = y} ⊂ X, a sequence of times {t1, . . . , tn} ⊂ T and
a sequence of open sets {U1, . . . , Un} ⊂ U such that ti ≥ t and σti(xi), xi+1 ⊂
Ui, for all i = 1, . . . , n (cf. [4]).

6



Given a subset Y ⊂ X we write Ω(Y,U , t) for the set of all x such that
there is a (U , t)-chain from a point y ∈ Y to x. Also we put

Ω∗(x,U , t) = {y ∈ X : x ∈ Ω(y,U , t)}.

Now let O be a family of open coverings of X. Then the ΩO-limit set of
a subset Y ⊂ X is defined by

ΩO(Y ) =
⋂
{Ω(Y,U , t) : U ∈ O, t ∈ T}.

For x ∈ X we write ΩO(x) = ΩO({x}) and define the relation x ¹O y if
y ∈ ΩO(x).

The following fact is proved the same way as in [4], Chapter II, 6.1.A and
6.1.B.

Proposition 3.3 If the family O is admissible then the relation ¹O is tran-
sitive, closed and invariant by σ, i.e., we have that σt(x) ¹O σs(x) if x ¹O y,
for all s, t ∈ T. Also, for every Y ⊂ X the set ΩO(Y ) is invariant.

Define the relation x ∼O y if x ¹O y and y ¹O x. Then we say that
x ∈ X is O-chain recurrent if it is self-related under ∼O, that is x ∼O x. The
set RO of all O-chain recurrent points is called the O-chain recurrent set. It
is easy to see that the restriction of ∼O to RO is an equivalence relation.

An equivalence class of ∼O is called an O-chain transitive component. A
set Y ⊂ X is called O-chain recurrent if Y ⊂ RO and Y is called O-chain
transitive if any two points of Y are equivalent. Finally the semiflow σ is
called O-chain recurrent if X = RO and σ is called O-chain transitive if X
is O-chain transitive.

From now on we consider semiflows on a compact Hausdorff space X. In
this case we have the following characterization of the ΩO-limit sets in terms
of attractors. Recall that a subset A ⊂ X is called an attractor if there is a
neighborhood U of A such that ω(U) = A. Similarly a set R ⊂ X is called
a repeller if ω∗(V ) = R, for some neighborhood V of R.

Theorem 3.4 Let X be a compact Hausdorff space and take a closed subset
Y ⊂ X. Then ΩO(Y ) is the intersection of all attractors containing ω(Y ).

Proof: Let U ∈ O and t ∈ T. First we claim that cl(Ω(Y,U , t)+
t ) ⊂

int(Ω(Y,U , t)). In fact, take x ∈ cl(Ω(Y,U , t)+
t ) and U ∈ U with x ∈ U .
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Let y ∈ Ω(Y,U , t) and s ≥ t such that σs(y) ∈ U . Then, for each z ∈ U ,
the pair {y, z} is an (U , t)-chain from y to z and thus z ∈ Ω(Y,U , t) so that
U ⊂ Ω(Y,U , t), showing the claim.

DefiningA = ω(Ω(Y,U , t)) , we haveA ⊂ cl(Ω(Y,U , t)+
t ) ⊂ int(Ω(Y,U , t)).

Hence A is an attractor with int(Ω(Y,U , t)) as isolating neighborhood. Also
A is the largest invariant set in Ω(Y,U , t), because it is a ω-limit. Since
Ω(Y,U , t) contains ΩO(Y ), we have that A contains ΩO(Y ) and hence ω(Y ).
Therefore,

ΩO(Y ) =
⋂
U ,t

ω(Ω(Y,U , t)).

Suppose now that A is an attractor containing ω(Y ). Let N be a compact
neighborhood of A disjoint of A∗ and t be such that cl(N+

t ) ⊂ intN . Since
O is admissible, there is U ∈ O such that any set in U which meets cl(N+

t )
is contained in intN . We have that σs(Y ) ⊂ cl(N+

t ), for all s ≥ t. Then
any (U , t)-chain from Y must end in N , which implies that Ω(Y,U , t) ⊂ N .
Therefore ω(Ω(Y,U , t) ⊂ ω(N) = A and it follows that ΩO(Y ) is the inter-
section of all attractors which contains ω(Y ).

The preceding theorem shows that, when X is compact and Hausdorff,
the set ΩO(Y ) is independent of the particular admissible family O. Hence
we can drop the subscript O and write simply Ω(Y ).

Another consequence of the previous theorem is the following character-
ization of the chain recurrent set R in terms of attractors. Its proof is the
same as in [4], Chapter II, 6.2.A.

Proposition 3.5 If X is compact Hausdorff then

R =
⋂
{A ∪ A∗ : A is an attractor} .

Here A∗ = {x ∈ X : ω(x) ∩ A = ∅} is the complementary repeller.

The following result relates connected chain recurrent sets to the chain
transitive sets.

Proposition 3.6 If a set is connected and chain recurrent, then it is chain
transitive. In particular, each chain transitive component is the union of
connected components of the chain recurrent set.
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Proof: The proof is the same presented in [3], Appendix B, Proposition
B.2.21.

When X is a compact Hausdorff space, we have the useful technical tool
enabling to take (U , t) -chains with t greater than a positive fixed constant (cf.
[7]). To prove this a lemma analogous the uniform continuity of continuous
maps between compact metric spaces.

Lemma 3.7 Let X and Y be topological spaces with Y compact and let F :
X × Y → X be a continuous map. Take an open covering U ∈ O(X). Then
we can find Z ∈ O(X) satisfying the following property: For arbitrary y ∈ Y
and v, w ∈ X such that v, w ∈ Z for some Z ∈ Z, there exist U ∈ U with
F (v, y), F (w, y) ∈ U . If X is also compact, then we can take Z to be finite.

Proof: Let x ∈ X and y ∈ Y . Thus there is U(x,y) ∈ U) with F (x, y) ∈ U(x,y).
By the continuity of F , there are a neighborhood Z(x,y) ⊂ X of x and a neigh-
borhood N(x,y) ⊂ Y of y such that F (Z(x,y) ×N(x,y)) ⊂ U(x,y). We have that
the family {N(x,y) : y ∈ Y } is an open covering of Y and, since Y is compact,
there is a finite subcovering {N(x,y1), . . . , N(x,ynx )}. Defining Zx =

⋂nx

i=1 Z(x,yi),
we have, for all y ∈ Y and all v, w ∈ Zx, that there is k ∈ {1, · · · , nx}, such
that y ∈ N(x,yk). Hence F (v, y), F (w, y) ∈ U(x,yk). If X is compact, there is
a finite subcovering Z of the open covering {Zx : x ∈ X} with the stated
property.

Proposition 3.8 Consider y ∈ R, x ∈ X and T > 0. If, for every U ∈
Of (X), there is a (U , T )-chain from x to y, then there is a (U , t)-chain from
x to y, for every U ∈ Of (X) and t ∈ T.

Proof: The proof is the same presented in [3], Appendix B, page 547, Propo-
sition B.2.19, using the Lema 3.7 replacing the uniform continuity.

Definition 3.9 If A ⊂ X is an invariant set, we say that A is internally
chain recurrent if the semiflow σt restricted to A is chain recurrent. A is
internally chain transitive if σt restricted to A is chain transitive.
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In order to proceed we let K(X) be the set of all compact subsets of the
compact Hausdorff space X. Recall that the Hausdorff topology in K(X) is
generated by the sets

〈U1, . . . , Un〉 = {K ∈ K(X) : K ⊂ U1∪· · ·∪Un and K∩Ui 6= ∅, i = 1, . . . , n},

where U1, . . . , Un are open subsets of X. Given a K ∈ K(X) and a finite
open covering U ∈ Of (X), then 〈[U , K]〉 is the open neighborhood of K
associated to U . It is known that, with its Hausdorff topology, K(X) is
compact and Hausdorff (see [9], Theorem 4.9.12). We also need to consider
nets whose domain is the family Of (X), which is a directed set with respect
to the relation ≤. Since K(X) is compact, every net in K(X) has a subnet
which converges to some point of K(X).

Theorem 3.10 If X is a compact Hausdorff space then each chain transitive
component M is internally chain transitive. In particular, the chain recurrent
set R is internally chain recurrent.

Proof: Let M a chain transitive component and take x, y ∈ M . For each
U ∈ Of (X) we have a (U , 1)-chain from x to y and a (U , 1)-chain from
y to x. Write these chains as {x = x(1,U), . . . , x(mU+1,U) = y} with times
{s(1,U), . . . s(mU ,U)} contained in [1, 2], and {y = y(1,U), . . . , y(nU+1,U) = x} with
times {t(1,U), . . . , t(nU ,U)} contained in [1, 2]. We define KU = K(x,U) ∪K(y,U),
where

K(x,U) =

mU⋃
i=1

{
x(i,U), σs(i,U)

(
x(i,U)

)
, y

}

and

K(y,U) =

nU⋃
j=1

{
y(j,U), σt(j,U)

(
y(j,U)

)
, x

}
.

By Lemma 3.7, for each U ∈ Of (X), there is Z ∈ Of (X) such that, for all
t ∈ [1, 2] and v, w ∈ Z, where Z ∈ Z, there is U ∈ U with σt(v), σt(w) ∈ U .
Let V ≤ 1

4
U and Z. Since KU is a net in K(X), it has a subnet which

converges to some point K of K(X). Thus there is W ∈ Of (X) with W ≤ V
and such that KW ∈ 〈[V , K]〉. We claim that, for all z ∈ K, there are an
(U , 1)-chain in K from z to y and an (U , 1)-chain in K from y to z.

In fact, by definition of 〈[V , K]〉, for each z ∈ K there are x(i,W) ∈ KW
and V ∈ V with x(i,W) and z ∈ V . Hence we can apply the lemma below
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to construct an (U , 1)-chain in K from z to y. Analogously we obtain an
(U , 1)-chain in K from y to z. Since U ∈ Of (X) is arbitrary, we have that
K ⊂M concluding the proof.

Lemma 3.11 Let vi and vi+1 be in K and x(i,W) and x(i+1,W) be in KW .
Assume that there are V, V ′ ∈ V with x(i,W) and vi in V and x(i+1,W) and
vi+1 in V ′. Then there is U ∈ U such that σs(i,W)

(vi), σs(i,W)

(
x(i,W)

)
, x(i+1,W)

and vi+1 are in U .

Proof: To show this, first we note that, by the very definition of KW ,
there is W ∈ W such that x(i+1,W) and σs(i,W)

(
x(i,W)

) ∈ W . Furthermore

σs(i,W)

(
x(i,W)

)
and σs(i,W)

(vi) ∈ V ′′, for some V ′′ ∈ V . This concludes the
proof of the Lemma, by the choice of V and W .

As a corollary we have the following result, which is an improvement of
a result of [6].

Corollary 3.12 Let σ be a semiflow on a paracompact space X and x ∈ X
be a point with a pre-compact orbit. Then ω(x) is internally chain transitive.

Proof: After the above results the proof is the same as in [4], Chapter II,
6.1.C.

Proposition 3.13 Let M ⊂ X be a chain transitive component. Then M
is closed and invariant.

Proof: Take t ∈ T. By Proposition 3.3, we have that M is closed and
σs(M) ⊂M , for all s ∈ T. Thus we have that σs(M) ⊂ σt(M), for all s ≥ t.
Take x ∈MO and an open neighborhood N of x. Since Of (X) is admissible,
there is U ∈ Of (X) such that any set in U which contains x is contained in
N . By Theorem 3.10, M is internally chain transitive and hence there is a
(U , t)-chain in M from any point in M to x. This implies that σt(M)∩N 6= ∅.
Therefore σt(M) is dense in MO and, since X is compact, σt is a closed map
so that σt(MO) is closed. Therefore σt(M) = M .
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Now we relate Morse decompositions and chain transitivity in the com-
pact case. First let us recall that a finite collection of subsets {M1, . . . ,Mn}
defines a Morse decomposition if and only if there is a strictly increasing
sequence of attractors

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X

such that Mi = Ai ∩RAi−1
, for i = 1, . . . , n. This fact is well known for flows

and proved in [11] for semiflows on topological spaces.

Lemma 3.14 The semiflow σ is chain transitive on X if and only if the
trivial Morse decomposition is the unique one.

Proof: If σ is chain transitive on X then Ω(x) = X for all x ∈ X. By
Theorem 3.4 the intersection of all attractors which contain ω(x) is X itself.
Since all attractors are ω-limit sets and since x ∈ X is arbitrary, it follows
that the only attractor on X is the trivial one X. By the existence of the
increasing sequence mentioned above the unique Morse decomposition on X
is the trivial one {X}. Reciprocally, if the unique Morse decomposition on
X is the trivial one then the only attractor on X is X itself. By Theorem
3.4, this implies that Ω(x) = X, for all x ∈ X, and thus σ is chain transitive
on X.

Theorem 3.15 There exist the finest Morse decomposition if and only if
the number of chain transitive components is finite. In this case, the chain
transitive components are the finest Morse decomposition.

Proof: If the set of the chain transitive components is finite then it is a
Morse decomposition of σ, because the chain transitive components are pair-
wise disjoint, compact, invariant and their union contains all the ω-limit sets.
By Theorem 3.10 the restriction of the semiflow σ to some chain transitive
component is chain transitive. Hence the above lemma implies that the set
of the chain transitive components is the finest Morse decomposition of σ.
Conversely, if {M1, . . . ,Mn} is the finest Morse decomposition of σ then by
Lemma 3.14, the restriction of the semiflow σ to each Morse component
is chain transitive, which implies that such Morse components are in fact
chain transitive components. Since

⋃
x∈X ω(x) ⊂ M1 ∪ · · · ∪Mn, it follows

that M1, . . . ,Mn are the chain transitive components concluding the proof.
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4 Semigroups of continuous maps

In this section we look at actions of semigroups of continuous maps of a
topological space in a very general setting. The concepts and results stated
here are on the basis of the later developments.

Definition 4.1 Let X be a topological space. A local semigroup on X is a
family S of continuous maps φ : domφ → X, with domφ ⊂ X an open set,
such that if φ, ψ ∈ S and φ−1 (domψ) 6= ∅ then the composition

ψ ◦ φ : φ−1 (domψ) → X

also belongs to S.

We denote by Cl(X) the full local semigroup of X, that is, the set of
all continuous maps φ : domφ → X defined on open subsets of X. A local
semigroups S acts on X by evaluation of maps. For x ∈ X we define its orbit
by

Sx = {φx : φ ∈ S, x ∈ domφ}
and the backward orbit by

S∗x = {y : ∃φ ∈ S, φ(y) = x} =
⋃

φ∈S

φ−1{x}.

Associated to a local semigroup S there is a transitive relation ¹ defined
by x ¹ y if and only if y ∈ Sx or, equivalently, if and only if x ∈ S∗y.
Symmetrizing ¹ we obtain a new relation ∼defined by x ∼ y if and only if
x ¹ y and y ¹ x. This relation is symmetric and transitive but may fail to
be reflexive. We also denote these relations by ¹S and ∼S, respectively if
the semigroup S must be emphasized.

Let [x] = {y ∈ X : y ∼ x} be the class of x. It is easy to see that [x] 6= ∅
if and only if x ∼ x. Also, two classes are disjoint or equal but

⋃
x∈X [x] may

be different of X. Put X∼ = {x ∈ X : x ∼ x}. Then

X∼ =
⋃

x∈X∼

[x] =
⋃
x∈X

[x]

and the restriction of ∼ to X∼ is a truly equivalence relation. Of course, if
S is a monoid, that is, S contains the identity map then X∼ = X. In the
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sequel we endow the set classes of ∼ with the transitive relation [x] ¹ [y] if
and only if x ¹ y (this relation is obviously well defined). Finally we note
that, by the very definition [x] = Sx ∩ S∗x for all x ∈ X.

The above comments are purely set theoretic. We introduce now a weaker
relation by putting x ¹w y if and only if y ∈ cl (Sx) and a stronger one by
putting x ¹s y if and only if x ∈ int(S∗y). The transitivity of the relations
¹w and ¹s will follow from the following easy facts about invariant sets:

For a subset A ⊂ X we put

SA =
⋃
x∈A

Sx S∗A =
⋃
x∈A

S∗x.

The set A is S-invariant if SA ⊂ A and backward (or S∗-) invariant if
S∗A ⊂ A.

Lemma 4.2 Let A ⊂ X.

1. Suppose that SA ⊂ cl (A). Then cl (A) is S-invariant. In particular, if
A is S-invariant then cl (A) is also S-invariant.

2. Suppose that S∗A ⊂ intA. Then intA is S∗-invariant. In particular, if
A is S∗-invariant then intA is also S∗-invariant.

3. The relations ¹w and ¹s are transitive.

Proof: 1) Let C be a closed set containing A. Then A ⊂ φ−1 (cl (A)) ⊂
φ−1 (C) for every φ ∈ S. It follows that cl (A) ⊂ φ−1 (C) , and hence that
φ (cl (A)) ⊂ C. Since C is arbitrary we have φ (cl (A)) ⊂ cl (A).

2) For every φ ∈ S we have that φ−1(intA) ⊂ φ−1 (A) ⊂ intA. Since φ is
continuous, we have that φ−1(intA) is open and thus it is contained in intA.

3) The third statement follows immediately from the first and the second.

Analogous to ∼ we write x ∼w y if and only if x ¹w y and y ¹w x and
x ∼s y if and only if x ¹s y and y ¹s x for the symmetrizations of ¹w and
¹s. We denote by [x]w be the ∼w class of x and by [x]s be the ∼s class of x.

Let X∼w = {x ∈ X : [x]w 6= ∅} and X∼s = {x ∈ X : [x]s 6= ∅} are
equivalence relations. Then the restriction of ∼w to X∼w is an equivalence
relation as well as the restriction of ∼s to X∼s .
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It is easy to see that [x]s ⊂ [x] ⊂ [x]w for all x ∈ X andX∼s ⊂ X∼ ⊂ X∼w .
In general these inclusions are strict. Also, cl(Sx) = cl(Sy) if x ∼w y and
int(S∗x) = int(S∗y) if x ∼s y. In the sequel we refer to ∼w as the weak
equivalence relation and ∼s as the strong equivalence relation. We put a
superscript S if the semigroups must be emphasized.

In terms of the semigroup action the weak classes can be characterized
as follows.

Lemma 4.3 A subset A ⊂ X is a weak equivalence class [x]w if and only if
A ⊂ cl(Sy) for all y ∈ A and A is maximal with this property.

Proof: Suppose that A = [x]w then z ∈ A if and only if z ∈ cl(Sy) and
y ∈ cl(Sz) for every y ∈ [x]w. This shows that any weak equivalence class
satisfies the stated condition. Conversely, if A ⊂ cl(Sy) for all y ∈ A then A
is contained in a weak equivalence class, say A ⊂ [x]w. By maximality the
equality A = [x]w follows.

Now we introduce the notion of control set as a special type of weak
equivalence class.

Definition 4.4 A weak class D = [x]w ⊂ X is said to be a control set of S
if [x]s 6= ∅.

It is clear that, if the backward orbits of S are open sets, then ∼s is equal
to ∼ and thus every control set of S is effective. We shall check soon that if
x, y ∈ D are such that [x]s 6= ∅ and [y]s 6= ∅ then [x]s = [y]s. We call this
common strong class the transitivity set of D and denote it by D0.

Definition 4.5 A point x ∈ X is self-accessible if x ∼s x, that is if x ∈
int (S∗x).

Lemma 4.6 Let D be a control set. Then for every x ∈ D which is self-
accessible it holds

D ⊂ int (S∗x) ⊂ S∗x.

Proof: Take x ∈ D0 and y ∈ D. By the definitions

x ∈ int (S∗x) ∩ cl(Sy).
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Hence there exists φ ∈ S such that φ(y) ∈ int(S∗x). This means that
y ∈ φ−1(int(S∗x)). Since φ is continuous we get y ∈ int (S∗x).

This lemma implies immediately the following statements.

Corollary 4.7 Let D be a control set. Then

1. If x, y ∈ D and y is self-accessible then y ¹s x.

2. If x, y ∈ D and y is self-accessible then y ¹s x.

3. If x, y ∈ D are self-accessible then x ∼s y.

4. If x, y ∈ D and [x]s 6= ∅ and [y]s 6= ∅, then [x]s = [y]s. Also, transitivity
set D0 of D is given by

D0 = {x ∈ D : x is self-accessible}.

The control set and its transitivity set can be characterized by the orbit
and the backward orbit of the elements of the transitivity set.

Proposition 4.8 Let D = [x]w be a control set such that D0 = [x]s is its
transitivity set. Then we have

1. D = cl (Sx) ∩ int (S∗x) = cl (Sx) ∩ S∗x.
2. D0 = Sx ∩ int (S∗x) = Sx ∩ S∗x = [x],

Proof:

1. We have D ⊂ cl (Sx)∩ int (S∗x), by lemmas 4.3 and 4.6. On the other
hand take y ∈ cl (Sx)∩S∗x, so that x ∈ Sy ⊂ cl (Sy). But y ∈ cl (Sx),
hence x ∼w y, that is, y ∈ [x]w.

2. Let us show that [x] ⊂ D0. Take y ∈ [x] ⊂ [x]w = D and let φ ∈ S be
such that x = φ(y). We have S∗x = S∗y, so that

y ∈ φ−1 (int (S∗x)) ⊂ int (S∗x) = int (S∗y) ,

showing that y ∈ D0. Now we observe that [x] = [x]s = D0 ⊂ D ⊂
int (S∗x), by Lemma 4.6. On the other hand by definition [x] ⊂ Sx.
Conversely, Sx ∩ int (S∗x) ⊂ Sx ∩ S∗x = [x], concluding the proof.
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We prove next some further properties of the transitivity set D0 of a
control set D.

Proposition 4.9 Let D be a control set. Then

1. Let x ∈ D0 and φ ∈ S be such that φx ∈ D. Then φx ∈ D0.

2. D0 is dense in D.

Proof:

1. By assumption φx ∈ D ⊂ S∗x, and of course φx ∈ Sx. Then φx ∈
Sx ∩ S∗x = [x], which is equal to D0, by Proposition 4.8.

2. Choose x ∈ D0 so that D0 = [x] and D = cl (Sx)∩ int (S∗x). Take y ∈
D and let V be an open neighborhood of y. We have y ∈ V ∩ int (S∗x)
and since y ∈ cl (Sx), it follows that

V ∩ int (S∗x) ∩ Sx 6= ∅.

However by Proposition 4.8 we have D0 = int (S∗x) ∩ Sx. Hence any
neighborhood of y ∈ D meets D0, showing the lemma.

We conclude this general subsection by introducing the following condi-
tion on semigroups, which is used quite often in the theory.

Definition 4.10 The semigroup S is said accessible at a subset A ⊂ X if
int (Sx) 6= ∅ for all x ∈ A. It is said to be ∗-accessible at A, if int (S∗x) 6= ∅
for all x ∈ A. If A = X we say simply that S is accessible or ∗-accessible,
respectively.
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4.1 Invariant control sets

The S-invariant and the S∗-invariant control sets have special properties
which distinguish them from the other control sets. In the next few state-
ments we derive some of this property and compare the invariance of the
control set itself with the invariance of its set of transitivity.

The next proposition shows in particular that S∗-invariant control sets
are open sets.

Proposition 4.11 Let D be a control set such that D0 is S∗-invariant. Then

D = D0 = S∗x = int (S∗x) ,

for all x ∈ D0. In particular, D is S∗-invariant.

Proof: By S∗-invariance of D we get the inclusions int (S∗x) ⊂ S∗x ⊂ D0 ⊂
D. On the other hand by Corollary 4.7 (4) any x ∈ D0 is self-accessible,
hence by Lemma 4.6 we have D ⊂ int (S∗x), showing the reverse inclusions.

Proposition 4.12 Suppose that S is ∗-accessible and let D be a control set.
Then D is S∗-invariant iff D0 is S∗-invariant.

Proof: Assume that D is S∗-invariant. Let x ∈ D0, φ ∈ S and y ∈ X
be such that φ(y) = x. By S∗-invariance of D, we have that y ∈ D and
intS∗y ⊂ S∗y ⊂ D. Since S is backward accessible and D0 is dense in D,
we have that intS∗y ∩D0 6= ∅. Thus there are z ∈ D0 and ϕ ∈ S such that
y = ϕ(z). Therefore y ∈ D0, showing that D0 is S∗-invariant. The converse
follows directly from Proposition 4.11.

We look now at the S-invariant control sets.

Proposition 4.13 Let D be a control set and suppose that S is accessible.
Then the following statements are equivalent:

1. cl(Sx) = clD for all x ∈ D;

2. D is closed and S-invariant;
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3. clD is S-invariant.

Proof: The implications (2) ⇒ (3) and (3) ⇒ (1) are immediate and do
not require accessibility. Assuming (1) we have that clD is S-invariant by
Lemma 4.2. Now let y ∈ clD. By the accessibility assumption int(Sy) 6= ∅
and is contained in clD. Hence D ∩ int(Sy) 6= ∅. Take z ∈ D ∩ int(Sy).
Then Sz ⊂ Sy and since z ∈ D, we conclude that cl(Sy) = clD. Since D is
a control set Lemma 4.3 implies that D = clD, concluding the proof.

Lemma 4.14 Let D be a control set and let x ∈ D be such that cl(Sx) ∩
(clD)c 6= ∅. Then for all y ∈ D, there exists φ ∈ S such that φ(y) is not in
clD.

Proof: Since cl(Sx) meets the open set (clD)c, there exists ψ ∈ S such that
ψx is not in clD. By the continuity of ψ there exists a neighborhood V of x
such that ψ(V ) ⊂ (clD)c. But for every y ∈ D there exists η ∈ S such that
ηy ∈ V . Hence, if we take φ = ψ ◦ η ∈ S we get φ(y) outside clD, concluding
the proof.

Corollary 4.15 Suppose that Sy ⊂ clD for some y ∈ D. Then for every
x ∈ D we have Sx ⊂ clD.

Proposition 4.16 Let D be a control set and suppose that S is accessible.
Then D is S-invariant iff there exists x ∈ D such that Sx ⊂ clD.

Proof: By Corollary 4.15, if Sx ⊂ clD for some x ∈ D, then SD ⊂ clD.
Hence cl(Sy) = clD for all y ∈ D and, by Proposition 4.13, D is S-invariant.

Corollary 4.17 Let D be a control set and suppose that S is accessible. D
is S-invariant iff D0 is S-invariant.

Proof: By Proposition 4.16, if D0 is S-invariant, then D is S-invariant. Con-
versely, if D0 is S-invariant, we have, by Lemma 4.14, that D is S-invariant.
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4.2 Semigroups of local homeomorphisms

We denote by Homl(X) the local group of local homeomorphisms of X, that
is, each φ ∈ Homl (X) is a homeomorphisms φ : domφ→ imφ between open
subsets of X. For a semigroup S ⊂ Homl(X) we can define the inverse
semigroup as

S−1 = {φ−1 : φ ∈ S}
where, of course, domφ−1 = imφ and imφ−1 = domφ. Also, if S ⊂ Homl(X)
then the backward orbit S∗x, x ∈ X, is equal to S−1x. The pre-order ¹S−1

reverts the pre-order ¹S for S, hence the equivalence relations ∼S and ∼S−1

coincide and we have [x] = Sx∩S−1x. On the other hand, the weak relations
∼S

w,∼S−1
w and the strong relations ∼S

s ,∼S−1
s may be different.

Definition 4.18 A point x ∈ X is bi-self-accessible if x ∼S
s x and x ∼S−1

s x.

The set Xb of points bi-self-accessible is equal to XS
s ∩XS−1

s . If x ∈ Xb

we have that [x]Ss = [x]S
−1

s = Sx ∩ S−1x and [x]Sw is a control set for S while
[x]S

−1

w is a control set for S−1.

Proposition 4.19 Given x ∈ Xb let D = [x]Sw and C = [x]S
−1

w be the corre-
sponding control sets for S and S−1, respectively. Then we have

1. D0 = C0 = int (Sx) ∩ int (S−1x),

2. D is S−1-invariant iff D0 is S−1-invariant,

3. D is S-invariant iff C is S-invariant,

4. D is S−1-invariant iff C is S−1-invariant,

Proof:

1. By Proposition 4.8, we have

D0 = Sx ∩ int
(
S−1x

)
= Sx ∩ S−1x = S−1x ∩ int (Sx) = C0.

2. By Proposition 4.11, if D0 is S−1, then D is S−1 invariant. Conversely,
if D is S−1 invariant we have, for some x ∈ D0 = C0, that S−1x ⊂
D ⊂ clD = clC. By Proposition 4.16, applied to S−1, we have that
C is S−1-invariant. By Corollary 4.17, we have that C0 = D0 is S−1-
invariant.
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3. By Corollary 4.17, D is S-invariant iffD0 = C0 is S-invariant. Applying
the item 2) to S−1, we have that C0 is S-invariant iff C is S-invariant.

4. It follows directly from item 3) applied to S−1.

5 Shadowing semigroups

In this section we introduce the shadowing semigroups of a semiflow. They
provide a description and a full reduction of the chain recurrence and chain
transitivity in terms of the action of local semigroups of continuous maps.
The basic principle is replace the jumps of a chain by maps of a semigroup
of continuous transformations and exploit the topological advantages of this
new approach.

We begin by observing that for a semiflow σ and a given t ∈ T the family
Σt = {σs : s ≥ t} is a semigroup of continuous transformations acting on X.
In particular, we have that Σs ⊂ Σt if s ≥ t.

To construct a theory of continuous perturbations of the semiflow σ, we
are interested in the local semigroups S which contain the semigroup Σt, for
some t ∈ T and which have the good transitivity property, stated in the next
definition.

Given an open covering U of X, we define the S-neighborhood of the
identity map idX of X relative to U as

NS,U = {φ ∈ S : ∀x ∈ domφ, ∃Ux ∈ U such that x, φ(x) ∈ Ux}.

Definition 5.1 Fix a local semigroup S that contains Σt and a family O
of open coverings of X. We say that S is O-locally transitive if given a
covering U ∈ O and U ∈ U , for every x, y ∈ U there exists φ ∈ NS,U such
that φ(x) = y.

Before proceeding we note that for any topological space X the semigroup
S = Cl (X) isO-locally transitive ifO is an arbitrary family of open coverings
of X. In fact, if U ⊂ X is any open set and x, y ∈ U then the constant map
φ : U → X, φ(z) = y, z ∈ U belongs to NS,U for any open covering U
containing U .
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This example shows that the local transitivity condition is satisfied by
several semigroups, so that the perturbations of the semiflows can be done
in great generality.

Definition 5.2 Let S be a local semigroup containing Σt. For all open cov-
ering U and t ∈ T, we define the (U , t)-shadowing set in S to be

Σt,U = {φσs : φ ∈ NS,U and s ≥ t}.
The (U , t)-shadowing semigroup St,U in S is the local semigroup generated
by Σt,U .

In the sequel we consider shadowing semigroups St,U with U ranging in a
specific family O of open coverings of X. For us the relevant families are the
admissible ones (see Definition 3.1). Therefore we assume always that O is
an admissible family of open coverings of X and S is O-locally transitive.

Our first result about shadowing semigroups their orbits and backward
orbits are open sets in case S is O-locally transitive. This will be a conse-
quence of the following stronger fact.

Proposition 5.3 Let x ∈ X, t ∈ T and U ∈ O. Then Σt,Ux and Σ∗
t,Ux are

open sets. Furthermore

Σt,Ux =
⋃
{U ∈ U : U ∩ x+

t 6= ∅} (1)

and
Σ∗

t,Ux =
⋃
{σ−1

s (U) : U ∈ U , x ∈ U and s ≥ t}. (2)

Proof: Let y ∈ Σt,Ux. Then there are φ ∈ NS,U and s ≥ t such that
y = φ(σs(x)). By the definition of NS,U we can find U ∈ U such that σs(x)
and y ∈ U . This shows that the left side of the equation (1) is contained in
its right side. Conversely, let y ∈ U with U ∈ U and U ∩ x+

t 6= ∅. Hence
there is s ≥ t such that σs(x), y ∈ U . Since X is (S,O)-transitive, there
exists φ ∈ NS,U such that y = φ(σs(x)) ∈ Σt,Ux.

To prove the equation (2), take y ∈ Σ∗
t,Ux so that there are φ ∈ NS,U and

s ≥ t such that x = φ(σs(y)). By the definition of NS,U , there is U ∈ U such
that σs(y) and x ∈ U . This shows that the left hand side of the equation is
contained in its right side. Conversely, let y ∈ σ−1

s (U) with U ∈ U , s ≥ t
and x ∈ U . Since X is (S,O)-transitive, there exist φ ∈ NS,U such that
x = φ(σs(y)) which shows that y ∈∈ Σ∗

t,Ux.
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Corollary 5.4 Let x ∈ X, U ∈ O and t ∈ T. Then St,Ux and S∗t,Ux are
open sets.

Proof: Define inductively

(Σt,Ux)n =
⋃
{Σt,Uz : z ∈ (Σt,Ux)n−1}.

Clearly,

St,Ux =
∞⋃

n=1

(Σt,Ux)n

hence St,Ux is an union of open sets. For the backward orbits we proceed the
same way.

The following result provides the main link between the chains of semi-
flows and the action of the shadowing semigroups.

Proposition 5.5 Given x ∈ X, U ∈ O and t ∈ T, we have that St,Ux =
Ω(x,U , t) and S∗t,Ux = Ω∗(x,U , t).

Proof: Take y ∈ St,Ux and let ψ ∈ St,U be such that y = ψ(x). We have
ψ = ψk · · ·ψ1 with ψi ∈ Σt,U , i = 1, . . . , k. By definitions, we have that ψi =
φiσsi

, where φi ∈ NS,U and si ≥ t. Defining x1 = x and xi+1 = ψi(xi) (xi) we
have that y = xk+1 and by the definition of NS,U , there exists Ui ∈ U such
that xi+1 = ψi(xi) = φi(σsi

(xi)) and σsi
(xi) are in Ui. Thus y ∈ Ω(x,U , t).

Conversely, if y ∈ ΩO(x,U , t), there are a sequence of points {x =
x1, . . . , xn+1 = y} ⊂ X, a sequence of times {t1, · · · , tn} ⊂ T and a sequence
of open sets {U1, · · · , Un} ⊂ U such that ti ≥ t and σti(xi), xi+1 ⊂ Ui, for all
i = 1, . . . , n. Since X is (S,O)-transitive, there exist, for each i = 1, . . . , n,
φi ∈ NS,U such that φi(σti(xi)) = xi+1. By definitions, putting ψ = ψk · · ·ψ1,
where ψi = φiσsi

, we have that y = ψ(x) ∈ St,Ux.
The last assertion follows directly from the first part of the proof, since

S∗t,Ux = {y ∈ X : x ∈ S∗t,Uy}.

Lemma 5.6 Let x ∈ X, U ∈ O and t ∈ T. If V ≤ 1
2
U , then

1. cl (Ω(x,V , t)) ⊂ Ω(x,U , t) and cl (Ω∗(x,V , t)) ⊂ Ω∗(x,U , t), and
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2. cl (St,Vx) ⊂ St,Ux and cl
(
S∗t,Vx

) ⊂ S∗t,Ux.

Proof: First we observe that (2) is a direct consequence of (1) and Propo-
sition 5.5.

Let y ∈ cl (Ω(x,V , t)) and V ∈ V be a neighborhood of y. Then there
exists z ∈ V ∩ Ω(x,V , t) and a sequence of points {x = x1, . . . , xn+1 =
z} ⊂ X, a sequence of times {t1, . . . , tn} ⊂ T and a sequence of open sets
{V1, . . . , Vn} ⊂ V with ti ≥ t and σti(xi), xi+1 ⊂ Ui, for all i = 1, . . . , n. Since
V ≤ 1

2
U , there is U ∈ U such that the points σtn(xn), z = xn+1 and y belong

to U . If we put xn+1 = y we get a (U , t)-chain from x to y, which shows that
y ∈ Ω(x,U , t).

Let y ∈ cl (Ω∗(x,V , t)) and, by the Lemma 3.7, there is Z ∈ O(X) such
that, for all s ∈ [t, 2t] and v, w ∈ X, if there is Z ∈ Z with v, w ∈ Z,
then there exist V ∈ V with σs(v), σs(w) ∈ V . Now let y ∈ cl (Ω∗(x,V , t))
and Z ∈ Z be a neighborhood of y. Thus there is z ∈ Ω∗(x,V , t) and
a sequence of points {z = x1, . . . , xn+1 = x} ⊂ X, a sequence of times
{t1, . . . , tn} ⊂ T and a sequence of open sets {V1, . . . , Vn} ⊂ V such that
ti ≥ t and σti(xi), xi+1 ⊂ Ui, for all i = 1, . . . , n. There are so two possi-
bilities: either (i) t1 > 2t or (ii) t1 ∈ [t, 2t]. In the first case, there is an
(U , t)-chain from σt(z) to x and thus it remains to prove that there is an
(U , t)-chain from y to σt(z). By the choice of Z, there is V ∈ V such that
σt(y), σt(z) ∈ V which is enough, since V ≤ 1

2
U . In the second case, there is

an (U , t)-chain from x2 to x and we should prove that there is an (U , t)-chain
from y to x2. Again, by the choice of Z, there is V ∈ V with σt1(y), σt1(z) ∈ V
and, since σt1(z), x2 ∈ V1, there is U ∈ U such that σt1(y), x2 ∈ U , which
completes the proof of the Lemma.

By Corollary 5.4 the backward orbits of the shadowing semigroups are
open sets. It follows that their control set are effective. Given x ∈ X, t ∈ T
and W ∈ O we write

Dx,t,W = cl (St,Wx) ∩ S∗t,Wx.
If this set is not empty it is an effective control set of St,W .

The next fact is an immediate consequence of the Proposition 4.8 and
Lemma 5.6.

Corollary 5.7 Let x ∈ X, U ∈ O and t ∈ T. If V ≤ 1
2
U , then

cl (Dx,t,V)0 ⊂ (Dx,t,U)0 . (3)
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The following result establishes the main connection between the shad-
owing orbits and the chain sets of semiflows, providing an approach to the
latter via semigroup theory.

Theorem 5.8 Let O be an admissible family open coverings and assume
that the semiflow is contained in a O-locally transitive semigroup S. Let M
be a nonempty subset of X. Then the following condition is necessary and
sufficient for M to be a O-chain transitive component:

• For all shadowing semigroup St,U , t ∈ T and U ∈ O, there is an effective
control set DM,t,U such that M is contained in the set of transitivity
(DM,t,U)0 and

M =
⋂
U ,t

(DM,t,U)0 =
⋂
U ,t

cl (DM,t,U)0 . (4)

Proof: Let x, y ∈M and suppose that for all St,U there is DM,t,U such that
M ⊂ (DM,t,U)0. Then x, y ∈ (DM,t,U)0 and, by Propositions 5.5 and 4.8,
y ∈ St,Ux = Ω(x,U , t). Thus y ∈ ΩO(x) and M is chain transitive. To
see the maximality take z ∈ X such that z ∈ ΩO(x) and x ∈ ΩO(z) for all
x ∈ M. Then for every covering U ∈ O and t ∈ T, we have that x ∈ St,Uz
and z ∈ St,Ux, by Proposition 5.5. Hence by Proposition 4.8, z ∈ (DM,t,U)0

and thus, by equation (4) we have z ∈M, showing that M is maximal chain
transitive.

Conversely, let M be a chain transitive component. It follows by Propo-
sition 5.5 that y ∈ Ω(x,U , t) = St,Ux and x ∈ Ω(y,U , t) = St,Uy, for all
covering U ∈ O and t ∈ T. By Corollary 5.4 there exist a control set DM,t,U
of St,U , such that x and y belong to its transitivity set (DM,t,U)0. Thus

M⊂
⋂
U ,t

(DM,t,U)0 (5)

and the equality follows from the first part of the proof.
The second equality of the equation (4) follows directly by the Corollary

5.7.

As another application of the shadowing semigroup description of chains
we get the domain of attraction of a chain recurrent component M as the
intersection of the domains of attraction of the corresponding control sets.
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Recall that the O-chain domain of attraction AO (M) of an O-chain tran-
sitive component M of a semiflow on X is defined as the set of those x ∈ X
for which there exists y ∈M such that x ¹O y, i.e., y ∈ ΩO (x). The O-chain
domain of repulsion RO (M) as the as the set of those x ∈ X for which there
exists y ∈ M such that y ¹O x. Analogously, if D is an effective control
set for the semigroup S, its domain of attraction A (D) is the set of x ∈ X
such that there exists φ ∈ S with φ(x) ∈ D0, i.e., x ¹ y, for some y ∈ D0.
Its domain of repulsion R (D) is the set of those x ∈ X such that y ¹S x,
for some y ∈ D0. It is an immediate consequence of the definitions that
M = A (M) ∩R (M) and D0 = A (D) ∩R (D).

Proposition 5.9 Let the notation and assumptions be as in Theorem 5.8.
Then the domain of attraction of the chain recurrent component M is given
by

AO (M) =
⋂
U ,T

A (DM,t,U) .

Analogously, RO (M) =
⋂
U ,T

R (DM,t,U).

Proof: Take x ∈ AO (M). Then, there exists y ∈ M such that y ∈
ΩO(x,U , t) for all U ∈ O and t ∈ T. By Proposition 5.5 there exist φ ∈ St,U
such that φ (x) = y. Therefore, x ∈ A (DM,t,U) for every U ∈ O and t ∈ T and
thus x ∈ ⋂

U ,T

A (DM,t,U). For the converse, assume that x ∈ ⋂
U ,T

A (DM,t,U).

Hence, for every U ∈ O and t ∈ T, there exists φ ∈ St,U and y ∈ (DM,t,U)0

such that φ (x) = y. Taking z ∈ M ⊂ (DM,t,U)0, there is ψ ∈ such that
ψ(y) = z. Therefore φψ(x) = z and, by Proposition 5.5, z ∈ ΩO(x,U , t), for
each U ∈ O and t ∈ T and thus x ∈ AO (M).
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