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Resumen

In this paper we consider the Capital Asset Pricing Model under Elliptical (symmet-
ric) Distributions. This class of distributions, which contain the normal distribution,
t , contaminated normal and power exponential, among others, offers a more flexible
framework for modelling asset prices or returns. In order to analyze the sensibility to
possible outliers and/or atypical returns of the maximum likelihood estimators, the local
influence method was implemented. The results are illustrated by using a set of shares
from companies who trade in the Chilean Stock Market. Our main conclusion is that
symmetric distributions having heavier tails than those of the normal distribution, es-
pecially the t distribution with small degrees of freedom, show a better fit and allow the
reduction of the influence of atypical returns in the maximum likelihood estimators.
Key Words: Robust Estimation, Diagnostics, Local Influence, Elliptical Distributions.

1 Introduction

Much of the current theory of capital asset pricing is based on the assumption that excess
returns (or returns) follow a multivariate normal distribution. In effect, it is usual that the
Capital Asset Pricing Model, CAPM , and other financial models are based on the normal
distribution, as can be observed in Broquet (1992), Elton and Gruber (1995), Van Horne
(1997), Campbell et al. (1997), and Ross et al. (2001). However, it is well-known that in
practice the excess returns are not normally distributed. Most financial assets exhibit excess
kurtosis, that is, returns having distributions whose tails are heavier than those of the normal
distribution, see Fama (1965), Blattberg and Gonedes (1974), Zhou (1993), Campbell et al.
(1997) and Vorkink (2003).

In this paper we consider the Capital Asset Pricing Model under Elliptical (symmetric)
Distributions. This class of distributions, which contains the normal distribution, t , con-
taminated normal and power exponential, among others, has received greater interest in the
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literature, see Lange et al. (1989), Fang et al. (1990), Fang and Anderson (1990), Fang and
Zhang (1990) and Gupta and Varga (1993). This class of elliptical distributions offers a more
flexible framework for modelling asset prices or returns. It contains many distributions with
heavier tails than the normal distribution allowing us to model tails which are frequently
observed in financial data, especially in Latin American Markets. Results concerning the use
of elliptical distributions in the CAPM and in portfolio analysis can be found in Owen and
Rabinovitch (1983), Ingersoll (1987), Zhou (1993), and recently in Hodgson et al. (2002). In
particular, Owen and Rabinovitch (1983) and Ingersoll (1987) show the validity of CAPM
within the class of elliptical distributions.

The detection of atypical (outliers) and/or influential returns is an important stage in any
econometric analysis of financial models. This is essential in order to evaluate the sensitivity
(robustness) of the results obtained, using the set of data available, since the atypical returns
can distort the estimators, leading to, in some cases, wrong decisions. Recently, van der Hart
et al. (2003), showed that the outliers are one of the important factors in the selection of
stocks in emerging markets.

There are various alternatives for evaluating the influence of perturbations in the data and
/or in the model assumptions concerning the parameter estimators of our interest. See, for
example, Cook and Weisberg (1982), Chatterjee and Hadi (1988), Cook (1986), and Barnett
and Lewis (1994). The deletion of cases is a common diagnostic technique for evaluating the
effect of an observation in the estimation process and in hypothesis testing. This is an analy-
sis of global influence, since the effect of observation is quantified by eliminating it from the
data set. Alternatively, Cook (1986) proposes an interesting method, called local influence,
for evaluating the effect of small perturbations in the data and/or in the econometric model
assumptions concerning the maximum likelihood estimators, without eliminating the obser-
vations. This method was applied by Galea et al. (1997, 2003), Dı́az-Garcia et al. (2003)
in elliptical linear models and by Cademartori et al. (2003) in the univariate CAPM using
the t distribution. Additional results about local influence and its applications can be found
in Escobar and Meeker (1992), Zhao and Lee (1998), Galea et al. (2002), and Lesaffre and
Verbeke (1998). However, no application of local influence has been considered for the CAPM
under elliptical distributions. Thus, the main objective of this paper is to apply the approach
of local influence to the Elliptical Capital Asset Pricing Model, ECAPM . Several perturba-
tion schemes are considered such as the case perturbation and market portfolio perturbation.
With this we hope to expand the results in Cademartori et al. (2003).

The article is developed as follows. Section 2 briefly reviews CAPM under elliptical
distributions. Section 3 analyzes the local influence method to detect influential returns in
the maximum likelihood estimators. In Section 4, model curvatures are considered for different
perturbations schemes. In Section 5, the methodology is applied to a set of shares traded in
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the Santiago Stock Exchange Market. In Section 6 we conclude with some final comments.

2 The elliptical capital asset pricing model

In this section, we present some results and notations about the CAPM under elliptical dis-
tributions. For this, we consider only the class of elliptical distributions with density.

We say that a p × 1 random vector Y = (Y1, ..., Yp)
T has an elliptical distribution with

parameters µ (the location vector) and Σ (the scale matrix) of dimensions p × 1 and p × p,
respectively, with Σ > 0, if its density function is given by

fY (y) = |Σ|−1/2g[(y − µ)TΣ−1(y − µ)], y ∈ Rp, (2.1)

where the function g : R → [0,∞) is such that
∫∞

0
up−1g(u2)du < ∞. The function g is

called the density generator and is written Y ∼ Elp(µ,Σ; g) or simply Elp(µ,Σ). When
the expectation and variance exist, we have that E(Y ) = µ and Var(Y ) = cgΣ, where cg

is a positive constant. See, for example Fang et al. (1990). In the case where µ = 0 and
Σ = Ip, we obtain the spherical family of densities. This class of distributions includes
Normal (g(u) = ce−u/2), t (g(u) = c(ν, p)(1 + u/ν)−(ν+p)/2, ν > 0), Contaminated Normal
(g(u) = c{(1 − γ)e−u/2 + γ√

φ
e−u/2φ}, φ > 0, 0 ≤ γ ≤ 1), Logistic (g(u) = e−

√
u/(1 + e−

√
u)2)

and Power Exponential g(u) = c(λ)e−uλ/2, λ > 0), among other distributions.

The capital asset pricing model, CAPM , states that the share expected return is equal to
the risk free rate return plus a prize for risk. This model was independently derived by Sharpe
(1964), Lintner (1965), and Mossin (1966). Let Ri be a random variable, which denotes the
return for asset i. According to the CAPM , the expected value of Ri is given by:

E[Ri] = Rf + βi(E[Rm]−Rf ), (2.2)

where Rf is the risk free rate return, βi is the systematic risk of the asset i, and Rm is the
market return given by an index. Although criticisms exist about the CAPM (Fama and
French, 1992), and the APT has been developed as an alternative model, the CAPM contin-
ues to be used in the administration of portfolios as well as in academic research (Elsas et al.
2003; Bartholdy and Peare, 2003).

Let Y k = (Y1k, ..., Ypk)
T be the vector of excess returns for p assets (or portfolios of assets).

For these p assets, the excess returns can be described using the Excess-return Market Model
(Elton and Gruber, 1995; Campbell et al., 1997),

Yk = α + βxk + εk, (2.3)
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where xk is the time period k market portfolio excess return, β = (β1, ..., βp)
T is the p × 1

vector of betas, α = (α1, ..., αp)
T is the p × 1 vector of asset return intercepts, and εk is the

disturbances, k = 1, ..., n. The elliptical model is obtained considering

εk ∼ Elp(0,Σ; g), k = 1, ..., n, (2.4)

where Σ > 0 and the density function of Y k is given by (2.1), with µ = µk = α + βxk. This
model will be called the Elliptical Excess-return Market Model. If g(u) = ce−u/2, u ≥ 0, we
have the normal model considered by Campbell et al. (1997). Recently, Hodgson et al. (2002)
proposed a semi-parametric approach for testing the CAPM efficienty based on elliptical dis-
tributions. Here we consider influence diagnostics in the ECAPM .

The log-likelihood function that corresponds to the model (2.3)-(2.4) is given by,

`(θ) =
n∑

k=1

lk(θ), (2.5)

where lk(θ) = −1

2
log|Σ|+logg(dk), with dk = (Y k−α−βxk)

TΣ−1(Y k−α−βxk), k = 1, ..., n

and θ = (αT ,βT , v(Σ)T )T , where v(Σ) is the p(p + 1)/2 vector obtained from vec(Σ) by
deleting from it all of the elements that are above the diagonal of Σ. If g is a continuous
and decreasing function, then maximum likelihood estimators of α, β, and Σ are obtained as
solution to the equations,

α̂ = yv − β̂xv, β̂ =

∑n
k=1 v(dk)xk(yk − yv)∑n
k=1 v(dk)xk(xk − xv)

and Σ̂ =
1

n

n∑

k=1

v(dk)eke
T
k , (2.6)

where ek = yk−α̂−β̂xk, yv =
∑n

k=1 v(dk)yk/
∑n

k=1 v(dk) and xv =
∑n

k=1 v(dk)xk/
∑n

k=1 v(dk),
with v(dk) = −2Wg(dk), Wg(u) = g′(u)/g(u), u ≥ 0 and dk is as in (2.5).

Note that for the normal model v(dk) = 1, k = 1, ..., n and the maximum likelihood
estimators above correspond to the normal case. Under the elliptical model, the exact marginal
distribution of α̂, β̂, and Σ̂ are particularly difficult to obtain, but under normal distribution
the estimators of α, β, and Σ have exact marginal distributions, see Campbell et al. (1997).

3 Local influence

Let l(θ) denote the log-likelihood function from the postulated model, where θ is as in (2.5),
and let ω be an q × 1 vector of perturbations restricted to some open subset of Rq. The
perturbations are made on the log-likelihood, such that it takes the form l(θ/ω). Let ω0 the
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vector of no perturbation such that l(θ) = l(θ/ω0). The idea of the local influence method is
to investigate how much the maximum likelihood estimates are affected by the corresponding
perturbations. To asses influence of the perturbations on the maximum likelihood estimate
θ̂, we consider the likelihood displacement LD(ω) = 2[l(θ̂) − l(θ̂ω)], where θ̂ω denotes the
maximum likelihood estimates under the model l(θ | ω). The LD(ω) is useful in measuring
the distance between θ̂ and θ̂ω. Cook (1986) proposes studying the local behavior of LD(ω)
around ω0. The procedure consists in selecting a unit direction l (‖ l ‖= 1), and then to
considering the plot of LD(ω0+al) against a, where a ∈ R. This plot is called lifted line. Each
lifted line can be characterized by considering the normal curvature Cl(θ) around a = 0. The
suggestion is to consider the directions lmax corresponding to the largest curvature Clmax

(θ).
The index plot of the lmax may reveal those observations that under small perturbations exert
notable influence on LD(ω). Cook (1986) showed that the normal curvature at the direction
l takes the form

Cl(θ) = 2 | lT∆T L̈
−1

∆l |, (3.1)

where −L̈ is the observed Fisher information matrix for the postulated model (ω = ω0)
and ∆ is the p∗ × q matrix with elements ∆ij = ∂2l(θ/ω)∂θi∂ωj, evaluated at θ = θ̂ and
ω = 0, i = 1, ..., p∗; j = 1, ..., q, with p∗ = p(p + 5)/2. Therefore, the maximization of (3.1) is

equivalent to finding the largest absolute eigenvalue of the matrix B = ∆T L̈
−1

∆, and lmax

is the corresponding eigenvector. When a subset θ1 of θ = (θT
1 , θT

2 )T , is of special interest

the influence diagnostics can be based on, see Cook (1986), B = ∆T (L̈
−1 − B22)∆ where,

B22 = Diag(0, L̈
−1

22 ), and L̈22 is obtained from the partition of L̈ according to the partition
of θ.

Another important direction, according to Escobar and Meeker (1992) (see also Verbeke
and Molenberghs, 2000) is l = ekn, which corresponds to the k−th position, where there is
a one. In that case, the normal curvature, called the total local influence of individual k, is
given by Ck = 2|eT

knBekn| = 2|bkk|, where bkk is the k−th element diagonal of B, k = 1, ..., n.
Verbeke and Molenberghs (2000) consider the k−th observation influential if Ck is larger than

the cutoff value 2
n∑

k=1

Ck/n. We use lmax and Ck as diagnostics for local influence.

4 Curvature derivative for ECAPM

In this section we present the observed information matrix and the ∆ matrix for different
perturbation approaches.
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4.1 The observed information matrix

The observed information matrix is given by −L̈, where L̈ = [(Lγτ )], γ, τ = α,β, v(Σ) with

Lγτ =
n∑

k=1

∂2lk(θ)

∂γ∂τ T
, (4.1)

lk(θ) is given by (2.5) and, see Appendix,

∂2lk(θ)

∂α∂αT
= 2Wg(dk)Σ

−1 + 4W ′
g(dk)Σ

−1εkε
T
k Σ−1,

∂2lk(θ)

∂α∂βT
= 2xk

∂2lk(θ)

∂α∂αT
, (4.2)

∂2lk(θ)

∂β∂βT
= x2

k

∂2lk(θ)

∂α∂αT
,

∂2lk(θ)

∂v(Σ)∂βT
= xk

∂2lk(θ)

∂v(Σ)∂αT
, (4.3)

∂2lk(θ)

∂v(Σ)∂αT
= 4DT

p (Wg(dk)(Σ
−1 ⊗Σ−1εk) + W ′

g(dk)vec(Σ−1εkε
T
k Σ−1)εT

k Σ−1), (4.4)

∂2lk(θ)

∂v(Σ)∂vT (Σ)
= DT

p [
1

2
(Σ−1 ⊗Σ−1) + 2Wg(dk)(Σ

−1εkε
T
k Σ−1 ⊗Σ−1)

+W ′
g(dk)vec(Σ−1εkε

T
k Σ−1)vecT (Σ−1εkε

T
k Σ−1)]Dp, (4.5)

where Wg(u) = g′(u)/g(u), W ′
g(u) = dWg(u)/du and Dp the duplication matrix, see Magnus

and Neudecker (1988). All of these expressions should be evaluated in θ = θ̂.

4.2 Perturbation of case weights

Consider the weight vector ω = (ω1, ...., ωn)T so that the perturbed log-likelihood is denoted
by

l(θ/ω) =
n∑

k=1

ωklk(θ), (4.6)

where lk(θ) is given by (2.5). The vector of no-perturbation is denoted by ω0 = 1n =
(1, ..., 1)T . In this case ∆ = (∆1(θ), ...,∆n(θ)) is the p∗ × n matrix, where ∆k(θ) =
∂lk(θ)/∂θ |

θ=
bθ, k = 1, ..., n, with elements ∂lk(θ)/∂γ, γ = α, β, v(Σ) that are given by

∂lk(θ)

∂α
= −2Wg(dk)Σ

−1εk,
∂lk(θ)

∂β
= xk

∂lk(θ)

∂α
(4.7)

and

∂lk(θ)

∂v(Σ)
= DT

p vec[−1

2
Σ−1 −Wg(dk)Σ

−1εkε
T
k Σ−1]. (4.8)
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4.3 Perturbation Market Return

In this section, the market returns xk, are perturbed considering additive perturbation schemes,
thus xkω = xk +ωk, k = 1, ..., n and the perturbed log-likelihood is constructed with xk, which
in the following function is replaced by xkω, that is

l(θ/ω) =
n∑

k=1

lk(θ/ωk), (4.9)

where lk(θ/ωk) = −1

2
log|Σ|+ logg(dkω), with dkω = (Y k −α− βxkω)TΣ−1(Y k −α− βxkω),

k = 1, ..., n and ω = (ω1, ..., ωn)T . The no perturbation case follows by taking ω = (0, ..., 0)T .
In this case ∆ = (∆1(θ), ...,∆n(θ)), evaluated in θ = θ̂, where the elements of the ∆k(θ),
k = 1, .., n are ∆γk, γ = α,β, v(Σ), that after some algebraic manipulation, it follows that

∆αk = −2Wg(dk)Σ
−1β + 4W ′

g(dk)ε
T
k Σ−1βΣ−1εk, (4.10)

∆βk
= −2Wg(dk)Σ

−1εk + xk∆αk, (4.11)

∆
v(Σ)k

= DT
p vec[Wg(dk)Σ

−1(εkβ
T + βεT

k )Σ−1 + 2W ′
g(dk)ε

T
k Σ−1βΣ−1εkε

T
k Σ−1]. (4.12)

4.4 Perturbation of the scale matrix

The model in (2.3) is assumed to be homochedastic, that is, the scale matrix of random errors
is assumed to be the same. In this section, we assume that the scale matrix of the random
errors is given by Σ/ωk, k = 1, ..., n. Thus, the log-likelihood corresponding to the perturbed
model is given by

l(θ/ω) =
n∑

k=1

lk(θ/ωk), (4.13)

where lk(θ/ωk) =
p

2
logωk− 1

2
log|Σ|+ logg(ωkdk). The no-perturbation case follows by taking

ω = (1, ..., 1)T . Thus ∆ = (∆1(θ), ...,∆n(θ)), evaluated in θ = θ̂, is the p∗ × n matrix,
where ∆k(θ) = [Wg(ωkdk) + ωkdkW

′
g(ωkdk)]∂dk/∂θ, where the elements of ∂dk/∂θ, ∂dk/∂γ,

γ = α,β, v(Σ), k = 1, ..., n are given by,

∂dk

∂α
= −2Σ−1εk,

∂dk

∂β
= xk

∂dk

∂α
and

∂dk

∂v(Σ)
= −DT

p vec(Σ−1εkε
T
k Σ−1). (4.14)
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5 Application

The data corresponds to monthly returns of shares from the Chilean Stock Market. The
Selective Index of Share Prices, IPSA, was used as the return for the market and the interest
rate in the sale of discount bonus of the Central Bank was used as the risk free rate, both
monthly. The data correspond to the period, January 1990 to June 2004. We illustrate the
methodology with four companies, Concha y Toro (CyT ) of the wine industry, Copec, a
big company with activities in different areas of the economy, Entel, a telecommunication
company, and Cuprum, which manages pension funds. Table 1 presents a summary of the
adjusted results of the four selected models: Normal, t, Power exponential, and Contaminated
Normal. Of the four, the one which shows the best fit (see column l(θ̂)) is the t model with
four degrees of freedom, t4. For example, the maximum log-likelihood for the normal model is
621.14 and for the t4 model the maximum log-likelihood is 697.14, corresponding to likelihood
ratio statistic of 152. This indicates that the t4 model fits the data significantly better than
the normal model. The greatest variation in systematic estimated risks, β̂j, j = 1, 2, 3, 4, are

seen in CyT , β̂1, while the most stable are those from COPEC, β̂2. In addition, important
variations in the estimated covariance matrix, Σ̂ are observed. Figure 1 shows the dispersion
diagram of the four companies. It is possible to observe in the four graphics some atypical
returns that could have an influence on the maximum likelihood estimators. In these graphics
the returns 14, 37, and 104 were marked since they were detected as potentially influential
by the local influence method. Figures 2 and 4 present the index graphs of lmax for the three
perturbation schemes considered in the four models selected.

*********Figure 1 about here*********
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Tabla 1: Adjusted results for the 4 models selected

Distribution Asset �̂ �̂ Σ̂ l(�̂)
Normal CyT 0.0105 0.9420 0.0122 -0.0005 -0.0006 0.0034 621.14

Copec 0.0058 0.8857 0.0044 0.0006 0.0005
Entel -0.0001 1.1090 0.0116 0.0015

Cuprum 0.0299 0.9686 0.0164
t (ν = 4) CyT 0.0034 0.6857 0.004679 -0.000033 -0.000718 0.000479 697.14

Copec 0.0050 0.8449 0.002788 0.000353 0.000086
Entel -0.0021 1.1149 0.006998 0.000362

Cuprum 0.0134 0.7956 0.006429
Power Exp.(λ = 2/3) CyT 0.0060 0.7919 0.002291 -0.000048 -0.000220 0.000439 667.91

Copec 0.0048 0.8745 0.001061 0.000143 0.000077
Entel -0.0020 1.1011 0.002739 0.000249

Cuprum 0.0197 0.8713 0.003240
CN(γ = 0.10, φ = 10) CyT 0.0011 0.6917 0.0053 0.0001 -0.0006 0.0008 687.72

Copec 0.0047 0.8427 0.0033 0.0005 0.0000
Entel -0.0014 1.0473 0.0080 0.0007

Cuprum 0.0156 0.8895 0.0076

As can be observed from these figures, case 14 seems to be the most influential in the
maximum likelihood estimators in the normal and power exponential models under the case
and scale perturbation schemes. Return 104 seems to be the most influential in θ̂, when using
the t4 model and the case perturbation scheme, while the other perturbation schemes do not
influence the maximum likelihood estimators, as can be observed in figures 3(b) and 4(b). In
addition, note that the maximum likelihood estimators are quite stable as they relate to the
market return perturbation scheme, figure 3, in the four models considered.

*********Figures 2-4 about here*********

In figures 5 and 7, the graphics of the total local influence for the three perturbation
schemes in each one of the four models considered are presented. Note that returns 14(in
the three perturbation schemes) and 37(in the market perturbation scheme) are influential
in the maximum likelihood estimators, when using the normal and contaminated normal
distributions, respectively. In the other two models, however, influential returns are not
observed.

*********Figures 5-7 about here*********

6 Conclusions

The objective of influence diagnostics is to identify anomalous observations that may affect
the adequacy of fit and/or statistical inferences under the proposed model. This is essential
for evaluating the sensitivity (robustness) of the results obtained, with the data set available,
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since atypical returns can distort the estimators, leading to, in some cases, wrong decisions.
In a recent study, van der Hart et al. (2003), showed that the atypical returns (outliers) are
one of the important factors in the selection of stocks in emerging markets.
The class of elliptical distributions offers a more flexible framework for modelling asset re-
turns. It contains many distributions with heavier tails than the normal distribution allowing
us to model tails which are frequently observed in financial data, especially in Latin Ameri-
can Markets. These distributions have shape parameters that can be used for adjusting the
distribution kurtosis and providing more robust procedures than the ones that use the nor-
mal distribution, with moderate additional computational effort. Closed form expressions are
obtained for the observed information matrix and for the ∆ matrix for three perturbation
schemes in the ECAPM . Perturbation of case weights, this scheme is intended to evaluate
whether the contribution of the returns with different weights affects the maximum likelihood
estimator (MLE) of θ. Perhaps, this is the method most commonly used to evaluate the
influence of a small modification of the model. The perturbation scheme of market returns
can be used for analyzing the sensitivity of the MLE when the rate of return has suffered
small changes. Finally, the perturbation scheme of the matrix scale can be used for analyzing
the sensitivity of the MLE, with respect to the departures from homochedastic assumptions.
This empirical study provides new evidence on the robustness aspects of the MLE for the t
distribution with small degrees of freedom, as also shown by Lange et al. (1989) in regression
and multivariate analysis. Nevertheless, it also shows the need to use diagnostic techniques
in models whose tails are heavier than those of the normal distribution.
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Appendix: The observed information matrix

For the elliptical model the log-likelihood function is given by,

l(θ) =
n∑

k=1

lk(θ), (A.1)

where lk(θ) = −1

2
log|Σ|+logg(dk), with dk = (Y k−α−βxk)

TΣ−1(Y k−α−βxk), k = 1, ..., n.

Then, using results of differentiation of matrix, see Magnus and Neudecker (1988), we have

d2lk(θ) = dvT (Σ)DT
p [

1

2
(Σ−1 ⊗Σ−1) + 2Wg(dk)(Σ

−1εkε
T
k Σ−1 ⊗Σ−1)

+W ′
g(dk)vec(Σ−1εkε

T
k Σ−1)vecT (Σ−1εkε

T
k Σ−1)]Dpdv(Σ)

+dvT (Σ)DT
p [4Wg(dk)(ε

T
k Σ−1 ⊗Σ−1) + 4W ′

g(dk)vec(Σ−1εkε
T
k Σ−1)εT

k Σ−1]dα

+dvT (Σ)DT
p [4xkWg(dk)(ε

T
k Σ−1 ⊗Σ−1)

+4xkW
′
g(dk)vec(Σ−1εkε

T
k Σ−1)εT

k Σ−1]dβ

+dαT [2Wg(dk)Σ
−1 + 4W ′

g(dk)Σ
−1εkε

T
k Σ−1]dα

+dαT [4xkWg(dk)Σ
−1 + 8xkW

′
g(dk)Σ

−1εkε
T
k Σ−1]dβ

+dβT [2x2
kWg(dk)Σ

−1 + 4x2
kW

′
g(dk)Σ

−1εkε
T
k Σ−1]dβ,

with Wg(dk) and W ′
g(dk) as defined in the Section 4.1; from where the expressions (4.2) to

(4.5) are obtained.
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Figura 1: Scatter plots
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Figura 2: Index plots of |lmax| for case perturbations in the (a) Normal (b) t4 (c) Power
Exponential and (d) Contaminated Normal models
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Figura 3: Index plots of |lmax| for market perturbations in the (a) Normal (b) t4 (c) Power
Exponential and (d) Contaminated Normal models
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Figura 4: Index plots of |lmax| for scale perturbations in the (a) Normal (b) t4 (c) Power
Exponential and (d) Contaminated Normal models
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Figura 5: Index plots of Ck for case perturbations in the (a) Normal (b) t4 (c) Power Expo-
nential and (d) Contaminated Normal models
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Figura 6: Index plots of Ck for market perturbations in the (a) Normal (b) t4 (c) Power
Exponential and (d) Contaminated Normal models
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Figura 7: Index plots of Ck for scale perturbations in the (a) Normal (b) t4 (c) Power Expo-
nential and (d) Contaminated Normal models
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