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Abstract

In this paper we consider estimation and hypotheses testing in the Grubbs model

under elliptical distributions. Thus is, we assume that the measurements obtained fol-

low a multivariate elliptical distribution. Wald type statistics are considered which are

asymptotically distributed according to the chi-square distribution. The statistics are

based on maximum likelihood estimator, in sample mean and sample covariance matrix.
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1 Introduction

The main object of this paper is the study of inference in the Grubbs’s measurement model
used to assess the relative quality of several measuring devices (or instruments) when mea-
suring the same unknown quantity x in a common group of individuals or experimental units.
Moreover, this models can be seen as a special case of the general multivariate measurement
error model (Fuller, 1987). Comparing measuring devices which varies in pricing, fastness and
other features, such as efficiency, has been of growing interest in many engineering and sci-
entific applications. Grubbs (1948, 1973, 1983) proposed a model for n items, each measured
on p instruments, given by

Yij = αi + xj + εij, (1.1)

where Yij represent the measurement of j-th item on the i-th instrument, i = 1, ..., p and
j = 1, ..., n. In the literature is assumed that xj and εij are independent with normal distri-
bution N(µx, φx) and N(0, φi), respectively.

In the context of the Grubb’s model the quality of the measure is assesed using addi-
tive bias and of the precision (inverse of the variance) of the different instruments. Thus,
one hypothesis of interest is to evaluate exactness of the measures made for different in-
struments is H01 : α1 = α2 = · · ·αp. To comparing the precision of the instruments of
hypothesis is H02 : φ1 = · · · = φp. The hypothesis that consider the above situations is
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H03 : α1 = α2 = · · ·αp, φ1 = · · · = φp. Depending on the application these hypothesis can
be testing joint or separately. Moreover, given rejection in one of these hypothesis, is frequent
to consider subhypothesis to testing equality the subsets of variances and bias.

For p = 2, Maloney and Rastogi (1970) shows that the Pitman Test (Pitman, 1939) is
equivalent to test H02. Blackwood and Bradley (1991), using the simple regression model,
proposed one test for H01 and H02 jointly. Christensen and Blackwood (1993) used the mul-
tivariate linear model for testing H01 and H02 (or subhypothesis) for p ≥ 2. Recently Bedrick
(2001) and Vilca et al. (2002), proposed tests considering α1 = 0 and assuming that the
observations follows a normal distribution.

The condition α1 = 0, can be interpreted as the existence of a reference instrument, that
in general, it is an instrument of best performance. But, in many situations we do not know
previously the quality of the instruments, thus form not always is easy to choice the reference
instrument. Even without this restriction we will test the hypothesis H01, H02 and H03, the
estimation of αi is not possible, however we can estimate the differences αi − αk, see Grubbs
(1973). Alternatively, estimators of αi, can be obtained assuming µx known, as considering
in Lu et al. (1997) and then use the moments method to estimate αi.

For to avoiding restrictions on the parametric space, we consider the transformation zj =
xj − µx, j = 1, ..., n. Thus, the model defined in (1.1) can be writing as:

Yij = µi + zj + εij, (1.2)

where µi = αi + µx, i = 1, ..., p and j = 1, ..., n. Under this reparametrization we have that,
H01 : µ1 = µ2 · · · = µp and H03 : µ1 = µ2 = · · · = µp, φ1 = φ2 = · · · = φp.

Although the normality assumption is adequate in many situations, its is not appropriate
when the data come from a distribution with heavier tails than the normal ones. This suggest
to consider the statistical inference in new class of distributions. For example, Lange et al.
(1989) recommended t distribution and Little (1988) using contaminated normal distribution.
Both models incorporate additional parameter, which allows adjusting the kurtosis of the dis-
tribution. This distributions are elements of a more broad class the parametrical models that
preserve the symmetric structure, known as elliptical distributions, widely investigated in the
statistical literature, see for instance, Fang et al. (1990) and Fang and Zhang (1990).

The main object of this paper is to consider inference in the Grubbs models under the
elliptical distributions family. Different of Bedrick (2001) and Vilca et al. (2002), no restric-
tions on the parameters are assumed. We discuss maximum likelihood estimation and for
testing the hypothesis H01, H02 and H03 we used the Wald Statistic. Also, we extended the
tests considered in Choi and Wette (1972).
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2 The Elliptical Grubbs Model

In this section we defined the Grubbs Model (GM) in the class of elliptical distributions.
We say that the random vector Y , p × 1 dimensional have a elliptical distribution with

location parameter µ a p × 1 vector and scale matrix Σ, p × p, if its density is given by:

fY (y) = |Σ|−1/2g[(y − µ)>Σ−1(y − µ)], y ∈ R
p, (2.1)

where the function g : R → [0,∞) is such that
∫∞

0
up−1g(u2)du < ∞. The function g

is know as density generator. For a vector Y distributed according to the density (2.1),
we use the notation Y ∼ Elp(µ,Σ; g) or simply Elp(µ,Σ). We have, when they exist,
that E(Y ) = µ and Var(Y ) = cgΣ, where cg is a constant positive, see, by example Fang
et al. (1990). In the case where µ = 0 and Σ = Ip (identity matrix of dimension p),
we obtain the spherical family of densities. This class of distributions includes the Nor-
mal (g(u) = ce−u/2), t (g(u) = c(ν, p)(1 + u/ν)−(ν+p)/2, ν > 0), Contaminated Normal
(g(u) = c{(1 − γ)e−u/2 + γ√

φ
e−u/2φ}, φ > 0, 0 ≤ γ ≤ 1), Logistic (g(u) = e−

√
u/(1 + e−

√
u)2)

and Power Exponential g(u) = c(λ)e−u
λ/2, λ > 0), among other distributions.

To specified the GM in the elliptical class, we will writing (1.2) in matrix notation as:

Yj = µ+ 1pzj + εj = µ+Bprj (2.2)

where Yj = (Y1j, . . . , Ypj)
> and εj = (ε1j, . . . , εpj)

> are p × 1 random vectors and, rj =
(zj, ε

>
j )> random vectors of dimension (p + 1) × 1. Moreover µ = (µ1, . . . , µp)

> and Bp =
(1p, Ip), with 1p is a p × 1 vector of ones, j = 1, . . . , n. The elliptical model is obtained
considering that the random vectors r1, . . . , rn are independent and identically distributed
Elp+1(0,Ψ), where Ψ = diag(φx, φ1, . . . , φp). Then, we have that

Y j ∼ Elp(µ,Σ), (2.3)

where µ = α+1pµx and Σφx1p1
>
p +D(φ), with D(φ) = diag(φ1, . . . , φp) and φ = (φ1, . . . , φp)

>.

2.1 Score function

The log-likelihood function is given by

`(θ) =
n∑

j=1

lj(θ), (2.4)

where lj(θ) = −1

2
log|Σ|+ logg(dj), with dj = (Y j −µ)>Σ−1(Yj −µ), j = 1, ..., n. The score

function is given by,

U(θ) =
∂`(θ)

∂θ
=

n∑

j=1

Uj(θ), (2.5)
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where, Uj(θ) =
∂lj(θ)

∂θ
= (Uj(µ)>, Uj(φx), Uj(φ)>)> and

Uj(γ) =
∂lj(θ)

∂γ
= −1

2

∂log|Σ|
∂γ

+ Wg(dj)djγ ,

with djγ =
∂dj
∂γ

,γµ, φx,φ j = 1, ..., n and Wg(u) = g′(u)/g(u), u ≥ 0. Further, using results

in Nel (1980) related to vector derivatives it follows that,

∂log|Σ|
∂µ

0,
∂log|Σ|

∂φx
c−1 c − 1

φx
,

∂log|Σ|
∂φ

= −φx
c

D−2(φ)1p + D−1(φ)1p,

djµ = −2Σ−1W j,

djφx
= −c−2W>

j MW j,

d
jφ = −D−2(φ)D(W j)W j + 2c−1φxajD

−2(φ)W j − c−2φ2
xa

2
jD

−2(φ)1p,

where c = 1+φx1
>
p D−1(φ)1p, aj = W>

j D−1(φ)1p,W j = Y j−µ andM = D−1(φ)1p1
>
p D−1(φ).

2.2 The expected information matrix

In this section we obtain the information matrix and asymptotic variance matrix for the
maximum likelihood estimator, MLE. For more details, see Galea (1995). Under regularity
conditions and using results in Lange et al. (1989), we have the following theorem.

Theorem 1 Under the Elliptical Grubbs Model the Expected Information Matrix IG(θ) is
given by

IG(θ) =




Iµµ 0 0
0 Iφxφx

Iφxφ

0 Iφφx
Iφφ


 , (2.6)

where

Iµµ = (4a1/p)Σ−1, Iφxφx
=

(c − 1)2

c2φ2
x

(c1 + 2
a2

p(p + 2)
), Iφφ = c1hh

> + c2{bb> + D(d)},

Iφxφ =
c − 1

cφx
c11

>
p D−1(φ) + c−2[

2a2

p(p + 2)
− (c − 1)c1]1

>
p D−2(φφφ),

with

h = D−1(φ)1p −
φx
c

D−2(φ)1p, b =
φx
c

D−1(φ)1p, d = D−2(φ)1p − 2
φx
c

D−3(φ)1p,
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where, c1 = −1
4

+ a2

p(p+2)
, c2 = 2a2

p(p+2)
, with a1 = E[‖ε‖2(Wg(‖ε‖2))2], a2 = E[‖ε‖4(Wg(‖ε‖2))2]

and ε ∼ Elp(0, Ip).

Corollary 1 Let θ̂ the MLE of θ in the Elliptical Grubbs Model and ψ = (φx,φ
>)>. Then

we have that √
n(θ̂ − θ) D7→ N2p+1(0,ΩE) , (2.7)

where

ΩE =

(
Ωµµ 0
0 Ωψψ

)
,

with Ωµµ
p

4a1

Σ, Ωψψ
1
c2
Q − c1

c2
2
c3
Qhh>Q, c3 = 1 + c1

c2
h>Qh and Q = (bb> + D(d))−1 =

D−1(d) − 1
c4

D−1(d)bb>D−1(d) and c4 = 1 + b>D−1(d)b.

Remark: From theorem 1 and corollary 1, we have expressions closed and simples for the ex-
pected information matrix and for the asymptotic variance matrix of the MLE any elliptical
distribution. In the next we will specified this results for the normal and t distributions. Also,
in practice it is sometimes convenient to use the observed information matrix to approximate
the variance-covariance matrix of θ̂, we give this results in Appendix.

Normal model

For the normal model, that is, Y j ∼ Np(µ,Σ), we have that a1 = p/4 and a2 = p(p+2)/4,
then c1 = 0 and c21/2. Thus, the expected information matrix and the asymptotic variance
matrix of the MLE, are given respectively, by

IN(θ) =

(
Σ−1 0

0 1
2
(bb> + D(d))

)
and ΩN =

(
Σ 0
0 2Q

)
. (2.8)

This results coincides with the expressions given in Anderson (1973), for the normal case.

t model

For the p-variate t distribution, Y j ∼ tp(µ,Σ; ν), we have that

a1 =
p(ν + p)

4(ν + p + 2)
, and a2 =

(ν + p)p(p + 2)

4(ν + p + 2)
,

then,

c1 = − 1

2(ν + p + 2)
and c2 =

ν + p)

2(ν + p + 2)
. (2.9)
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Thus the elements of the information matrix IG(θ) under t distribution, are given by

Iµµ =
ν + p

ν + p + 2
Σ−1 and Iψψ =

1

2(ν + p + 2)
hh> +

ν + p

2(ν + p + 2)
{bb> + D(d)}

and the asymptotic variance matrix of the MLE of θ, is

ΩE =

(
Ωµµ 0
0 Ωψψ

)
, (2.10)

where

Ωµµ =
ν + p + 2

ν + p
Σ and Ωψψ =

2(ν + p + 2)

ν + p

[
Q+

Qhh>Q

ν + p − h>Qh

]
.

Note that if ν → ∞ we obtained the results correspondents to the normal model given in
(2.8).

2.3 Maximum Likelihood Estimation

In this section we discuss the maximum likelihood estimation of the parameters in the Grubbs
models. The maximum likelihood estimator (MLE), θ̂, of θ is solution of the equations,

U(θ)
n∑

j=1

Uj(θ) = 0. (2.11)

Since, we have a closed-form expression for the expected information matrix for θ, the Fisher
scoring method can be easily applied to get the maximum likelihood estimate θ̂, taking the
form,

θ(m) = θ(m−1) + (IG(θ(m−1)))−1U(θ(m−1)),m = 1, 2, ... (2.12)

Alternatively, if g is a continuous and decreasing function, of (2.11) it follows that the
MLE of µ, φx and φ can be obtained as the result of the iterative process,

µ̂ = yv,

φ̂x = −1

b
+

1

nb2

n∑

j=1

vg(dj)a
2
j

φ̂ =
φx
c

1p +
1

n

n∑

j=1

vg(dj)[D(yj − µ)(yj − µ) − 2
φx
c

aj(yj − µ) +
φ2
x

c2
a2
j1p],

where b = 1>
p D−1(φ)1p, aj = W>

j D−1(φ)1p and yv =
∑n

j=1 vg(dj)yj/
∑n

j=1 vg(dj), with
vg(dj) = −2Wg(dj), W j = Y j − µ and dj is as in (2.4). As g is a continuous and decreasing
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function, then vg(dj) > 0, that guarantees a positive solution for the maximum likelihood
estimate of φi, i = 1, .., p.

Note that for the t model, v(dj) = (ν + p)/(ν + dj), and consequently for the normal
model, v(dj) = 1, j = 1, ..., n.

Now, we discuss EM−algorithm for the t model.

Estimation in the t model: EM−algorithm

In this section we assumed that rj ∼ tp+1(0,Ψ; ν), where Ψ = diag(φx, φ1, ..., φp) and
consequently, Y j ∼ tp(µ,Σ; ν), with Σ as in (2.3). To implemente the EM -algorithm, we
consider random vectors Zj(zj,Y

>
j )>. Then, follows from property of the t distribution, that

Zj ∼ tp+1(µZ ,ΣZ ; ν), where

µZ =

(
0
µ

)
and ΣZ =

(
φx φx1

>
p

φx1p Σ

)
. (2.13)

Since Zj|Qj = qj ∼ Np+1(µZ , q−1
j ΣZ) and Qj ∼ χ2(ν)/ν, where µZ and ΣZ as in (2.13)

and j = 1, . . . , n, we have that the joint density of Z j and Qj, denoted by f(zj, qj), can be
writing as

f(zj, qj) = f1(zj|qj)f2(qj), j = 1, . . . , n.

Then, the complete log-likelihood function `Z(θ, ν), is given by

`Z(θ, ν) = cte − n

2
log |ΣZ | −

1

2

n∑

j=1

qj(Zj − µZ)>Σ−1
Z (Zj − µZ) +

n∑

j=1

log f2(qj).(2.14)

We then have the following EM algorithm:

Step E: In this step of algorithm we calculated:

q̂j = E(qj|Y j,θ, ν) =
ν + p

ν + dj
,

ẑj = E(zj|Y j,θ, ν) =
φx
c

1>
p Σ−1(Y j − µ),

ẑ2
j = E(z2

j |Y j,θ, ν) =
φx
c

ν + dj
ν + p − 2

+ ẑ2
j ,

where dj as in (2.4).
Step M: The equations, assuming ν fixed, to implemented this step are:

µ̂ = yq − 1pzq,
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φ̂x =
1

n

n∑

j=1

qjz
2
j ,

φ̂ =
1

n

n∑

j=1

qj[z
2
j1p − 2zj(yj − µ) + D(yj − µ)(yj − µ)],

where zq =
∑n

j=1 qjzj/
∑n

j=1 qj and yq =
∑n

j=1 qjyj/
∑n

j=1 qj.

Note that the implementation of this algorithm is very simples and the estimatives of
the variances φx and φi are always non-negatives. This not happen necessarily with the
estimators proposed by Grubbs (1973). In this case, the estimative of φi is give by, φ̂i =
1
n

∑n
j=1 qj[(zj − zq) − (yij − yiq)]

2, i = 1, ..., p. For the normal case we making ν → ∞ in the
expressions above.

3 Hypothesis Testing

Using the results of the section 2, we can implement asymptotic testing for hypothesis H01, H02

and H03. First, we testing the hypothesis using the Wald statistic. Afterward we presents an
alternative methods for testing the hypothesis H01, H02 and H03 using some transformations of
the data. Under normality, Choi and Wette (1972) testing the hypothesis H02 and Christensen
and Blackwood (1993) using multivariate regression models for testing H01, H02 and H03.

3.1 The Wald Tests

Notice that the hypothesis H01, H02 and H03 can be write as H0 : Aθ∗ = q0, where the matrix
A is the dimension r × 2p, with rank r ≤ 2p, q0 a r × 1 vector and θ∗ = (µ>,φ>)>.

Specifically we have that H03 : Aθ∗q0, where A = diag(A1,A1), with A1 a matrix
(p − 1) × p, given by

A1[Ip−1,0(p−1)×1] − [0(p−1)×1, Ip−1], (3.1)

and q0 = 0. From Corollary 1, we have

√
n(θ̂∗ − θ∗) D7→ N2p(0,Ω∗) ,

where

Ω∗ =

(
Ωµµ 0
0 Ωφφ

)
, (3.2)

with Ωµµ and Ωφφ as asymptotic variance matrix of the MLE µ̂ and φ̂, respectively. Then
the Wald statistic to testing H03 is given by

W03 = nµ̂>
A>

1 (A1Ω̂µµA
>
1 )−1A1µ̂+ nφ̂

>
A>

1 (A1Ω̂φφA
>
1 )−1A1φ̂. (3.3)
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Thus we reject at level α if W03 > χ2
1−α(2(p − 1)), where χ2

1−α(2(p − 1)) denote 100(1 − α)%
percent of the chi-square distribution with 2(p − 1) degrees of freedom.

To testing H01, the Wald statistic is

W01 = nµ̂>
A>

1 (A1Ω̂µµA
>
1 )−1A1µ̂, (3.4)

which converge in distribution, under H01 to a random variable χ2(p − 1). Then we reject at
level α if W01 > χ2

1−α(p − 1).
Finally, for testing H02, thus is, the instruments are equally precises, the Wald statistic is

given by

W02 = nφ̂
>
A>

1 (A1Ω̂φφA
>
1 )−1A1φ̂. (3.5)

Thus, we reject at level α if W02 > χ2
1−α(p − 1). Note that, W03 = W01 + W02.

3.2 The Generalized Choi-Wette Test

Here we proposed an alternative test to H01, H02 and H03 based in the asymptotic distributions
of the sample mean and the sample covariance matrix. We extended the test proposed by
Choi and Wette (1972), who testing the hypothesis H02, under normality. We generalized this
tests to the class of elliptical distributions, with finite fourth moment.

Let Y j ∼ Elp(µ,Σ), where Σ had elements σij, i, j = 1, ..., p. Then the hypothesis H02 is
equivalent to H : σ11 = σ22 · · · = σpp, where σii = φx + φi, i = 1, ..., p. Under normality, Choi
and Wette (1972) proposed a test to verify H, extending the Pitman test, Pitman (1939).

Let

x0j = yj =
1

p

p∑

i=1

yij and xij = yij − yj , i = 1, . . . , p − 1, j1, . . . , n. (3.6)

Choi and Wette (1972) (see also Han, 1968) shows that H is equivalent to Cov(x0j, xij) = 0,
i = 1, . . . , p − 1, j = 1, . . . , n. Let X j = (x0j, x1j, ..., x(p−1)j)

>. Then, the transformation
defined in (3.6), can be write in matrix notation as X j = TY j, where T = ( 1

p
1p,A

>
p )>, with

Ap = (Ip−1,0(p−1)×1) − 1
p
1p−11

>
p , j = 1, . . . , n.

This way, from (3.6) and the propertied of the elliptic distribution, we have that X j ∼
Elp(µX ,ΣX), where µX = (µ, µ1 − µ, µ2 − µ, . . . , µp−1 − µ)> and

ΣX =
1

p


 φ + pφ0 φ>

(p−1) − φ1>
p−1

φ(p−1) − φ1p−1 ApΣA
>
p


 =

(
v11 V 12

V 21 V 22

)
= V ,

with µ = 1
p

∑p
i=1 µi, φ = 1

p

∑p
i=1 φi and φ(p−1) = (φ1, ..., φp−1)

>. Thus we have that H02 : φ1 =

φ2 = · · · = φp is equivalent with V 12 = (φ1 − φ, ..., φp−1 − φ)> = 0, which is equivalent to
H : R = 0, where

R =

{
V 12V

−1
22 V 21

v11

}1/2

, (3.7)
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corresponded to the multiple correlation coefficient between x0 and x1, x2, . . . , xp−1. For this
we using the following lemma proved in Muirhead (1980, 1982).

Lemma 1 LetX1, . . . ,Xn a random sampling of size n from a elliptic distribution Elp(µX ,ΣX)
with multiple correlation coefficient R = 0 and kurtosis parameter κ. Then,

(n − 1)R2
n

1 + κ

D7→ χ2(p − 1) ,

where

Rn =

{
S12S

−1
22 S21

s11

}1/2

(3.8)

is the sample multiple correlation coefficient, with

SX =
1

n

n∑

j=1

(Xj −X)(Xj −X)> =

(
s11 S12

S21 S22

)
, (3.9)

the sample covariance matrix.

Using this Lemma 1, we have that the statistic,

W ∗
02 =

(n − 1)R2
n

1 + κ
,

follows asymptotically a χ2(p−1) distribution under H02. Thus, we have an approximate test
to testing H02 (or H) and we reject at level α if

(n − 1)R2
n

1 + κ
> χ2

1−α(p − 1). (3.10)

If κ is unknown we can replace by the consistent estimator,

κ̃ =
b2,p

p(p + 2)
− 1 , (3.11)

where b2,p = 1
n

∑n
j=1[(Xj −X)>S−1

X (Xj −X)]2, with SX given in (3.9).

Under normality we have an exact test (see Muirhead, 1982) for testing H : R = 0. In
effect, under H, we have that,

F
n − p

p − 1

R2
n

1 − R2
n

∼ F (p − 1, n − p).

Under t distribution, we have κ = 2/(ν − 4), if ν > 4, then a consistent estimator for ν is
given by

ν̂ = 2(1 − 2b2,p/p(p + 2))/(1 − b2,p/p(p + 2)) . (3.12)
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To testing H01, we can use the sample mean of the Y j or Xj and Central Limit Theorem.
Here we used the observations X j, thus the hypothesis H01 is equivalent to H01 : µX(2) = 0,

where µX(2) = (µ1 − µ, µ2 − µ, . . . , µp−1 − µ)>. As S22 is a consistent estimator of the V 22,
we obtain that the statistics,

W ∗
01 = nX

>
(2)S

−1
22X(2),

under H01 follows asymptotically a χ2(p − 1) distribution. Then we reject at level α if
W ∗

01 > χ2
1−α(p − 1).

Lemma 2 Let

B =

(
v
−1/2
11 0>

0 HV
−1/2
22

)
,

where H ∈ O(p−1) (O(p−1) denote the class of (p−1)× (p−1) orthogonal matrices). Then
Zj = BXj ∼ Elp(µZ ,ΣZ), where

µZ =

(
µv

−1/2
11

HV
−1/2
22 µX(2)

)
and ΣZ =

(
1 P>

P Ip−1

)
,

with µX(2) = (µ1 − µ, µ2 − µ, . . . , µp−1 − µ)>, P = (R, 0, ..., 0)> and R as in (3.7).

Theorem 2 Let Z1, . . . ,Zn a random sample of size n of an elliptical distribution Elp(µZ ,ΣZ),
with R = 0. Then

√
n

(
Z − µZ
SZ12

)
D7→ N2p−1(0,∆),

where

∆ =

(
cgΣZ 0>

0 (1 + κ)Ip−1

)

and SZ12 is the element of the sample covariance matrix SZ corresponding to the sample
Z1, . . . ,Zn, and cg as defined in section 2.

Finally, we considering the hypothesis H03, which is equivalent to H03 : µX(2)0 and R = 0

or H03 : HV
−1/2
22 µX(2) = 0 and R = 0. Let A[0(p−1)×1, Ip−1] a (p − 1) × p matrix. Then,

from theorem 2, under H03 we obtain that,

√
n

(
AZ

SZ12

)
D7→ N2(p−1)(0,Ψ),

where

Ψ =

(
Ip−1 0>

0 (1 + κ)Ip−1

)
.
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Thus, under H03

n
1

cg
X

>
(2)V

−1
22X(2) + n

1

1 + κ
S>
Z12SZ12

D7→ χ2(2(p − 1)).

On the other hand, nR2
n = nS>

Z12SZ12 + Op(n
−1) (see Muirhead, 1982), with Rn as in (3.8).

By using S22 as a consistent estimator of cgV 22 and applied the Slusky Theorem, we have
that the statistics,

W ∗
03 = nX

>
(2)S

−1
22X(2) + n

1

1 + κ
R2
n,

converge in distribution to χ2(2(p − 1)) under H03. Thus, we reject at level α if W ∗
03 >

χ2
1−α(p − 1).

We can observed, of the above results, that similarly to the Wald test to H03, we have that
W ∗

03 = W ∗
01 + W ∗

02.

12



Appendix: Observed Information Matrix in the Elliptical Grubbs Model

In this appendix the observed information matrix is obtained for the elliptical Grubbs
model. In effect, from (2.5) it follows that the observed, per element, information matrix is
given by

Lj = Lj(θ/Y j) −
(

∂2lj(θ)

∂γ∂τ>

)
, (A.1)

where

∂2lj
∂γ∂τ> = −1

2

∂2log|Σ|
∂γ∂τ> + W ′

g(dj)djγdjτ> + Wg(dj)djγτ> , (A.2)

with djγτ> =
∂2dj

∂γ∂τ> , j = 1, ..., n and γ, τ = µ, φx,φ, where

∂2 log|Σ|
∂µ∂γ> = 0, γ = µ, φx,φ,

∂2log|Σ|
∂φx∂φx

= − 1

c2φ2
x

(c − 1)2,
∂2log|Σ|
∂φx∂φ

> = −c−21>D−2(φ),

∂2log|Σ|
∂φ∂φ> = −D−2(φ) − c−2φ2

xD
−1(φ)MD−1(φ) + 2c−1φxD

−3(φ),

djµµ> = 2Σ−1,

djµφx
= 2c−2ajD

−1(φ)1p,

d
jµφ

> = 2Σ−1D−1(φ)[D(W j) − c−1φxajIp],

djφxφx
= 2c−3W>

j MW j1
>
p D−1(φ)1p,

d
jφxφ

> = −2c−3φxa
2
j1

>
p D−2(φ) + 2c−2ajW

>
j D−2(φ),

d
jφφ

> = 2D−3(φ)D2(W j) − 2c−3φ3
xa

2
jD

−1(φ)MD−1(φ) − 4c−1φxajD
−3(φ)D(W j)

−2c−1φxD
−2(φ)W jW

>
j D−2(φ) + 2c−2φ2

xD
−2(φ)W jW

>
j MD−1(φ)

+2c−2φ2
xa

2
jD

−3(φ) + 2c−2φ2
xD

−1(φ)MW jW
>
j D−2(φ).

Thus, the observed information matrix is,
n∑

j=1

Lj(θ/Y j), evaluated at θ̂.
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Several Measuring Devices. Relatório de Pesquisa, RP51/02, IMECC, UNICAMP, Brasil.

15


