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Abstract

Let G be a connected noncompact semi-simple real Lie group, τ
an involutive automorphism of G, and L a subgroup of G such that
Gτ

0 ⊂ L ⊂ Gτ . In this article we give conditions on x ∈ G such that
the semigroup generated by the coset Lx has nonempty interior in G.
As a consequence we prove that for several τ the fixed point group Gτ

is a maximal semigroup.
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1 Introduction

Let G be a connected Lie group and τ 6= 1 an automorphism of G. A pair
(G, τ) is called symmetric Lie group if τ is involutive, i.e., τ 2 = 1. The group
of τ -fixed points

Gτ = {x ∈ G : τ(x) = x},
∗Research supported by FAPESP grant no 01/11345-1
†Research partially supported by CNPq grant no 305513/2003-6 and FAPESP grant
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1



is a closed Lie subgroup of G. Let Gτ
0 denote the identity component of Gτ .

Also let L be an open subgroup of Gτ , i.e., Gτ
0 ⊂ L ⊂ Gτ .

In this note we find conditions on x ∈ G such that the semigroup gener-
ated by the coset Lx has nonempty interior in G. This allows to apply known
results about semigroups in semi-simple Lie groups to study maximality of
Gτ as a semigroup, that is, to verify whether Gτ is properly contained in a
proper subsemigroup of G.

Semigroups in this context where extensively studied in the literature in
connection with causal symmetric spaces (see for instance the monograph by
Hilgert and Ólafsson [5], and references therein).

To look at such conditions we start with a more general context, namely
we take a subgroup L ⊂ G such that the Lie algebra g of G decomposes as

g = l⊕ q, (1)

where l is a subalgebra and q a subspace invariant under the adjoint action
of L. Let N(l) denote the normalizer of l in G. Then we show that for any
x /∈ N(l) the semigroup generated by the coset Lx has nonempty interior
in G in case Ad(L) is irreducible on q. This implies that a semigroup in G
which contains L, but is not contained in N(l), has nonempty interior in G.

To this end we consider the restriction of the product maps

qn : Lx× · · · × Lx −→ G n ≥ 2.

The image of qn is contained in the semigroup generated by Lx. The above
condition ensure that qn has full rank at some point, implying that intS 6= ∅
if S is a semigroup with L ⊂ S.

For this general result it is essential to assume that Ad(L) is irreducible.
However when L is an open subgroup of group of fixed points of an involutive
automorphism, we can deal also with the reducible case.

In the case of a symmetric Lie group its Lie algebra g decomposes as

g = l⊕ q, (2)

where l and q are the eigenspaces associated with the eigenvalues 1 and
−1 of τ , respectively. This decomposition is sometimes called the canonical
decomposition of g. Note that

[l, l] ⊂ l, [l, q] ⊂ q, and [q, q] ⊂ l. (3)
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Also l is the Lie algebra of Gτ .
Let L be a subgroup of G such that Gτ

0 ⊂ L ⊂ Gτ and x /∈ N(l). If
Ad(L) is irreducible on q, then the semigroup generated by Lx has nonempty
interior in G by the general result. An example of the irreducible case is a
Cartan involution in a simple Lie group G. In this case the fixed point group
K is maximal as a subsemigroup of G since any semigroup S containing K
properly has nonempty interior and acts transitively on the flag manifolds
of G. For general involutions we combine our results with those of [6] to
conclude that if the pair (g, τ) is not regular (or Hermitian), then the only
semigroups which contain L are those contained in N(l).

For the reducible case a detailed study of the structure of g is necessary.
In this case we have found a subset Θ of the simple system of roots such
that if x /∈ N+

Θ N(lΘ) ∪ N−
Θ N(lΘ), then the semigroup generated by Lx has

nonempty interior. Consequently, the semigroups that contain L are the
same as those contained in N+

Θ N(lΘ) ∪N−
Θ N(lΘ), when (g, τ) is not regular.

2 Semigroups containing certain subgroups

Let G be a connected Lie group and g its Lie algebra. Let L ⊂ G be a Lie
subgroup with Lie algebra l. Given x ∈ G we denote by S(L, x) the semigroup
generated by the coset Lx. Also, we write M(L, x) for the subgroup of G
generated by Lx.

In this section we will find conditions ensuring that S(L, x) has nonempty
interior in G.

Let us denote by pn, n ≥ 2, the product map

pn : Gn −→ G

(x1, . . . , xn) 7−→ x1 · · ·xn.

The subset (Lx)n = Lx × · · · × Lx is a submanifold of Gn. We denote by
qn : (Lx)n → G the restriction of pn to (Lx)n. Clearly qn is a differentiable
map. The image of its differential is given in the following lemma.

Lemma 2.1 The image of the differential d(qn)σ of qn at σ = (s1, . . . , sn) ∈
Lx× · · · × Lx is the subspace

d(Rs)1(l + Ad(s1)(l) + · · ·+ Ad(s1 · · · sn−1)(l)),

where s = s1 · · · sn and R is the right action.
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Proof: Denote by L the left action. Then

qn(s1, . . . , sn) = s1 · · · sn = Ls1···si−1
◦ Rsi+1···sn(si).

The tangent space to Lx at point r is d(Rr)1(l). Therefore the image of the
i-th partial derivative of qn at (s1, . . . , sn) is given by

∂iqn = d(Ls1···si−1
◦ Rsi+1···sn)si

(d(Rsi
)1(l))

= d(Ls1···si−1
◦ Rsi+1···sn ◦ Rsi

)1(l)

= d(Rsi···sn ◦ Ls1···si−1
)1(l)

= d(Rs)1 ◦ Ad(s1 · · · si−1)(l).

Adding up on i the lemma follows.

Take s1, . . . , sn ∈ Lx. In the sequel we write

V (s1, . . . , sn) = l + Ad(s1)(l) + · · ·+ Ad(s1 · · · sn)(l) (4)

so that by the above lemma the image of the differential of qn+1 is given by
right translation of V (s1, . . . , sn). It follows easily from the definition that

V (s1, . . . , sr, t1, . . . , tm) = V (s1, . . . , sr−1) + Ad(s)V (t1, . . . , tm) (5)

where s = s1 · · · sr.
Now we denote by W (L, x) the linear subspace of g spanned by l and

Ad(s−1
r · · · s−1

1 )(l) with s1, . . . , sr running through Lx.
The following lemma ensures that for some n ≥ 2, the map qn has full

rank at some point in case W (L, x) equals g.

Lemma 2.2 Let t1, . . . , tm ∈ Lx be such that V (t1, . . . , tm) has maximal di-
mension among the subspaces V (s1, . . . , sn) with arbitrary n. Then W (L, x) ⊂
V (t1, . . . , tm).

Proof: Take s1, . . . , sr ∈ Lx. By (5) and the maximality of the dimension
of V (t1, . . . , tm) we conclude that V (s1, . . . , sr−1) ⊂ Ad(s)V (t1, . . . , tm). In
particular, l ⊂ Ad(s)V (t1, . . . , tm) that is

Ad(s−1
r · · · s−1

1 )(l) ⊂ V (t1, . . . , tm).

Since s1, . . . , sr was arbitrary it follows that W (L, x) ⊂ V (t1, . . . , tm) as
claimed.
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By definition of W (L, x) it follows immediately that Ad (z−1) W (L, x) ⊂
W (L, x) for every z ∈ Lx. Thus W (L, x) is an invariant subspace for the
adjoint action of the semigroup S(L, x)−1. Actually, by equality of the di-
mensions we have Ad (z−1) W (L, x) = W (L, x), so that W (L, x) is invariant
by the adjoint actions S(L, x) and M(L, x) as well. In particular W (L, x) is
L-invariant since L ⊂ M(L, x).

From now on we consider the following situation which suits well the
applications to symmetric Lie groups we have in mind.

Suppose that there exists a subspace q ⊂ g with

g = l⊕ q (6)

and such that q is invariant by the adjoint representation Ad(L) of L in g.
Then we have the following result where we denote by N(l) the normalizer
of l in G:

N(l) = {x ∈ G : Ad(x)(l) = l}.

Theorem 2.3 Suppose that g = l ⊕ q and that Ad(L) is irreducible on q.
Take x ∈ G \ N(l). Then the semigroup S(L, x) generated by the coset Lx
has nonempty interior in G.

Proof: It is enough to check that W (L, x) = g. In fact, in this case we have
by Lemma 2.2 that there exists m ≥ 2 such that the map qm has full rank at
a point (t1, . . . , tm). This clearly implies that intS(L, x) 6= ∅.

This being so recall that l ⊂ W (L, x) so that

W (L, x) = l⊕ (W (L, x) ∩ q).

Now, the assumption that x /∈ N(l) together with Ad(x−1)(l) ⊂ W (L, x)
imply that l is properly contained in W (L, x). Hence W (L, x)∩q 6= {0}. But
both W (L, x) and q are Ad(L)-invariant. Therefore, W (L, x) ∩ q is invari-
ant, and since Ad(L) is irreducible on q we conclude that W (L, x) ∩ q = q.
Therefore W (L, x) = g, concluding the proof.

Corollary 2.4 Let the assumptions be as in the theorem and suppose that S
is a semigroup of G with L ⊂ S and S 6⊂ N(l). Then intS 6= ∅.
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Proof: Just apply the theorem to the coset Lx with x ∈ S \ N(l). Since
L ⊂ S we have S(L, x) ⊂ S showing that intS 6= ∅.

Remark: By applying the inversion x 7→ x−1 of G it follows easily that the
results above are also true for cosets xL, x ∈ G.

3 Flag manifolds

In the next section we will apply Theorem 2.3 to semigroups in symmetric
Lie groups. For that we recall here some concepts and results about flag
manifolds and semigroups in semi-simple Lie groups. For more details we
refer to [11], [10], [4], [7], [8] or [9].

Let g be a real noncompact semi-simple Lie algebra and let g = k⊕ s be
a Cartan decomposition with k a maximal compactly embedded subalgebra
of g and s its orthogonal complement with respect to the Cartan-Killing
form. Let a ⊆ s be a maximal abelian subspace and denote by Π the set of
restricted roots of the pair (g, a). Also let

gα = {X ∈ g : ad(H)(X) = α(H)X for all H ∈ a}

be the root space coorresponding to the root α. Select a simple system of
roots Σ ⊂ Π and let Π+ and a+ denote the corresponding set of positive
roots and Weyl chamber, respetively. The subalgebras

n+ =
∑

α∈Π+

gα and n− =
∑

α∈Π−

gα

(where Π− = −Π+) are nilpotent and the Iwasawa decomposition of g reads

g = k + a + n+.

Let m be the centralizer of a in k. The subalgebra of g,

p = m + a + n+,

is called minimal parabolic subalgebra.
Let Θ be a subset of Σ, 〈Θ〉 the set of all linear combinations of Θ, and

〈Θ〉± = 〈Θ〉 ∩ Π±.
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Also, take the subalgebras

n±(Θ) =
∑

α∈〈Θ〉+
g±α and n±Θ =

∑
α∈Π+\〈Θ〉+

g±α.

The parabolic subalgebra associated with Θ is

pΘ = n−(Θ) + p.

Let a(Θ) be the subspace of a generated by Hα, where α ∈ Θ and Hα

is defined by α(·) = 〈Hα, ·〉. Here 〈·, ·〉 denotes the Cartan-Killing form of g.
Furthermore, let aΘ denote the orthogonal complement of a(Θ), in a, with
respect to 〈·, ·〉. Then we have the following decomposition:

pΘ = lΘ + n+
Θ,

where mΘ = m + a(Θ) + n+(Θ) + n−(Θ) and lΘ = mΘ + n+
Θ.

Let G be a Lie group with Lie algebra g. The parabolic subgroup PΘ is
the normalizer of pΘ in G. The flag manifold associated with Θ is defined
by FΘ = G/PΘ. The subgroup P = P∅ is a minimal parabolic subgroup, and
F = G/P is a maximal flag manifold.

The next result was first proved for maximal flag manifolds in [8]. Later
on it was also proved for others flag manifolds in [9].

Proposition 3.1 Suppose that G has finite center. Let S be a semigroup of
G with nonempty interior. If S is transitive on FΘ, then S = G.

4 Semigroups in symmetric groups

Let (G, τ) be a symmetric Lie group, where G is connected semi-simple and
noncompact with Lie algebra g. Let Gτ denote the subgroup of τ -fixed points.
Consider the canonical decomposition of g,

g = l⊕ q. (7)

Also, let L be a subgroup of G such that Gτ
0 ⊂ L ⊂ Gτ . For some automor-

phisms τ we have that Ad(L) is irreducible on q, while for others Ad(L) is
reducible on q. We shall deal separately with these distinct cases in the next
subsections.
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4.1 The irreducible case

If Ad(L) is irreducible on q, then Corollary 2.4 states that a semigroup that
contains L and is not contained in N(l) has nonempty interior in G. The
following results we discuss some irreducible cases.

We start by considering the case of Riemannian symmetric pairs. Let
g = k ⊕ s be a Cartan decomposition of g and θ the corresponding Cartan
involution. Let K be the connected subgroup of G with Lie algebra k.

Theorem 4.1 Suppose that G is simple and let x /∈ K. Then the coset Kx
generates G as a semigroup.

Proof: Let S be a semigroup generated by Kx, x /∈ K. Note that K is the
normalizer of k in G and Ad(K) is irreducible on s (see [2]). Hence, Theorem
2.3 implies that intS 6= ∅.

To show that S = G, we assume first that G has finite center. Let F be
the maximal flag manifold of G. We claim that S is transitive on F. In fact
given y1, y2 ∈ F, there exists u ∈ K such that

y2 = u(xy1) = (ux)y1,

because K acts transitively on F. But ux ∈ S, proving the claim. Therefore,
by Proposition 3.1 we conclude that S = G.

Now let Z(G) be the center of G. The quotient G/Z(G) is centerless
and the semigroup S/Z(G) ⊂ G/Z(G) contains the coset (K/Z(G))x′ where
x′ = xZ(G) does not belong to K/Z(G). By the first part of the proof it
follows that S/Z(G) = G/Z(G).

Now, xZ(G) = Z(G)x ⊂ S because Z(G) ⊂ K (see [4]). Also, x−1Z(G)∩
S 6= ∅ because S/Z(G) = G/Z(G). Let u0 ∈ Z(G) be such that x−1u0 ∈ S
and take u ∈ Z(G). Then

u = (x−1u0)(u
−1
0 ux) ∈ S,

so that Z(G) ⊂ S.
Finally take y ∈ G. Then yZ(G) ∈ S/Z(G) so that there exists s ∈ S

such that yZ(G) = sZ(G), i.e., s−1y = s̄ ∈ Z(G) ⊂ S. Hence y = ss̄ ∈ S,
showing that S = G.

If S is a semigroup that contains K properly, then there exists an element
x ∈ S such that x /∈ K. Since S should contain the coset Kx we have the
following consequence of Theorem 4.1.
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Corollary 4.2 If G is simple, then K is maximal as a semigroup of G.

The extension of the above results to semi-simple groups is easy. Let
g = g1 ⊕ · · · ⊕ gs be the decomposition of g into simple ideals and ki ⊂ gi a
maximal compactly embedded subalgebras in gi such that k = k1 ⊕ · · · ⊕ ks.
Let Ki denote the connected subgroup with Lie algebra ki.

Corollary 4.3 The following statements are true.

1. If G is simply connected and S is a semigroup containing K, then S =
A1 · · ·As with Ai = Ki or Gi, where Gi is the subgroup corresponding
to gi.

2. In general S is a subgroup with Lie algebra a1⊕ · · ·⊕ as with ai = ki or
gi.

Now we consider the affine symmetric spaces. Let θ be a Cartan involu-
tion that commutes with τ , and let g = k ⊕ s be the corresponding Cartan
decomposition. Put k+ = k ∩ l, k− = k ∩ q, s+ = s ∩ l, s− = s ∩ q, and
la = k+ + s−. We say that the pair (g, τ) is regular if z(la) ∩ s− 6= 0, where
z(h) denotes the center of h.

The following result was proved in [6].

Proposition 4.4 Let G be a simple Lie group with finite center. Suppose
that (g, τ) is not regular. If S is a semigroup of G with L ⊂ S and intS 6= ∅,
then S = G.

Combining Proposition 4.4 and Theorem 2.3 we get at once the following
result.

Theorem 4.5 Let G be a simple Lie group with finite center. Suppose that
Ad(L) is irreducible on q, and that (g, τ) is not regular. If S is a semigroup
such that L ⊂ S and S 6⊂ N(l), then S = G.

4.2 The reducible case

The following example shows that, in general, ad(l) is not irreducible on q.
Let

g = sl(p + q, R) =

{(
A X
Y B

)}
,
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where the matrices A, B, X and Y are of the order p × p, q × q, p × q and
q× p, respectively. Here, tr(A)+ tr(B) = 0 and τ is the automorphism given
by

τ

(
A X
Y B

)
=

(
A −X
−Y B

)
.

In this case l and q are as follows:

l =

{(
∗ 0
0 ∗

)}
and q =

{(
0 ∗
∗ 0

)}
.

The following subspaces of q,

q1 =

{(
0 ∗
0 0

)}
and q2 =

{(
0 0
∗ 0

)}
are, clearly, ad(l)-invariant. Therefore, Theorem 2.3 is not true because for
X ∈ q1, for example, the semigroup generated by L exp X has empty interior
in G.

The aim here is to determine conditions on x ∈ G so that the subspace
W (L, x), defined in Section 2, is equal to g.

First we recall the following result about Lie algebras which was proved
in Koh [3].

Proposition 4.6 Let (g, τ) be a symmetric semi-simple Lie algebra, and let
β be a ad(l)-invariant nondegenerate bilinear form on q. If u is a ad(l)-
invariant subspace of q such that the restriction of β to u is nondegenerate,
then [u, u] + u is an ideal of g.

Now, let (g, τ) be a symmetric Lie algebra, with the canonical decom-
position (7). Also, let θ be a Cartan involution commuting with τ, and let
g = k⊕ s be its Cartan decomposition.

We assume from now on that g is simple and that ad(l) is reducible on
q. Take an element H0 ∈ l∩ s whose centralizer is l (for the existence of H0,
see [3], p. 303). We observe that ad(H0) : g → g is a symmetric operator,
hence all its eigenvalues are real. Let Π0 be the set of nonzero eigenvalues
of ad(H0). Since l is the centralizer of H0 we have ad(H0)(g) = ad(H0)(q).
Hence Π0 is the set of eigenvalues of the restriction ad(H0) : q → q. Let qλ

be the eigenspace associated with λ ∈ Π0. Then q =
∑

λ∈Π0
qλ. Since ad(H0)

is a derivation, we have [qλ, qγ] ⊂ qλ+γ, for all λ, γ ∈ Π0 and
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(i) if λ ∈ Π0 then −λ ∈ Π0,

(ii) 〈qλ, qγ〉 = 0 if λ + γ 6= 0,

(iii) for each λ ∈ Π0, qλ is ad(l)-invariant.

Let λ ∈ Π0. By (i) above, −λ ∈ Π0. Since 〈·, ·〉 is nondegenerate on q we
have by (ii) above that 〈·, ·〉 is nondegenerate on qλ + q−λ. Also qλ + q−λ is
ad(l)-invariant (by (iii) above). Since g is simple we have by Proposition 4.6,
that q = qλ + q−λ. Therefore Π0 = {λ,−λ} with λ > 0.

Let a ⊆ s be a maximal abelian subspace, with H0 ∈ a. Also, let Π be the
set of roots of the pair (g, a). Choose a Weyl chamber, say a+, which contains
H0 on its boundary. Denote by Π+ the set of positive roots associated with
a+, and let Σ be the system simple of roots corresponding to Π+. By the
choice of Π+,

α(H0) = 0 or λ for all α ∈ Π+.

We claim that there exists a single α0 ∈ Σ such that α0(H0) 6= 0. In fact, let

γ =
∑
α∈Σ

mαα (8)

be the highest root. For all α ∈ Σ, the integer mα that appears in (8) is
positive (see [4], p. 475). Since ad(H0) has exactly one positive eigenvalue
we conclude that there exists at most one α0 ∈ Σ such that α0(H0) 6= 0. On
the other hand, there exists at least one α0 ∈ Σ with α0(H0) 6= 0, because
Σ is a basis of the dual of a. Since α0(H0) = λ, we should have γ(H0) = λ.
Moreover mα0 = 1.

Let
Θ = {α ∈ Σ : α(H0) = 0} = Σ \ {α0}.

Also, let 〈Θ〉 be the set of all linear combinations of the elements of Θ, and
let

〈Θ〉± = 〈Θ〉 ∩ Π±.

For each α ∈ Π and X ∈ gα we have

[H0, X] = ad(H0)(X) = α(H0)X.

So that if α ∈ 〈Θ〉± then gα ⊂ l, and if α ∈ Π+ \ 〈Θ〉+ then g±α ⊂ q±λ.
Consequently, lΘ ⊂ l and n±Θ ⊂ q±λ. Now

lΘ + n+
Θ + n−Θ = g = l + qλ + q−λ
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and from a dimension argument, we must have l = lΘ, qλ = n+
Θ and q−λ = n−Θ.

Note that n+
Θ is abelian. In fact, as n+

Θ is a subalgebra, we have that
[n+

Θ, n+
Θ] ⊂ n+

Θ ⊂ q. On the other hand [n+
Θ, n+

Θ] ⊂ lΘ, from relations (3) in
Section 1. Therefore [n+

Θ, n+
Θ] = 0. Similarly n−Θ is abelian.

Our next step is to study the representation of lΘ (induced by adjoint
representation of g) on q = n+

Θ + n−Θ.

Lemma 4.7 If g is simple, then n+
Θ and n−Θ are ad(lΘ)-irreducible.

Proof: Let
n+

Θ = u1 ⊕ · · · ⊕ un

and
n−Θ = un+1 ⊕ · · · ⊕ um

be the decompositions into irreducible components. Note that, for each 1 ≤
k ≤ m, we have uk ⊂ u⊥k , where v⊥ = {X ∈ q : 〈X, v〉 = 0}. Moreover, for
each 1 ≤ j ≤ n and n + 1 ≤ k ≤ m we have, by Proposition 4.6, that

(uj + uk) ∩ (uj + uk)
⊥ 6= {0}.

Let X + Y ∈ (uj + uk) ∩ (uj + uk)
⊥, with X ∈ uj\{0} and Y ∈ uk. We have

that,
0 = 〈X + Y, Z〉 = 〈X, Z〉+ 〈Y, Z〉 = 〈X, Z〉,

for all Z ∈ uk. It then follows that X ∈ u⊥k . So that

X ∈ (uj + uk) ∩ u⊥j ∩ u⊥k = (uj + uk) ∩ (uj + uk)
⊥,

i.e., (uj +uk)
⊥∩uj 6= {0}. Recall that uj is irreducible, hence uj ⊂ (uj +uk)

⊥.
Consequently, uj is orthogonal to uk. Since j and k are arbitrary, we conclude
that n+

Θ and n−Θ are orthogonal to each other. But this is a contradiction. So,
n+

Θ and n−Θ are irreducible.

Actually, we have the following more general lemma.

Lemma 4.8 If g is simple, then n+
Θ and n−Θ are the only ad(lΘ)-invariant

subspaces.
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Proof: Suppose that u ⊂ q = n+
Θ +n−Θ is a proper ad(lΘ)-invariant subspace.

We first show that n+
Θ + u = q. Since n±Θ ∩ u are ad(lΘ)-invariant, and n±Θ are

irreducible, we shall have either u∩ n±Θ = {0}, or n±Θ properly contained in u.
Suppose, for example, that n+

Θ ( u and let X ∈ u \ n
+
Θ. So if X = X+ + X−

with X± ∈ n±Θ, we have that X− 6= 0 and

X− = X −X+ ∈ u ∩ n−Θ.

Since n−Θ is irreducible, we have u ∩ n−Θ = n−Θ and so u = q. Consequently, if
u is an ad(lΘ)-invariant proper subspace of q, we should have u ∩ n±Θ = {0}.
Now,

(n+
Θ + u) ∩ (n+

Θ + u)⊥ = n+
Θ ∩ u⊥ = {0},

because n+
Θ is irreducible. In fact, we will show that n+

Θ ∩ u⊥ 6= n+
Θ. Let

X ∈ u, with X 6= 0. Let X = X+ + X−, where X± ∈ n±Θ. Since u does not
intercept n±Θ, we have X+ 6= 0 and X− 6= 0. There exists Y ∈ n+

Θ such that
〈X−, Y 〉 6= 0. Hence,

〈X,Y 〉 = 〈X−, Y 〉 6= 0

and then Y /∈ u⊥. Therefore, by Proposition 4.6, n+
Θ + u = q. Analogously,

n−Θ + u = q.
Thus for each X+ ∈ n+

Θ (resp. Y− ∈ n−Θ), there are unique elements
X− ∈ n−Θ (resp. Y+ ∈ n+

Θ) and X, Y ∈ u such that X+ = X− + X (resp.
Y− = Y+ + Y ). This shows that the map

P : n+
Θ −→ n−Θ,

P (X+) = X− is well defined, and is bijective. Furthermore, it is easy to see
that P is a linear isomorphism. Note that

u = {X − P (X) : X ∈ n+
Θ}.

By ad(lΘ)-invariance of u we have for all H ∈ lΘ and X ∈ n+
Θ that

ad(H)(X)− ad(H)P (X) = ad(H)(X − P (X)) ∈ u.

Hence, ad(H)◦P (X) = P ◦ad(H)(X) for all H ∈ lΘ and X ∈ n+
Θ. Therefore,

ad(H) ◦ P = P ◦ ad(H).

This means that adjoint representations of lΘ on n+
Θ and n−Θ are equivalent.

But that is a contradiction, because ad(H0) has eigenvalues such as λ in n+
Θ
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and −λ in n−Θ. Therefore, there is no such subspace as u.

The following subalgebra of g

p−Θ := θ(pΘ) = θ(n−(Θ) + p) = n+(Θ) + θ(p) = lΘ + n−Θ

is a parabolic subalgebra and its nilradical is n−Θ (see [6]). Let N+
Θ = exp(n+

Θ)
and N−

Θ = exp(n−Θ).

Theorem 4.9 Suppose that G is simple. Take x ∈ G\(N+
Θ N(lΘ)∪N−

Θ N(lΘ)).
Then the semigroup S(L, x) generated by the coset Lx has nonempty interior
in G.

Proof: Keep the notation of the proof of Theorem 2.3. It is enough to show
that if x /∈ N+

Θ N(lΘ) ∪N−
Θ N(lΘ) then W (L, x) ∩ q = q.

It follows by Lemma 4.10 that Ad(x)(lΘ) 6⊂ pΘ and Ad(x)(lΘ) 6⊂ p−Θ.
Hence W (L, x) ∩ q 6⊂ n±Θ. Moreover, W (L, x) ∩ q 6= {0} because x /∈ N(lΘ).
Since W (L, x)∩q is ad(lΘ)-invariant we have by Lemma 4.8 that W (L, x)∩q =
q.

Lemma 4.10 Let x ∈ G be such that Ad(x)(lΘ) ⊂ pΘ (resp. Ad(x)(lΘ) ⊂
p−Θ). Then x ∈ N+

Θ N(lΘ) (resp. x ∈ N−
Θ N(lΘ)).

Proof: We have Ad(x)(aΘ) ∩ n+
Θ = {0}, because the elements of aΘ are

semi-simple (aΘ ⊂ a ⊂ s) and conjugates of the semi-simple elements are
semi-simple (see [10], p. 9), while the elements of n+

Θ are nilpotent. Moreover,
Ad(x)(mΘ) ∩ n+

Θ = {0}. In fact, if X ∈ Ad(x)(mΘ) ∩ n+
Θ, then we have

〈X,Y 〉 = 0 for all Y ∈ pΘ,

because pΘ = (n+
Θ)⊥. Since the Cartan-Killing form of g when restricted

to Ad(x)(mΘ), is nondegenerate, we have X = 0. Hence, if x ∈ G is such
that Ad(x)(lΘ) ⊂ pΘ, then pΘ = Ad(x)(lΘ) + n+

Θ. Consequently, there ex-
ists n ∈ N+

Θ such that Ad(x)(lΘ) = Ad(n)(lΘ) (see [10], p. 282). Then
Ad(n−1x)(lΘ) = lΘ. Consequently, n−1x ∈ N(lΘ) and x ∈ N+

Θ N(lΘ). Analo-
gously, it is easy to see that if Ad(x)(lΘ) ⊂ p−Θ then x ∈ N−

Θ N(lΘ).

Combining Proposition 4.4 and Theorem 4.9 we get at once the following
result.
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Theorem 4.11 Assume that G is simple has finite center, and that (g, τ) is
not regular. If S is a semigroup of G such that L ⊂ S and S 6⊂ N+

Θ N(lΘ) ∪
N−

Θ N(lΘ), then S = G.
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