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Abstract
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them to the controllability of the system. The full picture is provided by the
parabolic type of a semigroup.
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1 Introduction

Let
ẋ = Ax+ uBx, x ∈ Rn \ {0}, u ∈ R, (1)

be a bilinear control system where A and B are n × n-matrices. The problem we
address in this note concerns the relation between complete controllability of (1)
and the (non) existence of proper convex cones and convex sets in Rn which are
invariant under the system. This is a natural question since the most direct way
of checking that a control system is not controllable is by showing the existence of
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some invariant proper subset of the state space. For bilinear control systems one
should search invariant sets among the convex sets and in particular among the
convex cones, because if a set C is invariant under (1) then the convex closure of C
is also invariant.
In this perspective we can ask whether the condition of do not leaving a proper

cone W ⊂ Rn invariant is necessary and sufficient for the bilinear control system
to be completely controllable. This question was made in Sachkov [4] where it is
conjectured that a control systems with B = diag(b1, . . . , bn) regular, that is, bi 6= bj
if i 6= j is controllable in Rn\{0} if and only if there are no positive and negative
invariant orthants and the system satisfies the Lie algebra rank condition.
In this article we analyze this question under the light of the classification of

semigroups into their parabolic types (see [7], [11] and [12]). We consider mainly
the case where the group of the system is the special linear group Sl(n,R).
We explain briefly the idea. Let S ⊂ Sl(n,R) be a semigroup with intS 6= ∅. Any

g ∈ S maps lines of Rn into lines, giving rise to an action of S in the projective space
Pn−1. It can be proved that there exists a unique invariant control set C ⊂ Pn−1
for S in Pn−1 (see [5]). Let D ⊂ Rn be the union of the lines belonging to C. The
invariance of C implies that D is S-invariant. Now, if C is nicely included in Pn−1
then the subset D is a union of a double cone in Rn. In this case (and only in this
case) S leaves invariant a proper cone in Rn.
The description of the cases where C is nicely included in Pn−1 is given by the

parabolic type of S. This is a partition of n, that is, a finite sequence of integers
r1, . . . , rk with r1+· · ·+rk = n. In case r1 = 1, and only in this case the semigroup S
leaves invariant a proper cone in Rn. Taking in particular the semigroup generated
by the control system, the classification of the semigroups gives the complete picture
of the existence of invariant cones. In conclusion it shows that there are several cases
where the system is not controllable but does not have invariant a proper cone.
Guided by this classification we work out concrete examples of this phenomenon.
In concluding this introduction we mention that the concept of parabolic type of

a semigroup is applicable to subsemigroups of general noncompact semi-simple Lie
groups. Although we work here only with Sl(n,R) the methods should, in principle
work for other semi-simple Lie groups acting transitively in Rn, appearing in the
Boothby [1] classification.
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2 Controllability on different spaces

Given the bilinear control system (1) we denote by gΣ the Lie algebra of matrices
generated by A and B and by GΣ the group of the system, which is the connected
Lie subgroup whose Lie algebra is gΣ. Also, we let SΣ ⊂ GΣ stand for the semigroup
of the system:

SΣ = {eX1 · · · eXl : Xi = A+ uiB, ui ∈ R}.
It is well known that SΣ has nonempty interior in GΣ.
By definition the system (1) is completely controllable in Rn \{0} if SΣ is transi-

tive in Rn \ {0}, that is, SΣx = Rn \ {0} for all x ∈ Rn \ {0}. A necessary condition
for complete controllability is that GΣ acts transitively in Rn \ {0}. The connected
linear groups transitive on Rn \ {0} where classified long ago by Boothby [1]. Such
a group G has reductive Lie algebra g (that is, g is the direct sum of its center by
a semi-simple Lie algebra). One of these transitive Lie groups is the identity com-
ponent Gl0(n,R) of the general linear group Gl(n,R), whose Lie algebra gl(n,R)
decomposes as

gl(n,R) = Rid⊕ sl(n,R),
where sl(n,R) are the zero trace matrices, which is the Lie algebra of Sl(n,R), the
unimodular group. At the group level we have Gl0(n,R) = (R+id)× Sl(n,R).
We recall some controllability properties in the case when gΣ is sl(n,R). In

this case the semigroup SΣ of the system has nonempty interior in Sl(n,R). This
semigroup is the accessible set from the identity of the right invariant system defined
by the matrices of the bilinear system. The following result shows that controllability
in Rn\{0} is equivalent to controllability in Sl(n,R).
Proposition 2.1 Let S ⊂ Sl(n,R) be a semigroup with intS 6= ∅. Then S is
transitive on Rn\{0} if and only if S = Sl(n,R).
Proof: The action of S on Rn\{0} induces an action of S in the projective space
Pn−1 given by g[v] = [gv], where [u] denote the class of u ∈ Rn\{0} in Pn−1. By
g[v] = [gv] it follows that S is transitive on Pn−1 if it is transitive on Rn\{0}. But
if S is transitive on Pn−1 then S = Sl(n,R), by [12], Theorem 6.2 (see also [9]). ¤

In case gΣ = gl(n,R) we can associate to (1) a new system evolving on Sl(n,R) as
follows. Take A ∈ gl(n,R) and consider δ(A) = tr(A)

n
and eA = A− δ(A)id, where id

denote the identity n× n matrix. It follows that eA ∈ sl(n,R) and A = eA+ δ(A)id.
By this decomposition, associated to a system Σ ⊂ gl(n,R), we have the systemeΣ = { eA such that A ∈ Σ} ⊂ sl(n,R).
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Proposition 2.2 Suppose that Σ generates gl(n,R). Then Σ̃ is controllable if Σ is
controllable

Proof: Note that an element in SΣ can be represented by products of exponentials
like

expX = exp(δ(X)) exp(X̃). (2)

Therefore the elements of SΣ are of the form λg with λ > 0 and g ∈ SΣ̃. Since the
action of λg on Pn−1 coincides with the action of g, it follows that SΣ̃ is transitive
on Rn\{0} if SΣ is transitive. Therefore, by Proposition 4.3 in [5], Σ̃ is controllable
if Σ is controllable. ¤

This result shows that the analysis of controllability for zero trace matrices is
essential in the study of controllability of bilinear systems. And in this way, we also
have the following result that generalizes the Proposition 6.3 of [2].

Proposition 2.3 Suppose that Σ̃ is controllable and assume that SΣ is transitive
on a ray r starting in the origin of Rn, that is, for every pair x, y ∈ r there exists
g ∈ SΣ such that gx = y. Then Σ is controllable on Rn\{0}.

Proof: Since SΣ̃ is transitive on Rn\{0} it is transitive on the rays, i. e., given two
rays r1 and r2 there exists g ∈ SΣ̃ with gr1 = r2. Since SΣ acts on the rays as SΣ̃
does, we have that SΣ is also transitive on the rays. Take x ∈ r and let y ∈ Rn\{0}
be an arbitrarily element. Let r1 a rays which contains y. Then there is g ∈ SΣ
such that gr1 = r so that gy ∈ r. Hence there exists h ∈ SΣ such that ghy = x.
Analogously, there is g1 ∈ SΣ with g1r = r1. Then g−11 y ∈ r and there is h1 ∈ SΣ
such that h1x = g−11 y, i.e., g1h1x = y. Therefore SΣ is transitive on Rn\{0}. ¤

Considering invariant cones note that by decomposition (2) a coneW is invariant
under Σ if and only if it is invariant under Σ̃. On the other hand there may have
convex sets invariant under Σ but not invariant under Σ̃ as show the 2-dimensional
system where

A =

µ −2 0
0 −1

¶
and B =

µ
0 −1
1 0

¶
.

Then any ball {(x, y) ∈ R2 : x2+ y2 ≤ ρ}, ρ ≥ 0, is Σ-invariant but not Σ̃-invariant.
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3 Parabolic type of a semigroup

Regarding the existence of invariant cones the full picture is given by the concept of
parabolic type of a semigroup (cf. [7], [8] and [12]). This concept describes several
properties of semigroups in general semi-simple Lie groups. In this section we make
an exposition specific for semigroups in Sl(n,R).
The parabolic type emerges with the study of the action of semigroups in the

flag manifolds. Thus take a finite sequence of integers Θ = {r1, . . . , rk} with 0 <
r1 ≤ · · · ≤ rk < n and denote by FΘ the flag manifold made of all flags

(V1 ⊂ · · · ⊂ Vk)

of subspaces Vi ⊂ Rn with dimVi = ri, i = 1, . . . , k. Each FΘ is a compact manifold
where Sl(n,R) acts transitively.
We say that the sequence Θ1 = {s1, . . . , sm} is refined by Θ = {r1, . . . , rk} if

Θ1 ⊂ Θ, that is, m ≤ k and for every j = 1, . . . ,m there exists i such that sj = ri.
In case Θ1 refines Θ there exists a map πΘΘ1 : FΘ → FΘ1 which is given by forgetting
the subspaces whose dimensions appear inΘ but not inΘ1. Of particular importance
is the full flag manifold, which is given by the sequence ΘM = {1, 2, . . . , n− 1} and
denoted simply by F. The sequence ΘM refines any sequence Θ. Hence for every Θ
we have a map πΘ : F→ FΘ.
Let S ⊂ Sl(n,R) be a semigroup with intS 6= ∅. Then S also acts in FΘ. Recall

that an invariant control set for the action of S on FΘ is a subset C ⊂ FΘ such that
cl (Sx) = D for all x ∈ C and C is maximal with this property. It is known that
an invariant control set is closed and its interior intD is dense in D. Also, in each
flag manifold FΘ there exists just one invariant control set for the action of S. In
the sequel we denote this unique invariant control set by CΘ. We denote simply by
C the invariant control set in the full flag manifold F.
As a consequence of the results of [12] we have the following fact.

Theorem 3.1 Suppose that S 6= Sl (n,R). Then there are flag manifolds FΘ such
that C = π−1Θ (CΘ). Among these flag manifolds there is exactly one, say FΘ(S),
which is minimal, that is, if C = π−1Θ (CΘ) = π−1Θ(S)

¡
CΘ(S)

¢
then Θ is a refinement

of Θ (S).

Proof: For a proof see Theorem 4.3 in [12]. ¤

Definition 3.2 The flag manifold FΘ(S) of the above theorem is called the parabolic
type or flag type of S. We also say that Θ (S) is the parabolic type of S.
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The invariant control setCΘ(S) in the flag type FΘ(S) of S has a nice contractibility
property. To state this property we introduce the following notations: Let us say that
an element h ∈ Sl(n,R) is regular if it has real distinct eigenvalues λ1 > · · · > λn > 0.
Given a regular element h let β (h) = {e1 (h) , . . . , en (h)} be a basis of eigenvectors
of h ordered by decreasing ordering of the eigenvalues, and denote by N (h) the
subgroup of Sl(n,R) given by lower triangular matrices with respect to β (h). Note
that for any n ∈ N (h) the product h−knhk converges to the identity matrix when
k → +∞.
For a sequence Θ = {r1, . . . , rk} let bΘ (h) ∈ FΘ be the flag

bΘ (h) = (span{e1 (h) , . . . , er1 (h)} ⊂ span{e1 (h) , . . . , er2 (h)} ⊂ · · · ) (3)

spanned by the vectors of β (h). Then the orbit N (h) · bΘ (h) is open and dense in
the flag manifold FΘ.
Now let S ⊂ Sl(n,R) be a semigroup with intS 6= ∅ and denote by reg (S) the set

of regular elements in intS. It is known that reg(S) 6= ∅ and the following property
in the flag type FΘ(S) of S holds.

Proposition 3.3 Let CΘ(S) ⊂ FΘ(S) be the invariant control set in the FΘ(S), the
flag type of S. Then for any h ∈ reg(S) we have CΘ(S) ⊂ N (h) · bΘ(S) (h).

Proof: For a proof see Proposition 4.8 in [12]. ¤

Corollary 3.4 For any Θ contained in Θ (S) we have CΘ ⊂ N (h) · bΘ (h).

Proof: In fact, if π : FΘ(S) → FΘ is the natural projection then π
¡
CΘ(S)

¢
= CΘ and

π
¡
N (h) · bΘ(S)

¢
= N (h) · bΘ (h). ¤

We note that once we know the invariant control set CΘ(S) in the parabolic
type FΘ(S) then every invariant control set is known because for any Θ we have
CΘ = πΘ (C) and C = π−1Θ(S)

¡
CΘ(S)

¢
.

To see the parabolic type of the inverse semigroup S−1 we must introduce the
notion of dual flag manifold. Given Θ = {r1, . . . , rk} with 0 < r1 ≤ · · · ≤ rk < n
define Θ∗ = {n− rk, . . . , n− r1}. The flag manifold FΘ∗ is said to be dual of FΘ.
The following statement was proved in [7].

Proposition 3.5 The parabolic type of S−1 is given by the flag manifold FΘ(S)∗ dual
to the parabolic type FΘ(S) of S.
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4 Invariant cones

Let S ⊂ Sl(n,R) be a connected, proper semigroup with non-empty interior and
containing the identity in its closure. Clearly these assumptions are satisfied by the
semigroup of a control system.
We look at the existence of S-invariant cones in Rn via the invariant control set

of S in the projective space Pn−1. For simplicity we write a cone to mean a closed
convex cone in Rn.
Of course, Pn−1 is the flag manifold corresponding to the sequence ΘP = {1}.

The invariant control set in Pn−1 is given by CΘP = πΘP (C) where C = π−1Θ(S)
¡
CΘ(S)

¢
is the invariant control set on the full flag manifold and where FΘ(S) is the parabolic
type of S.
We start by noting that invariant cones are necessarily pointed and generating.

Lemma 4.1 Let S ⊂ Sl(n,R) be a semigroup with non-empty interior. If {0} 6=
W ⊂ Rn is a proper S-invariant cone then W is pointed (that is, W ∩ −W = {0})
and generating (that is, intW 6= ∅).

Proof: Put H =W ∩−W . ThenH is an S-invariant vector subspace. We have also
that H is S−1-invariant. In fact, if g ∈ S then gH ⊂ H. But g is invertible so that
gH is a subspace ofH with dim gH = H, that is, gH = H. ConsequentlyH = g−1H.
But since intS 6= ∅ the group Sl (n,R) is generated by S ∪ S−1. This implies that
H is Sl (n,R)-invariant and hence H = {0} because Sl (n,R) is irreducible and W
is assumed to be proper. This shows that W is pointed.
To see that W is generating note that for any 0 6= x ∈ W the set Sx ⊂ W and

it has nonempty interior because the map g ∈ Sl (n,R) 7→ gx ∈ R is an open map. ¤

In the sequel we let p : Rn\{0}→ Pn−1 be the natural projection and write also
[x] = p (x) for the class of x 6= 0. For a subset U ⊂ Rn\{0}, we write [U ] ⊂ Pn−1 for
its projection on Pn−1, that is,

[U ] = {[(x1, . . . , xn)] ∈ Pn−1 such that (x1, . . . , xn) ∈ U}.

Theorem 4.2 Let S ⊂ Sl(n,R) be a connected, proper semigroup with non-empty
interior and containing 1. Denote Θ(S) = {r1, . . . , rk} its parabolic type. If r1 = 1
(that is, if ΘP ⊂ Θ (S)) then there exists an S-invariant proper cone W ⊂ Rn.

Proof: We begin by choosing a good coordinates for Rn. Take h ∈ reg (S). As
before, let β (h) = {e1 (h) , . . . , en (h)} be a basis of eigenvectors of h ordered by
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decreasing ordering of the eigenvalues. In this case bΘP (h) = [e1 (h)] and it is easy
to see that the orbit N (h) bΘP (h) is the subset [M ], where M is the affine subspace

M = {(x1, . . . , xn) : x1 = 1}.

Also, the restriction of p to M is a diffeomorphism.
By Proposition 3.4 we have CP ⊂ [M ]. Define M1 = p−1 (CP) ∩ M , so that

CP = [M1]. Now, CP is compact, hence M1 is compact as well.
Now let D ⊂M be the convex closure of M1 and W the cone generated by M1.

We have W = R+D and D is a cone basis of W . Since D is the convex closure of
the compact set M1, it is also compact. This implies that W is a pointed cone. It
is also easy to see that this cone is generating because intCP 6= ∅, hence intD 6= ∅.
It remains to check thatW is S-invariant. Since CP is invariant and p (M1) = CP

we conclude that the subset (R \ {0})M1 is also invariant. Now, S is assumed to be
connected. This implies that CP and hence M1 are connected. Furthermore, since
for every x ∈ Rn \ {0} the map g ∈ S 7→ gx ∈ Rn is continuous we conclude that S
leaves invariant the connected components of (R \ {0})M1. The subset R+M1 is one
of these components. Hence R+M1 is invariant, implying that its convex closure,
that is, W is S-invariant. ¤

For the converse to the above theorem we note the following facts.

Lemma 4.3 Let W ⊂ Rn be a cone which is S-invariant. Then CP ⊂ [W ].

Proof: In fact, [W ] ⊂ Pn−1 is closed (and hence compact) and S-invariant. Then
[W ] contains an invariant control set. But in Pn−1 there is exactly one invariant
control set, showing the lemma. ¤

Lemma 4.4 Let W ⊂ Rn be a pointed cone and suppose that V ⊂ Rn is a vector
subspace with [V ] ⊂ [W ]. Then dimV = 1.

Proof: Suppose that dimV ≥ 2. Then there exist u, v ∈ V , linearly independent,
with u ∈ W and v ∈ −W . Consider the convex function f(t) = tu + (1 − t)v and
note that f(t) ∈ V ⊂W ∪−W for 0 ≤ t ≤ 1. Take t0 = sup{t : tu+(1−t)v ∈ −W}.
As W and −W is closed it follows that t0u+(1− t0)v ∈W ∩−W which contradicts
the hypothesis that W ⊂ Rn is a pointed cone. ¤
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Theorem 4.5 Let S ⊂ Sl(n,R) be a semigroup satisfying the same assumptions as
before and write its parabolic type as Θ (S) = {r1, . . . , rk}. Assume that W ⊂ Rn is
a proper cone S-invariant. Then r1 = 1, that is, ΘP refines Θ (S).

Proof: Consider the natural fibrations

πΘ(S) : F→ FΘ(S) and π1 : F→ Pn−1.

We have CP = π1 (C) and C = π−1Θ(S)
¡
CΘ(S)

¢
, where C, CP and CΘ(S) are the

invariant control sets in the full flag manifold F, in the projective space and in FΘ(S),
respectively. Take f ∈ CΘ(S). It is a flag of the type

(V1 ⊂ · · · ⊂ Vk)

with dimV1 = r1. The fiber π−1Θ(S){f} above is entirely contained in C. This fiber
contains the complete flags (W1 ⊂ · · · ⊂Wn−1) such that dimWi = i and Wrj =
Vj, j = 1, . . . , k. This implies that the projection CP = π1 (C) contains the k1-
dimensional subspace [V1].
Now, let W be an S-invariant proper cone. Then W is a pointed cone and

CP ⊂ [W ] by Lemma 4.3. Hence [V1] ⊂ [W ], so that by Lemma 4.4, we have
k1 = dimV1 = 1, concluding the proof. ¤

Combining the above theorems with Proposition 3.5 we arrive immediately at
the following characterization of the semigroups having backward invariant cones.

Corollary 4.6 Let S be as above with Θ (S) = {r1, . . . , rk}. Then there exists a
S−1-invariant proper cone if and only if rk = n− 1.

5 Invariant convex sets

We improve here the above results by showing that there are no S-invariant convex
sets in case r1 > 1 is the parabolic type of S. This will require another general
result on semigroups. To state it let Θ(S) = {r1, . . . , rk} be the parabolic type of S.
Take h ∈ reg(S) and let β(h) = {e1(h), . . . , en(h)} be the basis which diagonalizes
h with decreasing eigenvalues. Denote by PΘ(S)(h) the subgroup of those elements
in Sl(n,R) whose matrices with respect to β(h) are block upper triangular matrices
of the form  A1 · · · ∗

...
. . .

...
0 · · · Ak
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with diagonal blocks of sizes r1, r2− r1, . . ., n− rk. Clearly, h ∈ PΘ(S)(h)∩ intS, so
that SΘ(S)(h) = PΘ(S)(h) ∩ intS is a non void open semigroup of PΘ(S)(h).
Before proceeding we discuss briefly the well known structure of PΘ(S)(h). Con-

sider the following subgroups of PΘ(S)(h):

• MΘ(S)(h) the subgroup of unimodular block diagonal matrices A1 · · · 0
...

. . .
...

0 · · · Ak

 (4)

with detAi = 1.

• QΘ(S)(h) the subgroup of upper triangular matrices having scalar matrices on
the blocks  a1id · · · ∗

...
. . .

...
0 · · · akid

 . (5)

Then there is the decomposition PΘ(S)(h) =MΘ(S)(h)QΘ(S)(h). Also, letQ0
Θ(S)(h) ⊂

QΘ(S)(h) be the subgroup formed by those matrices in (5) with aj > 0. Then
Q0

Θ(S)(h) is the identity component of QΘ(S)(h) and P 0
Θ(S)(h) =MΘ(S)(h)Q

0
Θ(S)(h) is

the identity component of P 0Θ(S)(h). Furthermore, PΘ(S)(h) has a finite number of
connected components.
Now, we have the following result proved in [12] (see Theorem 4.1 and the dis-

cussion before it; see also [3], Lemma 5.3 and Corollary 5.4).

Proposition 5.1 Let the notations be as above with h ∈ reg(S). Then for every
g ∈MΘ(S)(h) there exists

q =

 a1id · · · ∗
...

. . .
...

0 · · · akid

 ∈ Q0
Θ(S)(h)

such that gq ∈ SΘ(S)(h) ⊂ intS. Furthermore, we can chose q so that a1 > · · · >
ak > 0 (in particular a1 > 1, since det q = 1).

As a consequence we have the transitivity result.
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Proposition 5.2 Let the notations be as above with h ∈ reg(S) and SΘ(S)(h) =
PΘ(S)(h) ∩ intS. Let bΘ (h) be the flag spanned by β (h) (see (3)) and write V1(h) =
span{e1 (h) , . . . , ek1 (h)} for the first vector subspace in bΘ (h). Suppose that r1 > 1.
Let {0} 6= K ⊂ V1(h) be a convex set invariant by SΘ(S)(h). Then K = V1(h).

Proof: Take 0 6= x ∈ K. Then for any y ∈ V1(h) \ {0}, there are linear maps
A1, A2 ∈ V1(h) → V1(h) with determinant 1 such that A1x = y and A2x = −y.
Then

gi =

 Ai · · · 0
...

. . .
...

0 · · · id

 ∈MΘ(S)(h) i = 1, 2.

Hence by Proposition 5.1 there are q1, q2 ∈ Q0
Θ(S)(h) such that giqi ∈ intS, i = 1, 2.

Note that for any z ∈ V1(h) and q ∈ Q0
Θ(S)(h) we have qz = az, a ∈ R, and

we can choose qi such that q1z = a1z and q2z = a2z with a1, a2 > 1. Therefore,
g1x = a1A1x = a1y and g2x = −a2y. By invariance of K we have that a1y and −a2y
belong to K, and since a1, a2 > 1 we conclude that the segment from −y to y is
contained inK. This holds for arbitrary y ∈ V1(h)\{0}, showing thatK = V1(h). ¤

Theorem 5.3 Let S ⊂ Sl(n,R) be a semigroup satisfying the same assumptions as
before and write its parabolic type as Θ (S) = {r1, . . . , rk}. Assume that S leaves
invariant a proper convex set {0} 6= K ⊂ Rn. Then r1 = 1.

Proof: Let K 6= {0} be an invariant convex set and assume that r1 > 1. First
we claim that V1(h) ⊂ K for every h ∈ regS. In fact, if h ∈ regS then bΘ(S)(h)
belongs to the set of transitivity C0

Θ(S) of the invariant control set CΘ(S). Hence by
Theorem 3.1 the whole subspace [V1(h)] is contained in C0

P. Now the uniqueness
of the invariant control set implies S is backwards controllable from every y ∈ C0

P,
that is, for every x ∈ Pn−1 there exists g ∈ S such that g · x = y. Hence if we take
v ∈ K there exists g ∈ S such that g · [v] ∈ [V1(h)] or equivalently, gv ∈ V1(h). By
invariance of K it follows that the convex set V1(h) ∩ K is not empty. Hence by
Proposition 5.2 we conclude that V1(h) ⊂ K, as claimed.
Now, let F =

S
V1(h) with h running through regS. By the above, F ⊂ K.

Since regS is an open subset of Sl(n,R), it follows that F generates Rn. Also,
−F = F , hence Rn is the convex closure of F , because every linear combination of
F is already a convex combination. Thus K = Rn, concluding the proof. ¤

The above theorem has the following immediate consequences.
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Corollary 5.4 A semigroup S ⊂ Sl(n,R) with intS 6= ∅ admits invariant proper
convex sets if and only if it leaves invariant a proper convex cone.

Corollary 5.5 Let S be as above with Θ (S) = {r1, . . . , rk}. Then there exists a
S−1-invariant proper convex set if and only if rk = n− 1.

6 An example

In this section we work out an example of a noncontrollable system which does not
admit proper invariant cones nor proper convex sets forward and backward in time.
Our example is in dimension 4. This is the smallest possible dimension in view of
Proposition 7.1 below.
We denote by {e1, . . . , e4} the standard basis of R4 and by Eij the basic matrix

having entry 1 at the i, j-position and 0 elsewhere.
Consider the control system A+ uB with

A =


0 1 0 −2
1 0 1 0
0 1 0 1
−2 0 1 0


and B = diag{b1, b2, b3, b4} with trB = 0 and such that b2 > b1, b4 > b3 and
bi − bj 6= br − bs if {i, j} 6= {r, s}.
This system satisfies the Lie algebra rank condition. In fact, the last condition

on B implies that the brackets ad (B)k A, k ≥ 0 span the subspace of those matrices
having zero entries at the positions of the zero entries of A. Hence the basic matrices
Eij, |i− j| = 1 belong to the Lie algebra generated by A and B. But it is easy to
check that these basic matrices generate sl(4,R), which shows that this is the Lie
algebra generated by A and B. Hence, it follows that the semigroup S of the system
has nonempty interior in Sl(4,R).
For a direct computations, using mathematical softwares, we can take for in-

stance B = diag{1, 4,−2,−3}, the matrix A as above and to verify that A, B,
ad (B)kA with 1 ≤ k ≤ 7, ad (A)lB with l = 2, 4, 6, 8, ad (B) (ad (A)2B) and
ad (A)2 (ad (B) (ad (A)2B)) form a basis of sl(4,R).
On the other hand by Proposition 2 of [10] we have that both matrices A and

B belong to the Lie wedge of a proper semigroup of Sl(4,R), so that S 6= Sl(4,R),
implying that the system is not controllable.
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It is easy to check that neither A nor −A leave invariant an orthant of R4. In
fact, by [4], Lemma 1, a matrix X = (xij) leaves invariant the orthant with signs
(ε1, . . . , εn) if and only if εiεjxij > 0. Applying this condition to ±A we arrive at
the contradiction that ε1ε4 must be simultaneously +1 and −1, so that there are no
invariant orthants.
The verification that there are no invariant cones is more involved. To this end

we start by noting that an easy computation shows that the eigenvalues of A are

1
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2

√
13,

1

2
− 1
2

√
13,−1

2
+
1

2

√
13,−1

2
− 1
2

√
13

with 1
2
+ 1

2

√
13 the largest one and −1

2
− 1

2

√
13 the smallest. The eigenspace of

1
2
+ 1

2

√
13 is spanned by

vmax =

µ
1,−3

2
+
1

2

√
13,

3

2
− 1
2

√
13,−1

¶
which belongs to the orthant (+,+,−,−).
Now, suppose that W is a proper cone invariant by forward trajectories of the

system. By Lemma 4.1W is a generating cone. ThenW must intercept the principal
eigenspace of A, that is, one of the rays R+vmax or −R+vmax must be contained in
W . To fix ideas let us suppose that R+vmax ⊂ W . Let lmax be the ray spanned by
vmax. By the choice of the ordering of the eigenvalues of B we have that (exp tB) lmax
converges to R+e2 when t→ +∞ and converges to −R+e3 as t→ −∞. Since exp tB
belongs to the closure of the control semigroup for all t ∈ R we conclude that the
rays R+e2 and −R+e3 are contained in W .
On the other hand define f : R → R by f (t) = h(exp tA) e2, e3i. Then f 0 (0) =

hAe2, e3i = 1. So that there exists small t0 > 0 such that f (t0) > 0, that is,
(exp t0A) e2 belongs to the half-space hx, e3i > 0. Clearly, (exp t0A) e2 ∈ W since
W is forward invariant and e2 ∈W . Now, let lt0 be the ray spanned by (exp t0A) e2.
Then (exp tB) lt0 converges to the ray R+e3 as t → −∞, so that R+e3 is also
contained in W . But this contradicts Lemma 4.1 which ensures that the proper
invariant cone W is pointed.
The proof that there are no backwards invariant cone is analogous. We argue

with the eigenspace of the smallest eigenvalue −1
2
− 1

2

√
13 which is spanned by

vmin =

µ
1,
3

2
− 1
2

√
13,

3

2
− 1
2

√
13, 1

¶
.

This eigenvector belongs to the orthant (+,−,−,+). So that if we assume without
loss of generality that vmin belongs to an invariant cone we conclude that −e2 and
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−e3 are also in the invariant cone. Now, h−A (−e2) , e3i = 1 so that the invariant
cone enters the half-space hx, e3i > 0, which permits to conclude that e3 also belongs
to the cone which is a contradiction.
This finishes the proof that our system do not have forward or backward invariant

cones. As a consequence we have that the parabolic type of the semigroup S of the
system is {2}, which is the only possible parabolic type in dimension 4 which does
not start with 1 nor ends with 3.

7 Concluding remarks

In general the existence of an invariant cone in Rn is a sufficient but not necessary
condition for a bilinear control system to be noncontrollable. However, in low di-
mensions we can say more about this question. For example in dimension 2 the only
possibility for the parabolic type of a semigroup is Θ (S) = {1}, hence by the above
results a control system is not controllable if and only if it leaves invariant a cone
in R2 (See [2] for a detailed analysis of the 2-dimensional case).
In dimension 3 we have three possibilities for the parabolic type, namely Θ (S) =

{1} (where F{1} = P2), Θ (S) = {2} (where F{2} is the Grassmannian Gr2 (3)) and
Θ (S) = {1, 2} (where F{1,2} is the full flag manifold). There are invariant cones only
in the cases Θ (S) = {1} and Θ (S) = {1, 2}. In the case Θ (S) = {2} we look at the
inverse semigroups S−1. By the results of [7], Section 6, it follows that the parabolic
type of S−1 is the flag manifold dual to FΘ(S). In our case the projective space P2
and the Grassmannian Gr2 (3) are dual to each other, while F{1,2} is self-dual (see
[7], Section 3). Thus Θ (S−1) = {1} if Θ (S) = {2} and S−1 leaves invariant a cone
in R3. Thus in dimension 3 we have the following necessary and sufficient condition
for controllability.

Proposition 7.1 Suppose that S ⊂ Sl(3,R) is a connected semigroup with non-
empty interior. Then S is controllable if and only if neither S nor S−1 leave invari-
ant a proper cone W ⊂ R3.
Clearly, if S is the semigroup of the control system ẋ = Ax + uBx then S−1 is

the semigroup of the control system ẋ = −Ax+ uBx.
In general we must look at invariant cones in the Grassmann spaces

Vr Rn of
exterior products of Rn. The idea is that the parabolic type Θ (S) = {r1, . . . , rk}
contains {r1} and F{r1} is the Grassmannian Grr1 (n) of r1-dimensional subspaces of
Rn. By the projection FΘ(S) → F{r1} the invariant control set in the Grassmannian
is contractible in the sense of Corollary 3.4. Now the Grr1 (n) embeds into the
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projective space of
Vr1 Rn. Using this embedding and arguing as in the proof of

Theorem 4.2 the existence of an invariant cone in
Vr1 Rn is obtained. We refer to

[6] for the details.
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