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ABSTRACT

In this article we present a proposal for the descomposition of
large uncertainties associated with a fuzzy setu and the multilin-
earization of a functionf to be used in the approximation of the
fuzzy setf̂(u) obtained by extension principle. Also, we present
conditions onf assuring that̂f preserves differentiability.

KEYWORDS: Fuzzy sets, extension principle, differentiable
functions.

1 INTRODUCTION

It is well known that Zadeh’s extension principle play an impor-
tant role in the fuzzy set theory and has been studied and applied
by many authors, including Barros (Barros and Tonelli, 2000),
Román&et.(Román-Flores and Bassanezi, 2001) in the analy-
sis of discrete fuzzy dynamical systems and continuity off̂ ,
Cabrelli et al. (Cabrelli and Vrscay, 1992) in the study of fuzzy
fractals, B̌elohlávek (lohlávek, 2000) in the study of similar-
ity, Liu (Shiang-Tai Liu, 2004) in fuzzy transportation problems,
among others.

In general, the calculus of̂f(u) is a complex problem. Iff is
linear there are not bigger difficulties to visualizêf(u), what
doesn’t happen iff is not linear. Therefore, it would be interest-
ing to approacĥf(u) for well-known things.

Handling large uncertainties in non-linear problems presents dif-
ficulties that can compromise the evaluation and significance of
the obtain result. Classical approaches use linearized model and

result have their validation dependent on the linearization qual-
ity. In most cases, the problem of non-linearity is severe and lin-
earization is valid only on a small region around the linearization
point. Recently, in (Saavedra and Mangueira, n.d.) is presented
a way of obtaining solution of non linear fuzzy systems using
decomposition of incremental fuzzy numbers.

In this work, we state a form that allows the decomposition of
a fuzzy set into varius fuzzy set with degree of incertain smaller
than the original one. Consequently, it is possible to state a mul-
tilinearization process for obtain a approximation of the fuzzy
setf̂(u).

On the other hand, differentiable fuzzy sets are an important tool
for the implementation of fuzzy expert systems and its appli-
cations. For example, in neuro-fuzzy learning models, which
are based on a gradient descent strategy, it is necessary to have
differentiable membership functions, that is to say, differen-
tiable input fuzzy sets (see Castellano et al.(Castellano and Men-
car, 2004)). Also, there are defuzzification methods that keep all
features regarding differentiabilty, which says us that the con-
struction of differentiable membership functions plays a rele-
vant role in the modelling and resolution of real problems (see
Grauel&Ludwig (Grauel and L. Ludwig, 1999)).

Consequently, in the Section 4 of this work, we establish condi-
tions assuring that̂f preserves differentiability.
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2 PRELIMINARIES AND DESCOMPOSITION
OF FUZZY SETS

A fuzzy set in a universe setX is a mappingu : X → [0, 1].
We think of u as assigning to each elementx ∈ X a degree
of membership,0 ≤ u(x) ≤ 1. Let u be a fuzzy set inR.
We define[u]α = {x ∈ R/ u(x) ≤ α} theα-level of u, with
0 < α ≤ 1. For α = 0 we have[u]0 = {x ∈ R/ u(x) > 0},
the support ofu. Note that[u]0 indicate the degree of uncertain
of the fuzzy setu (also is called uncertainty interval, confidence
interval). We denote byF(R) the family of compact fuzzy sets
inR, i.e. , the family of all fuzzy setsu such that[u]α is compact
for all α ∈ [0, 1]. Also, we denote byFN (R) the family of fuzzy
numbers, i.e., the family of compact fuzzy setu ∈ F(R) such
that
(i) u is convex, i.e.,[u]α is convex for allα ∈ [0, 1];
(ii) u is normal, i.e., there existx in R such thatu(x) = 1.
With the conditions above,FN (R) is the family of the fuzzy sets
u such that[u]α is a interval for allα ∈ [0, 1].

Now, we consider a distance between two compact fuzzy setsu
andv by

D(u, v) = sup
α∈[0,1]

H([u]α, [v]α),

whereH is the well-known Hausdorff metric defined by

H([u]α, [v]α) = max {d([u]α, [v]α), d([v]α), [u]α)}

with d(A, B) = supa∈A d(a,B) andd(a, B) = infb∈B d(a, b).

Let u, v be any two fuzzy sets inR. Thenu ∨ v, the union ofu
andv, is a fuzzy set defined by

(u ∨ v)(x) = u(x) ∨ v(x) for all x ∈ R;

where∨ denote the supremum. Note that in general the union of
two fuzzy number is not a fuzzy number.

2.1 Decomposition of fuzzy numbers

Given a fuzzy numberu with support or uncertainty interval
[a, b], we consider a particular valuexd ∈ [a, b]. Then, is possi-
ble to descomposeu into two compact fuzzy setsul andur, with
support[a, xd] and[xd, b] respectively, with complementary un-
certainties such as

u(x) = ul(x) ∨ ur(x).

Clearly, these new two fuzzy set have smaller associated uncer-
tainty thanu, that in numerical terms means that we can work
with smaller desviations or increment (half the original). On
the other hand, the uncertainty intervals are complementary: one
representing the incertainty of be smaller thanxd, the other con-
sidering the incertainty of be bigger thanxd, see Figure 1.

In general, we can decompose a fuzzy number inton compact
fuzzy setsu1, u2 ...,un in the following way:
(i) We consider a regular partition of the uncertainty interval
[a, b], i.e., we divide[a, b] in n subintervals[xi, xi+1];
(ii) We consider the fuzzy setsui defined byui(x) = u(x) for
all x ∈ [xi, xi+1] andui(x) = 0 another case, and consequently
we have

u(x) =
∨

i=1,...,n

ui(x),
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Figure 1: Decomposition of a fuzzy numberu

for all x ∈ R. Note that the uncertainty interval of each fuzzy
setui is [xi, xi+1], which has smaller degree uncertainty than
the originalu.

It is important remark that descomposition of uncertainty is not
a novel topic. In fact, in the last decade several authors have
been dealing with this issue, see (Saavedra and Mangueira, n.d.),
(Hofer, 1996).

2.2 Extension principle

In (Zadeh, 1975), Zadeh proposed a so called extension principle
which became an important tool in fuzzy set theory and its ap-
plications. The idea is that each functionf : X → Y induces a
corresponding function̂f : F(X) → F(Y ) (i.e., f̂ is a function
mappings fuzzy sets inX to fuzzy sets inY ) defined for each
fuzzy setsu in X by

f̂(u)(y) =
∨

x∈X, f(x)=y

u(x).

The functionf̂ is said to be obtained fromf by the extension
principle.

If we considerf : R→ R defined byf(x) = ax + b, we obtain
f̂ : F(R) → F(R) without difficulty, being

f̂(u)(y) = u

(
y − b

a

)
,

for all u ∈ F(R). In general, iff is biyective we have that

f̂(u)(y) = u
(
f−1(y)

)
.

On the other hand, it is interesting to know that iff : Rn →
Rn is continuous, then̂f : F(Rn) → F(Rn) is a well defined
function and (see (Román-Flores and Bassanezi, 2001))

[
f̂(u)

]α

= f ([u]α) , ∀α ∈ [0, 1], ∀u ∈ Rn. (1)

Consequently, ifu is a fuzzy number with support[u]0 = [a, b]
then we have that

[
f̂(u)

]0

=

[
inf

x∈[a,b]
f(x), sup

x∈[a,b]

f(x)

]
.

3 DECOMPOSITION AND MULTILINEARIZA-
TION

In this section we present a proposal for obtain a approximation
of f̂(u), using decomposition of fuzzy sets and multilineariza-
tion of f .
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Let u be a fuzzy number with support[a, b] and suppose thatf is
differentiable at[a, b]. We decomposeu in n compact fuzzy sets,
i.e., we divide[a, b] in n subintervals[xi, xi+1] and we consider
the fuzzy setsui defined byui(x) = u(x) for all x ∈ [xi, xi+1]
andui(x) = 0 another case. Consequently we have

u(x) =
∨

i=1,...,n

ui(x).

For i = 1, 2, ..., n we take

x∗i =
xi+1 + xi

2

and we consider the tangent straight line tof in the pointx∗i ,
defined in the interval[xi, xi+1], and we denote it by

fi(x) = f
′
(x∗i )(x− x∗i ) + f(x∗i ).

Let us observe thatfi is only defined in the interval[xi, xi+1],
outside of this intervalfi = 0.

Now, for eachi = 1, 2, ..., n we obtainf̂i(ui), that it is defined
by

f̂i(ui)(y) = ui

(
y − f(x∗i )

f ′(x∗i )
+ x∗i

)
;

if f
′
(x∗i ) 6= 0 andf̂i(ui)(y) = u(x∗i ) if f

′
(x∗i ) = 0. In general

we have that
f̂i(u)(y) = f̂i(ui)(y).

Finally, we defineH : F(R) → F(R) by

H =
∨

i=1,2,...,n

f̂i .

This way,H(u) is an approximation of̂f(u).

If we takegn : R→ R defined by

gn(x) =





f1(x) if x ∈ [x1, x2]
f2(x) if x ∈ [x2, x3]

: : :
fn(x) if x ∈ [xn, xn+1]

(2)

Then we have the following

Proposition 1 Givenf , fi, gn as above, then

ĝn(u) = H(u) =
∨

i=1,2,...,n

f̂i(u).

Proof Let α ∈ [0, 1]. Then,

[ĝn(u)]α = gn ([u]α) = f1 ([u]α) ∪ f2 ([u]α) ∪ ... ∪ fn ([u]α)

=
∨

i=1,2,...,n

f̂i ([u]α) =


 ∨

i=1,2,...,n

f̂i(u)




α

.

Therefore
ĝn(u) =

∨

i=1,2,...,n

f̂i(u).2
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Figure 2: Process of decomposition and multilinearization for
obtainf̂(u)

Example 1 We consider the fuzzy numberu defined by

u(x) =





√
x if x ∈ [0, 1]

1 if x ∈ [0, 1.5]
4(x− 2)2 if x ∈ [1.5, 2].

We have that the uncertainty interval is[u]0 = [0, 2].

Now, we descomposeu in 4 compact fuzzy setsu1, u2, u3, u4.
For this we consider a partion regular of the interval[0, 2] in 4
subintervals with same degree of uncertainties, these subinter-
vals are:

[0, 0.5] , [0.5, 1] , [1, 1.5] , [1.5, 2].

For eachi = 1, 2, 3, 4 we considerui(x) = u(x) for all x ∈
[xi, xi+1] andui(x) = 0 another case, for example,

u2(x) =
{ √

x if x ∈ [0.5, 1]
0 if x 6= [0.5, 1].

Next, let us take the functionf defined byf(x) = −2x2 + 4x.
Then, we take the tangent straight linefi to the curvef in the
pointx∗i = xi+xi+1

2 , the half point of the interval

[xi, xi+1]. For example, fori = 2 we have thatx∗2 = 0.75 and

f2(x) = x + 9/8.

Now, for eachi = 1, 2, 3, 4, we obtainf̂i(ui). For example

f̂2(u2)(y) = u2(y−9/8) =
√

y − 9/8, with y ∈ f2([0.5, 1]).

Finally, we consider̂gn(u) = f̂1(u1)∨ f̂2(u2)∨ f̂3(u3)∨ f̂4(u4),
which is an approximation of̂f(u). See Figure 2.

Theorem 1 Let u be a fuzzy number with[u]0 = [a, b]. If f, g
are two function continuous in[a, b] such that‖f − g‖∞ ≤ M .
Then

D
(
f̂(u), ĝ(u)

)
≤ M.
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Proof From (1) we have that

D
(
f̂(u), ĝ(u)

)
= sup

α∈[0,1]

H (f ([u]α) , g ([u]α)) .

Now, givenz ∈ f ([u]α) there existsy ∈ [u]α such that

f(y) = z and g(y) ∈ g ([u]α) .

Therefore

d (z, g ([u]α)) = inf
c∈g([u]α)

d(z, c) ≤ |f(y)− g(y)| ≤ M.

Consequently,

d (f ([u]α) , g ([u]α)) = sup
z∈f([u]α)

d (z, g ([u]α)) ≤ M.

Similarly, we obtain that

d (g ([u]α) , f ([u]α)) ≤ M,

Thus,
D

(
f̂(u), ĝ(u)

)
≤ M.2

Note thatgn defined in (2) converge uniformly tof whenn →
∞. Therefore, we have the following immediate consequence of
the Theorem 1.

Corollary 1 Givenf andgn as above (2), then

ĝn(u) D→ f̂(u) as n →∞.

4 PRESERVING DIFFERENTIABILITY

As was said in the introduction, differentiable fuzzy sets are an
important tool for the implementation of fuzzy expert systems
and its applications. Then, would be interesting to know iff̂
preserves differentiability, i.e., the following question arises:
If u is a differentiable fuzzy sets,̂f(u) is a differentiable fuzzy
sets?.
In general, the answer is negative as can be seen in the following
example. But imposing some conditions onf , an affirmative
answer is obtained as we will see in the following Theorem.

Example 2 We consider the functionf : R → R defined by
f(x) = x3. Is well know thatf is differentiable and bijective in
R. We take the fuzzy numbersu defined by

u(x) =
{

1− x2, if x ∈ [−1, 1]
0, if x 6∈ [−1, 1]

It fuzzy set represent “the sets of real numbers around of zero".
We can see thatu is a differentiable fuzzy sets.

Now, f̂(u) is defined by

f̂(u)(x) =
{

1− 3
√

x2, if x ∈ [−1, 1]
0, if x 6∈ [−1, 1]

that is not a differentiable fuzzy set, because the derive at0 ∈
[f̂(u)]0 doesn’t exist.

Note that, in this case[u]0 = [−1, 1] andf
′
(0) = 0, i.e.,f has a

critical point in the support ofu.

−1 1
−1

1

u 

f 

f(u) 

Figure 3: The differentiable fuzzy setu and the fuzzy set̂f(u)
not differentiable

Theorem 2 Let u be a differentiable fuzzy sets with interval of
confidence[u]0 = [a, b]. Let f be a differentiable function in
[a, b] with f

′
(x) 6= 0 for all x ∈ [a, b]. Then,f̂(u) is a differen-

tiable fuzzy sets inf([a, b]) and

f̂(u)
′
(y) =

u
′

f ′
(x) with y = f(x).

Proof If f
′
(x) 6= 0 for all x ∈ [a, b], thenf is monotone in[a, b].

Therefore,f is bijective and there existf−1, the inverse off , in
[a, b]. Also,f−1 is differentiable and

(
f−1(y)

)′
=

1
f ′(x)

with f(x) = y.

Now, asf is bijectiva, we have that

f̂(u)(y) = u
(
f−1(y)

)
= u ◦ f−1(y).

As u is differentiable in [a, b] and f−1 is differentiable in
f([a, b]), we have thatu ◦ f−1 is differentiable inf([a, b]) and

f̂(u)
′
(y) =

(
u ◦ f−1

)′
(y) = u

′
(f−1(y))·(f−1

)′
(y) =

u
′

f ′
(x),

with y = f(x). 2

5 CONCLUSIONS

In this paper we presents a proposal for decomposition of a fuzzy
numberu in n compact fuzzy setsu1, u2, ..., un such a way that
the uncertainty interval of eachui has smaller incertainty than
the originalu and

u = ∨ui.

Taking advantage of the differentiability off obtains a multilin-
earization off and, taking into account the decomposition deu,
we presents the fuzzy set̂gn(u) which is an approximation of
f̂(u) with the property that̂gn(u) → f̂(u) asn →∞, Corollary
1, i.e.,

D
(
ĝn(u), f̂(u)

)
→ 0 as n →∞,
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whereD is the metric in the spaceF(R).

In the last section of this work, we present conditions so that
f̂ preserves differentiability, because this is not always true as
can be seen in the Example 2. The condition imposed onf , is
thatf doesn’t have not critical points in the uncertainty interval
(support) ofu.
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