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Abstract

In this work we study the relationship between the concept of invexity and the
Kuhn-Tucker optimality conditions to the continuous-time nonlinear programming
problem . We use duality results to establish these relations. We also show that the
invexity concept is a kind of constraint qualification.
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1 Introduction

We regard the continuous-time nonlinear programming problem below.

Minimize φ(x) =

T∫

0

f(x(t), t)dt,

subject to g(x(t), t) ≤ 0 a.e. in [0, T ],

x ∈ X.





(CNP)

Here X is a nonempty open convex subset of the Banach space Ln
∞[0, T ], φ :

X → R, g(x(t), t) = γ(x)(t), f(x(t), t) = ξ(x)(t), γ : X → Λm
1 [0, T ] and
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ξ : X → Λ1
1[0, T ], where Ln

∞[0, T ] denotes the space of all n-dimensional
vector valued Lebesgue measurable functions, which are essentially bounded,
defined on the compact interval [0, T ] ⊂ R, with norm ‖ · ‖∞ defined by

‖x‖∞ = max
1≤j≤n

ess sup{|xj(t)|, 0 ≤ t ≤ T},

where for each t ∈ [0, T ], xj(t) is the j-th component of x(t) ∈ Rn and Λm
1 [0, T ]

denotes the space of all m-dimensional vector functions which are essentially
bounded and Lebesgue measurable, defined on [0, T ], with the norm ‖ · ‖1

defined by

‖y‖1 = max
1≤j≤m

T∫

0

|yj(t)|dt.

This class of problems was introduced in 1953 by Bellman [4] in connection
with production-inventory “botleneck processes”. He considered a type of op-
timization problems, which is now known as continuous-time linear program-
ming, he formulated its dual and provided duality relations. He also suggested
some computational procedure. Since then, a lot of authors have extended his
theory to wider classes of continuous-time linear problems (e.g. [2], [3], [8], [9],
[12], [15], [16], [20] and [21]). On the other hand, optimality conditions in the
spirit of Kuhn-Tucker type for continuous nonlinear problems were first inves-
tigated by Hanson and Mond [11]. They considered a class of linear constrained
nonlinear programming problems. Assuming a nonlinear integrand in the cost
function twice differentiable, they linearized the cost function and applied
Levinson’s duality theory [12] to obtain the Karush-Kuhn-Tucker optimality
conditions. Also applying linearization, Farr and Hanson [7] obtained neces-
sary and sufficient optimality conditions for a more general class of continuous-
time nonlinear problems (both cost function and constraints were nonlinear).
Assuming some kind of constraint qualifications and using direct methods, fur-
ther generalizations of the theory of optimality conditions for continuous-time
nonlinear problems are to be found in Scott and Jefferson [19], Abraham and
Buie [1], Reiland and Hanson [18] and Zalmai [26], [24], [25], [23], [22]. The de-
velopment of nonsmooth necessary optimality conditions for problem (CNP)
was given in [5]. The sufficient conditions for the nonsmooth case was given
in [17]. Related results can be found in Craven [6]. However, his arguments
are via approximation of smooth functions rather than alternative theorems.
None the above works established necessary and sufficient conditions for a
Kuhn-Tucker point be a global solution of (CNP). In [14] we introduced the
concept of KT-invexity for Problem (CNP) and show that a KT-point is a
global minimizer if and only if the Problem (CNP) is KT-invex. In [14] we
also introduced the concept of WD-invexity and show that holds weak duality
if and only if the Problem (CNP) is WD-invex. We observe that in the case
of mathematical programming these results was given by [13].
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In this work, inspired by one previous work of Hanson [10], we study the
relationship between the concept of invexity and the Kuhn-Tucker optimal-
ity conditions to the continuous-time nonlinear programming problem (CNP).
We use duality results given in [26] to establish this relations. We show that
invexity kernel η and the Lagrange multiplier λ of the Kuhn-Tucker theory
are dual variables. We know of the Kuhn-Tucker theory [25] that if the con-
straints of the problem satisfies a constraint qualification (Slater or Karlin)
then the Kuhn-Tucker conditions are necessary for optimality. We show that
the invexity concept is also a kind of constraint qualification.

This work is organized as follows. In Section 1, we give the preliminaries and
recall the notion of stability for (CNP) (given in [26]), the definition of invexity
(given in [17]) and KT-invexity (given in [14]). In Section 2, we establish and
prove our main results and we show an example.

2 Preliminaries

In this section we fix some basic concepts and notation adhered to in this
paper.

Let F be the set of all feasible solutions to Problem (CNP) (which we suppose
nonempty), i.e.,

F = {x ∈ X : g(x(t), t) ≤ 0 a.e. in [0, T ]}.

Let V be an open subset of Rn containing the set {x(t) ∈ Rn : x ∈ X, t ∈
[0, T ]}. We assume that f and gi (the i-th component of g), i = 1, 2, . . . , m,
are real functions defined on V × [0, T ]. The functions t 7→ f(x(t), t) and
t 7→ g(x(t), t) are assumed to be Lebesgue measurable and integrable for all
x ∈ X. In this paper we assume also that the functions f and g are continu-
ously differentiable (in the Fréchet sense) with respect to their first arguments.
We denote by ∇f(x(t), t) and ∇g(x(t), t) these derivatives, respectively.

Let
I = {1, 2, . . . , m}.

For any x ∈ F, we denote by I(x) the index set of all the binding constraints
at x:

I(x) = {i ∈ I : gi(x(t), t) = 0 a.e. in [0, T ]}.

About vectors, in this paper they are all collum vectors. We use a prime to
denote transposition. Besides, w ≤ 0 means that wi ≤ 0 for all i, and w < 0
means that wi < 0 for all i.
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Now, we introduce the concept of stability for nonlinear continuous-time pro-
gramming problems (more details can be found in [26]), recall the notions of
invexity for functions (given in [17]) in the continuous-time context and of
KT-invexity (given in [14]) for Problem (CNP). This concept and notions will
be needed in the next section.

We say that the Problem (CNP) is stable if p(0) < ∞ and there exists a
constant M > 0 such that

p(0) ≤ p(y) + M‖y‖1, ∀y ∈ Λm
1 [0, T ],

where

p(y) = inf
x∈X





T∫

0

f(x(t), t)dt : g(x(t), t) ≤ y(t) a.e. in [0, T ]



 .

p is called perturbation function associated with Problem (CNP) and y(t) is
called perturbation vector.

We will denote by Y the feasible set of the perturbed problem, that is,

Y = {y ∈ Λm
1 [0, T ] : g(x(t), t) ≤ y(t) a.e. in [0, T ] for some x ∈ X}.

Proposition 2.1 Y is a convex set and p is a convex function in Y .

PROOF. See [26].

Let ψ : U × [0, T ] → R be a differentiable function with respect to its first
argument, where U ⊂ Rn is a nonempty subset. Let y ∈ X. We say that the
function ψ(·, t) is invex in y(t) (with respect to U) if there exists η : U ×U →
Rn such that the function t 7→ η(x(t), y(t)) ∈ Ln

∞[0, T ] and

ψ(x(t), t)− ψ(y(t), t) ≥ ∇ψ′(y(t), t)η(x(t), y(t)) a.e. in [0, T ],

for all x ∈ X.

We say that Problem (CNP) is KT-invex in y(t) (with respect to U) if there
exists η : U ×U → Rn such that the function t 7→ η(x(t), y(t)) ∈ Ln

∞[0, T ] and

φ(x)− φ(y) ≥
T∫

0

∇f ′(y(t), t)η(x(t), y(t))dt

−∇g′i(y(t), t)η(x(t), y(t)) ≥ 0 a.e. in [0, T ], i ∈ I(y),
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for all x ∈ F.

We say that the Kuhn-Tucker conditions apply at x ∈ X if

T∫

0

[
∇f ′(x(t), t) +

∑

i∈I

λi(t)∇g′i(x(t), t)

]
z(t)dt = 0, ∀z ∈ Ln

∞[0, T ],

λi(t)gi(x(t), t) = 0 a.e. in [0, T ], i ∈ I,

λi(t) ≥ 0 a.e. in [0, T ], i ∈ I,

for some λ ∈ Ln
∞[0, T ].

3 Main Results

In this section we state our results and give an example.

Theorem 3.1 Let y ∈ F be an optimal solution for Problem (CNP). If the
Kuhn-Tucker conditions apply at y and all λ ∈ Ln

∞[0, T ] satisfying them are
bounded, then the active constraints at y are invex functions at y(t) (with
respect to V ) with a common η.

PROOF. Since the Kuhn-Tucker conditions apply at y, there exists λ ∈
Ln
∞[0, T ] such that

T∫

0

[
∇f ′(y(t), t) +

∑

i∈I

λi(t)∇g′i(y(t), t)

]
z(t)dt = 0, ∀z ∈ Ln

∞[0, T ], (1)

λi(t)gi(y(t), t) = 0 a.e. in [0, T ], i ∈ I, (2)

λi(t) ≥ 0 a.e. in [0, T ], i ∈ I. (3)

Consider any fixed x ∈ X. Let b, λ̃ ∈ Lm+1
∞ [0, T ], c ∈ Ln+2

∞ [0, T ] and A ∈
L(n+2)×(m+1)
∞ [0, T ] defined for each t ∈ [0, T ] by

b(t) =




f(x(t), t)− f(y(t), t)

g1(x(t), t)− g1(y(t), t)
...

gm(x(t), t)− gm(y(t), t)




, λ̃(t) =




λ0

λ1(t)
...

λm(t)




,
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A(t) =




∇f(y(t), t) ∇g1(y(t), t) · · · ∇gm(y(t), t)

0 g1(y(t), t) · · · gm(y(t), t)

1 0 · · · 0




e c(t) =




0
...

0

1




.

Consider the linear continuous-time programming problem

Minimize

t∫

0

b′(t)λ̃(t)dt

subject to A(t)λ̃(t) = c(t) a.e. in [0, T ],

λ̃(t) ≥ 0 a.e. in [0, T ].





(4)

We can suppose that there does not exist v ∈ Ln+2
∞ [0, T ], v(t) 6= 0 a.e. in

[0, T ], such that

v′(t)A(t) = 0 a.e. in [0, T ], (5)

because otherwise there are redundant constraints.

Since the equality in (1) holds for all z ∈ Ln
∞[0, T ], we have

∇f(y(t), t) +
∑

i∈I

λi(t)∇gi(y(t), t) = 0 a.e. in [0, T ]. (6)

It follows from (2), (3) and (6) that the problem is feasible. By hypothesis all
λ satisfying the Kuhn-Tucker conditions are bounded. Therefore all λ̃ feasible
to the problem in (4) are bounded, that is, for all λ̃ satisfying the constraints
in (4) there exists K > 0 such that

‖λ̃‖∞ ≤ K.

Using this, we obtain

∣∣∣∣∣∣

T∫

0

b′(t)λ̃(t)dt

∣∣∣∣∣∣
≤

T∫

0

|b′(t)λ̃(t)|dt =

T∫

0

∣∣∣∣∣∣

m+1∑

j=1

bj(t)λ̃j(t)

∣∣∣∣∣∣
dt

≤
T∫

0

m+1∑

j=1

|bj(t)||λ̃j(t)|dt ≤
T∫

0

m+1∑

j=1

|bj(t)|‖λ̃j‖∞dt
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=
m+1∑

j=1

‖λ̃j‖∞
T∫

0

|bj(t)|dt ≤
m+1∑

j=1

‖λ̃‖∞‖b‖1

= (m + 1)‖λ̃‖∞‖b‖1 ≤ (m + 1)K‖b‖1.

Thus for all fixed x ∈ X the objective in (4) is bounded, so that the problem
has an optimal solution. Let λ̃∗ be an optimal solution. By Fritz John Theorem
it follows that there exist u0 ∈ R and u ∈ Ln+2

∞ [0, T ] such that

T∫

0

[u0b
′(t) + u′(t)A(t)]h(t)dt = 0, ∀h ∈ Lm+1

∞ [0, T ], (7)

and
(u0, u(t)) 6= 0 a.e. in [0, T ].

Suppose that u0 = 0. From (7) comes

T∫

0

u′(t)A(t)h(t)dt = 0, ∀h ∈ Lm+1
∞ [0, T ],

where u(t) 6= 0 a.e. in [0, T ]. Then

u′(t)A(t) = 0 with u(t) 6= 0 a.e. in [0, T ],

which contradicts (5). Therefore u0 6= 0. Setting u∗ = u/u0 we obtain

T∫

0

[b′(t) + u′∗(t)A(t)]h(t)dt = 0, ∀h ∈ Lm+1
∞ [0, T ]. (8)

Let λ̃ ∈ Lm+1
∞ [0, T ]. We have clearly that

T∫

0

b′(t)λ̃(t)dt =

T∫

0

b′(t)λ̃∗(t)dt +

T∫

0

b′(t)[λ̃(t)− λ̃∗(t)]dt (9)

and

A(t)λ̃(t)− c(t) = A(t)[λ̃(t)− λ̃∗(t)] a.e. in [0, T ]. (10)

Multiplying the expression in (10) by u′∗(t) and integrating, we obtain

T∫

0

u′∗(t)[A(t)λ̃(t)− c(t)]dt =

T∫

0

u′∗(t)A(t)[λ̃(t)− λ̃∗(t)]dt. (11)
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From (9) and (11) it follows that

T∫

0

{b′(t)λ̃(t) + u′∗(t)[A(t)λ̃(t)− c(t)]}dt

=

T∫

0

b′(t)λ̃∗(t)dt +

T∫

0

[b′(t) + u′∗(t)A(t)][λ̃(t)− λ̃∗(t)]dt.

Using (8) we obtain

T∫

0

b′(t)λ̃(t)dt =

T∫

0

{b′(t)λ̃∗(t)− u′∗(t)[A(t)λ̃(t)− c(t)]}dt. (12)

The perturbation function p : Λn+2
1 [0, T ] → R associated with the problem in

(4) is given by

p(z) = inf
λ̃∈Lm+1∞ [0,T ]





T∫

0

b′(t)λ̃(t)dt : A(t)λ̃(t)− c(t) = z(t) a.e. in [0, T ]



 ,

where z(t) is the perturbation vector. It is clear that

p(0) = inf
λ̃∈Lm+1∞ [0,T ]





T∫

0

b′(t)λ̃(t)dt : A(t)λ̃(t) = c(t) a.e. in [0, T ]





=

T∫

0

b′(t)λ̃∗(t)dt < ∞.

In this case the feasible set of the perturbed problem is given by

Z = {z ∈ Λn+2
1 [0, T ] : A(t)λ̃(t)−c(t) = z(t) a.e. in [0, T ], for some λ̃ ∈ Lm+1

∞ [0, T ]}.

From (12) we have

T∫

0

b′(t)λ̃(t)dt =

T∫

0

[b′(t)λ̃∗(t)− u′∗(t)z(t)]dt,

for all λ̃ ∈ Lm+1
∞ [0, T ] such that A(t)λ̃(t)− c(t) = z(t) a.e. in [0, T ]. Thus

inf
λ̃∈Lm+1∞ [0,T ]





T∫

0

b′(t)λ̃(t)dt : A(t)λ̃(t)− c(t) = z(t) a.e. in [0, T ]




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=

T∫

0

[b′(t)λ̃∗(t)− u′∗(t)z(t)]dt, ∀z ∈ Z.

Thence

p(z) = p(0) +

T∫

0

[−u′∗(t)]z(t)dt, ∀z ∈ Z.

Therefore −u∗ ∈ ∂p(0) 3 . From Proposition 2.1 we have that Z is convex and
p is convex in Z. Then follows from Lema 3.2 (page 433) in [26] that there
exists a constant M > 0 such that

p(0) ≤ p(z) + M‖y‖1, ∀z ∈ Z.

Thus (4) is stable. So in accordance with the Strong Duality Theorem in [26]
the associated dual problem to the primal problem in (4) has an optimal
solution. The dual problem is given by

Maximize

T∫

0

c′(t)η̃(x(t), y(t))dt

subject to A′(t)η̃(x(t), y(t)) ≤ b(t) a.e. in [0, T ].





(13)

Rewriting, we have

Maximize

T∫

0

ηn+2(x(t), y(t))dt

subject to




∇f ′(y(t), t) 0 1

∇g′1(y(t), t) g1(y(t), t) 0
...

...
...

∇g′m(y(t), t) gm(y(t), t) 0







η1(x(t), y(t))
...

ηn(x(t), y(t))

ηn+1(x(t), y(t))

ηn+2(x(t), y(t))




≤




f(x(t), t)− f(y(t), t)

g1(x(t), t)− g1(y(t), t)
...

gm(x(t), t)− gm(y(t), t)




a.e. in [0, T ].

Therefore the problem below has an optimal solution.

3 ∂p(0) denotes the sub-differential of p at 0.
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Maximize

T∫

0

ηn+2(x(t), y(t))dt

subject to∇f ′(y(t), t)η(x(t), y(t)) + ηn+2(x(t), y(t))

≤ f(x(t), t)− f(y(t), t) a.e. in [0, T ] (14)

∇g′1(y(t), t)η(x(t), y(t)) + g1(y(t), t)ηn+1(x(t), y(t))

≤ g1(x(t), t)− g1(y(t), t) a.e. in [0, T ]
...

∇g′m(y(t), t)η(x(t), y(t)) + gm(y(t), t)ηn+1(x(t), y(t))

≤ gm(x(t), t)− gm(y(t), t) a.e. in [0, T ],

where η′(x(t), y(t)) =
[
η1(x(t), y(t)) η2(x(t), y(t)) · · · ηn(x(t), y(t))

]
. For i ∈

I(y) we have gi(y(t), t) = 0 a.e. in [0, T ]. So we show that there exists η such
that

gi(x(t), t)− gi(y(t), t) ≥ ∇g′i(y(t), t)η(x(t), y(t)) a.e. in [0, T ], i ∈ I(y),(15)

for all x ∈ X, that is, the active constraints at y are invex functions at y(t)
(with respect to V ) with the same η.

Theorem 3.2 Let y ∈ F be an optimal solution for Problem (CNP). Suppose
that there exists x ∈ X such that gi0(x(t), t) < 0 a.e. in [0, T ] for some i0 ∈
I(y). If the Kuhn-Tucker conditions apply at y and all λ ∈ Lm

∞[0, T ] satisfying
them are bounded, then the Problem (CNP) is KT-invex at y(t) (with respect
to V ) with a nontrivial η.

PROOF. Consider any fixed x ∈ F. Define η̃ ∈ Lm+1
∞ [0, T ], c ∈ Ln+2

∞ [0, T ]
and A ∈ L(n+2)×(m+1)

∞ [0, T ] as in the proof of Theorem 3.1 and b ∈ Lm+1
∞ [0, T ],

for all t ∈ [0, T ], by

b(t) =




f(x(t), t)− f(y(t), t)

−g1(y(t), t)
...

−gm(y(t), t)




.

In a similar way as in the proof of Theorem 3.1, we have that

∇g′i(y(t), t)η(x(t), y(t)) ≤ −gi(y(t), t) = 0 a.e. in [0, T ], i ∈ I(y), (16)
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for all x ∈ F. Besides, the Strong Duality Theorem in [26] says that the optimal
values of primal problem in (4) and dual problem in (13) are equal, that is,

T∫

0

ηn+2(x(t), y(t))dt =

T∫

0

{[f(x(t), t)− f(y(t), t)]

− ∑

i∈I

λi(t)gi(y(t), t)

}
dt

=

T∫

0

[f(x(t), t)− f(y(t), t)]dt,

where we use the slackness condition (2) in the second equality. Thus from
(14) we obtain

T∫

0

∇f ′(y(t), t)η(x(t), y(t))dt +

T∫

0

[f(x(t), t)− f(y(t), t)]dt

≤
T∫

0

[f(x(t), t)− f(y(t), t)]dt.

Thence, since y is an optimal solution, we have

T∫

0

∇f ′(y(t), t)η(x(t), y(t))dt

≤
T∫

0

∇f ′(y(t), t)η(x(t), y(t))dt +

T∫

0

[f(x(t), t)− f(y(t), t)]dt

≤
T∫

0

[f(x(t), t)− f(y(t), t)]dt.

So

φ(x)− φ(y) ≥
T∫

0

∇f ′(y(t), t)η(x(t), y(t))dt. (17)

for all x ∈ F. From (16) and (17) it follows that the Problem (CNP) is KT-
invex at y(t) (with respect to V ).
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Suppose that η(x(t), y(t)) = 0 a.e. in [0, T ] is the only solution of (16). From
(15) we have that

0 > gi0(x(t), t) ≥ ∇g′i0(y(t), t)η(x(t), y(t)) a.e. in [0, T ]

has a solution η(x(t), y(t)). It clear that η(x(t), y(t)) 6= 0 a.e. in [0, T ] and
that η(x(t), y(t)) is also solution of (16). This contradicts what we suppose
initially. Therefore η(x(t), y(t)) = 0 a.e. in [0, T ] is not the only solution of
(16).

The example below shows that the hypothesis that there exists x ∈ X such
that gi0(x(t), t) < 0 a.e. in [0, T ] for some i0 ∈ I(y) in general cannot be
weakened to guarantee the existence of a nontrivial η.

Example 3.3 Consider the nonlinear continuous-time programming problem
below:

Minimize

1∫

0

exp(−x1(t))dt

subject to+4[x1(t)]
2 + [x2(t)]

2 − 1 ≤ 0 a.e. in [0, T ],

−4[x1(t)]
2 − [x2(t)]

2 + 1 ≤ 0 a.e. in [0, T ],

+x1(t)− x2(t) ≤ 0 a.e. in [0, T ],

−x1(t) + x2(t) ≤ 0 a.e. in [0, T ].

Clearly this problem does not satisfies the hypothesis of Theorem 3.2. It easy
to see that x̄1(t) = x̄2(t) =

√
5

5
a.e. in [0, T ] is the optimal solution of the

problem. If the problem is KT-invex at (x̄1, x̄2) then the system below has a
solution:

1∫

0

exp(−x1(t))dt−
1∫

0

exp

(
−
√

5

5

)
dt ≥

1∫

0

− exp

(
−
√

5

5

)
η1(t)dt,

0 ≥ +8

√
5

5
η1(t) + 2

√
5

5
η2(t) a.e. in [0, T ],

0 ≥ −8

√
5

5
η1(t)− 2

√
5

5
η2(t) a.e. in [0, T ],

0 ≥ +η1(t)− η2(t) a.e. in [0, T ],

0 ≥ −η1(t) + η2(t) a.e. in [0, T ].

The only solution of this problem is the trivial one

η1(t) = η2(t) = 0 a.e. in [0, T ].
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In the next theorem we have a converse of Theorem 3.1. Furthermore, it shows
that invexity is a constraint qualification.

Theorem 3.4 Suppose that the problem (CNP) has an optimal solution y ∈
F. If the active constraints at y are invex functions at y(t) (with respect to V )
with the same η, then the Kuhn-Tucker conditions apply at y.

PROOF. Let x ∈ F. By hypothesis there exists η : V × V → Rn such that
the function t 7→ η(x(t), y(t)) ∈ Ln

∞[0, T ] and

∇g′i(y(t), t)η(x(t), y(t)) ≤ gi(x(t), t)− gi(y(t), t) ≤ 0 a.e. in [0, T ],

for i ∈ I(y). For i /∈ I(y), we have gi(y(t), t) < 0 a.e. in [0, T ], so that we can
choose a escalar ηn+1(x(t), y(t)) large enough such that

∇g′i(y(t), t)η(x(t), y(t))−gi(x(t), t)+gi(y(t), t)ηn+1(x(t), y(t)) < 0 a.e. in [0, T ],

for i /∈ I(y). Since gi(y(t), t) < 0 a.e. in [0, T ], we have

∇g′i(y(t), t)η(x(t), y(t))− gi(x(t), t) + gi(y(t), t) + gi(y(t), t)ηn+1(x(t), y(t))

< ∇g′i(y(t), t)η(x(t), y(t))− gi(x(t), t) + gi(y(t), t)ηn+1(x(t), y(t)) < 0

a.e. in [0, T ]. Thus there exists ηn+1(x(t), y(t)) such that

∇g′i(y(t), t)η(x(t), y(t)) + gi(y(t), t)ηn+1(x(t), y(t)) < gi(x(t), t)− gi(y(t), t),

a.e. in [0, T ], for i /∈ I(y). Take ηn+2(x(t), y(t)) such that

∇f ′(y(t), t))η(x(t), y(t))+ηn+2(x(t), y(t)) ≤ f(x(t), t)−f(y(t), t) a.e. in [0, T ].

So the linear continuous-time programming problem below has an optimal
solution:

Maximize

T∫

0

ηn+2(x(t), y(t))dt

subject to




∇f ′(y(t), t)η(x(t), y(t)) + ηn+2(x(t), y(t))

∇g′1(y(t), t)η(x(t), y(t)) + g1(y(t), t)ηn+1(x(t), y(t))
...

∇g′m(y(t), t)η(x(t), y(t)) + gm(y(t), t)ηn+1(x(t), y(t))



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≤




f(x(t), t)− f(y(t), t)

g1(x(t), t)− g1(y(t), t)
...

gm(x(t), t)− gm(y(t), t)




a.e. in [0, T ].

Using the notation of the proof of Theorem 3.1, it follows that the problem
below has an optimal solution:

Maximize

T∫

0

c′(t)η̃(x(t), y(t))dt

subject to A′(t)η̃(x(t), y(t)) ≤ b(t) a.e. in [0, T ].

In an analogous way as in the proof of Theorem 3.1 (just remembering that
in this case when we apply the Fritz John Theorem the slackness condition
holds), we can show that the problem above is stable. Therefore, by the Strong
Duality Theorem in [26], the associated dual problem has an optimal solution.
The dual problem is given by

Minimize

T∫

0

b′(t)λ̃(t)dt

subject to A(t)λ̃(t) = c(t) a.e. in [0, T ],

λ̃(t) ≥ 0 a.e. in [0, T ].

Rewriting the constraints of this problem we have




∇f(y(t), t) ∇g1(y(t), t) · · · ∇gm(y(t), t)

0 g1(y(t), t) · · · gm(y(t), t)

1 0 · · · 0







λ0(t)

λ1(t)
...

λm(t)




=




0
...

0

1




a.e. in [0, T ],

and
λi(t) ≥ 0 a.e. in [0, T ], i = 0, 1, . . . , m.

Then there exists λ = (λ1, . . . , λm) ∈ Lm
∞[0, T ] such that

T∫

0

[
∇f ′(y(t), t) +

∑

i∈I

λi(t)∇g′i(y(t), t)

]
z(t)dt = 0, ∀z ∈ Ln

∞[0, T ],

λi(t)gi(y(t), t) = 0 a.e. in [0, T ],

14



λi(t) ≥ 0 a.e. in [0, T ], i ∈ I.

Thus the Kuhn-Tucker conditions apply at y.

Watching the proofs of Theorems 3.1 and 3.4, we can notice that η and λ are
dual variables.
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