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Abstract

We present a constructive general procedure to build Morse flows on n-dimensional iso-
lating blocks respecting given dynamical and homological boundary data recorded in abstract
Lyapunov semi-graphs. Moreover, we prove a decomposition theorem for handles which, to-
gether with a special class of gluings, insures that this construction not only preserves the
given ranks of the homology Conley indices, but it also is optimal in the sense that no other
Morse flow can preserve this index with fewer singularities.

Introduction

An n-dimensional elementary isolating block can be constructed by considering an (n− 1)-dimen-
sional surface N− and an attached handle hk = Dk × Dn−k, which contains an index k non-
degenerate singularity, attached to the collar N− × [0, 1]. Different attachments may produce
non-homeomorphic isolating neighbourhoods with non-homeomorphic boundaries. Any such neigh-
bourhood can be schematically represented by a Lyapunov semi-graph with outgoing edge(s) cor-
responding to the connected components of N− × [0, 1], a vertex corresponding to the singularity,
while the incoming edge(s) would correspond to the connected components of N+ × [0, 1], N+

being the new boundary created by the attachment of hk to N− × {1}.
An abstract Lyapunov semi-graph has its incoming and outgoing edges labelled only with

the Betti numbers of a co-dimension one closed manifold, and its vertices labelled with ranks
of the homology Conley indices1. In this article we start with the abstract data contained in an
abstract Lyapunov semi-graph, and realize them in all their generality. We prove, by giving explicit
constructions, that

∗Supported by Ministère Français de la Recherche.
†Partially supported by FAPESP under grants 02/102462 and 2004/10229-6 and by CNPq under grant 300072.
‡Partially supported by FAPESP under grant 2004/10229-6.
§Supported by the French-Brazilian Agreement and by FAEPEX.
1Given a manifold M with boundary ∂M = N+ t N−, and the flow on M entering through N+ and exiting

throughout N−, the homology Conley index is the homology of the pair Hj(M, N−). For details, see [Co].
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Main Theorem 1. Let e+ and e− be positive integers. Let {(B+
j −B−

j )}n−1
j=0 be a collection of n

integers such that (B+
j − B−

j ) = (B+
n−1−j − B−

n−1−j) for all j = 0 . . . n − 1. If n = 2i + 1, let
(B+

i −B−
i = 0) mod 2. Let {hj}n−1

j=1 be integers satisfying Poincaré-Hopf inequalities2. Then there
exists an n-dimensional connected manifold M with boundary ∂M = N+ ∪ N−, N+ ∩ N− = ∅,
and a flow with non-degenerate singularities on M such that

1. e+ is the number of connected components of N+, the entry boundary of the flow, and e− is
the number of connected components of N−, the exit boundary of the flow;

2. if β+
j (respectively β−j ) denotes the j-th Betti number of N+ (respectively N−), then

β+
j − β−j = (B+

j −B−
j ), for all j = 0 . . . (n− 1);

3. for all j = 1 . . . (n− 1), the rank of the homology Conley index is preserved, that is,

rank (Hj(M, N−)) = hj .

The realization we exhibit are “slices” cut off connected sums of generalized tori of dimension n
]j (]sj Sj ×Sn−j) and have boundaries which are themselves connected sums of generalized tori of
dimension (n− 1). This choice is motivated by the fact that it is the simplest one in terms of the
description of the needed gluings, but it is arbitrary. In fact, the result is based on a decomposition
theorem (Theorem 2.1) whose interpretation can be adapted to the class of manifolds we wish to
work with.

We wish to emphasize the topological meaning of this decomposition theorem: it classifies
handles into those which affect the topology of the boundary and those which might increase
the topological complexity of the block. It is important to underline that in our construction
each handle contributes essentially to the topology of the block, which is reflected in the Conley
homology index. This constraint is made explicit in item 3 of our main theorem.

This is one of the main differences between these results and those in [CrMRez], where the
focus is on the global realization of an abstract Lyapunov graph of Morse type on a closed manifold
without the concern of preserving the Conley homology index. Hence, not only the techniques but
also the questions which are addressed differ completely in nature.

Also item 2 deserves some comments. In our realizations we preserve the given differences
{(B+

j − B−
j )}n−1

j=0 . In general an arbitrary choice of Betti numbers of the edges, respecting the
differences, doesn’t always correspond to a realization. There are two reasons for this phenomenon.
The first one is intrinsic to manifolds of dimension (n = 0) mod 4. For instance the graph in
dimension n = 20 with one vertex labelled with h10 = 1, having only one incoming edge and one
outgoing edge, both labelled with zero Betti numbers, excepted for β0 = βn−1 = 1, cannot be
realized. However, with an appropriate choice of Betti numbers satisfying the same difference, this
semi-graph is realized. We’ll discuss both situations in Subsection 3.4.

The second reason is due to our choice of gluings preserving the ranks of the homology Conley
indices. Nevertheless, if we were to weaken our theorem by not being concerned in preserving
the ranks of the homology Conley indices, it is trivial to see from our proof that one could realize
arbitrary Betti numbers, satisfying the differences, up to the natural topological restrictions above.
In any case, it should be noted that even fixing the Betti numbers of the boundary doesn’t mean
fixing the boundary.

The manifolds we chose to work with are torsion-free and hence computing homology with Z or
Z2 coefficients makes no difference. A finer analysis is needed to distinguish manifolds associated
with the same Lyapunov semi-graph whose homologies have the same ranks but different torsions.

Last, our construction allows us to answer a question asked in [BeMRez2] concerning a geometric
interpretation of some homological data.

2This assumption is natural, it guarantees the compatibility of the hj ’s with the previous data. Such inequalities
can be found in [BeMRez1].
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The paper is organized as follows. In the first section we give background material. In the
second we prove our decomposition theorem, which motivates the choice of the gluings we use,
which we describe in the third section. In the fourth section we prove our main theorem by
exhibiting the construction of our isolating blocks. We conclude with final remarks.

1 Background

In this section we give some basic results we shall need in the sequel. The first subsection contains
fundamental results in handle theory. The second deals with preliminaries in Lyapunov graph
theory.

1.1 Classical handle theory

By completeness, we briefly expose here some known features in Topology and take the occasion
to introduce our notation and viewpoint. More details on the subject can be easily found in the
classical literature or for instance in [L].

By definition, an n-dimensional handle of index k is a product of disks centered at the origin
Dk × Dn−k. The core is Dk × 0 and the cocore is 0 × Dn−k. We define a flow on the handle
by considering a non-degenerate index k singularity at the origin and identifying the core and
cocore with its unstable and stable manifold respectively. The attaching region of the handle is
Sk−1 ×Dn−k and corresponds to the part of the boundary of the handle through which the flow
exits. Similarly, the belt region Dk×Sn−k−1 corresponds to the part of the boundary of the handle
through which the flow enters.

1.1.1 Cancellation lemma

In the following proposition, known as the Cancellation Lemma, it is shown that two handles of
consecutive indices can be glued to a ball in such a way that they can be cancelled.

Proposition 1.1. Let Dk denote the k-dimensional disk and Dk
+ (resp. −) denote the upper (resp.

lower) hemisphere of the k-dimensional sphere Sk = Dk
+ ∪ Dk

−. Then, for all integers n ≥ 2 the
following items hold:

1. for all q = 0 . . . n, Dn admits the q-decomposition below

Dn = (Sq−1 ×Dn+1−q) ∪Sq−1×Dn−q
+

(Dq ×Dn−q
+ )

2. in particular, for all q = 1 . . . n a q-decomposition of Dn can be obtained by gluing to Dn a
(q − 1)-handle and a q-handle, both of dimension n, in a canonical way.

Proof: By induction on n, the dimension. For n = 2 the proposition is trivial. Assuming the
proposition is true for n− 1, we show it is true for n.

• The 0-decomposition of Dn is straightforward:

Dn = (S−1 ×Dn+1) ∪S−1×Dn
+

(D0 ×Dn
+) = ∅ ∪∅ (D0 ×Dn

+)

• We show the q-decomposition of Dn for all q = 1 . . . n. By induction, the q-decomposition

Dn−1 = (Sq−1 ×Dn−q) ∪Sq−1×Dn−q−1
+

(Dq ×Dn−q−1
+ )

= (Dn−1 ∪Sq−1×Dn−1−q (Dq ×Dn−1−q)) ∪Sq−1×Dn−q−1
+

(Dq ×Dn−q−1
+ )
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is obtained by consecutively gluing in a given way a (q − 1)-handle hq−1 and a q-handle hq,
both of dimension n− 1, to Dn−1. Then, by construction,

Dn = Dn−1 ×D = (Sq−1 ×Dn−q ×D) ∪Sq−1×Dn−q−1
+ ×D (Dq ×Dn−q−1

+ ×D) =

= (Sq−1 ×Dn−q+1) ∪Sq−1×Dn−q
+

(Dq ×Dn−q
+ )

= (Dn ∪Sq−1×Dn−q (Dq ×Dn−q)) ∪Sq−1×Dn−q
+

(Dq ×Dn−q
+ )

is a q-decomposition of Dn obtained by consecutively gluing to Dn a (q − 1)-handle h̃q−1 =
hq−1 ×D and a q-handle h̃q = hq ×D, both handles being of dimension n.

4

1.1.2 Dual handles

In the following proposition the classical notion of dual handle is introduced.

Proposition 1.2. Given an (n − 1)-dimensional manifold N , let M be the n-manifold obtained
by attaching a q-handle hq to N × [0, 1], the collar of N . The boundary of M is the disjoint union
of two components N0 = N × {0} and N1. Then it is possible to obtain M by gluing to the collar
of N1 a (n− q)-handle hn−q.

The (n − q)-handle hn−q in the proposition will be called the dual handle of the q-handle hq.
The following example illustrates the concept. Let n = 3, N = S2 and q = 1. Then N0 = S2,
N1 = S1 × S1 and

M = (D2 × S1) \D3

Of course, one can start with S1 × S1 and glue a 2-handle to the collar of S1 × S1 in order to
obtain the same manifold M , as shown in Figure 1 below.

�����
�����

�����
�����

�������������
�������������
�������������
�������������
�������������
�������������

Figure 1: Example of dual handles in dimension 3

Proof: The general idea of the proof is to find the dual (n − q)-handle roughly speaking in-
side hq ⊂ M . More precisely, let Ñ = N \ (Sq−1 ×Dn−q). Hence, by construction

N × [0, 1] = (Ñ × [0, 1]) ∪Sq−1×Sn−q−1×[0,1] (Sq−1 ×Dn−q × [0, 1])
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After gluing the q-handle to the collar of N in order to obtain the manifold M , we have

N × [0, 1] hq

︷ ︸︸ ︷ ︷ ︸︸ ︷
M = (Ñ × [0, 1]) ∪Sq−1×Dn−q×[0,1] (Sq−1 ×Dn−q × [0, 1]) ∪Sq−1×Dn−q×{1} (Dq ×Dn−q)

︸ ︷︷ ︸
T

which we shall briefly denote by M = (Ñ × [0, 1])∪f T , f being the associated identification map.
Let us now study T . Since (Sq−1× [0, 1])∪Sq−1×{1}Dq is obviously homeomorphic to Dq, we have
T = Dq × Dn−q. Moreover, let D̃q = [ 14 , 3

4 ]q ⊂ [0, 1]q = Dq. Then the set D̃q × Dn−q is the
(n− q)-handle inside T we were looking for (see Figure 2).
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Figure 2: Mutual position of the dual handles

= T

= hn−q

= hq

This way, since (Sn−q−1 × [0, 1]) ∪Sn−q−1×{1} Dn−q is obviously homeomorphic to Dn−q, we can
decompose T as

T = (Dq × Sn−q−1 × [0, 1]) ∪Dq×Sn−q−1×{1}

hn−q︷ ︸︸ ︷
(Dq ×Dn−q)

Moreover, by construction,

N1 = Ñ ∪Sq−1×Sn−q−1 (Dq × Sn−q−1)

thus we are done since the last decompositions of T and N1 imply that

N1 × [0, 1] hn−q

︷ ︸︸ ︷ ︷ ︸︸ ︷
M = (Ñ × [0, 1]) ∪f (Dq × Sn−q−1 × [0, 1]) ∪Dq×Sn−q−1×{1} (Dq ×Dn−q)

︸ ︷︷ ︸
T

that is, M can be obtained by attaching an (n− q)-handle to the collar of N1. 4

1.1.3 Handle decomposition of some projective spaces

In this subsection we summarize known results on some projective spaces, namely,

– the complex projective spaces CP2k (of dimension n = 4k);
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– the Hamiltonian projective spaces HP2k (of dimension n = 8k) obtained by replacing the
commutative field C by the non-commutative field of the quaternions3, denoted by H;

– the Cayley projective space OP2k (of dimension n = 16k) obtained by replacing the com-
mutative field C by the non-associative algebra of the octonions4, denoted by O.

As for the complex projective spaces CP2k, it is shown for instance in [Hu]–III.4 and in [GrHa]–
II.19, that the homology of such spaces is non-zero only for even indices. Moreover, the construction
of such spaces is shown in terms of cellular attachment via the Morse function defined on CP2k

f : [z0 : z1 : . . . : z2k] →
2k∑

j=0

cj | zj |2 cj ’s all different.

The cellular decomposition can be translated in terms of handle decomposition ([Sm1] and [Sm2])
in such a way that the index of the cell corresponds exactly to the index of the associated handle.
In particular we have that CP2 can be decomposed into the three handles: h0, h2 and h4. The
boundary to which h2 is attached is S3. The boundary after the attachment is again S3, and the
attachment of the handle generates the second homology group H2(CP2) = Z. More generally, we
have that CP2k can be decomposed into the (2k + 1) handles: (h0, h2, h4, h6, . . . , h4k).

Analogous results are true for the Hamiltonian projective spaces HP2k. The homology of such
spaces is non-zero only for (all) indices which are multiple of 4. In particular we have that HP2

can be decomposed into the three handles: h0, h4 and h8. The boundary to which h4 is attached
is S7. The boundary after the attachment is again S7, and the attachment of the handle generates
the fourth homology group H4(HP2) = Z. More generally, we have that HP2k can be decomposed
into the (2k + 1) handles: (h0, h4, h8, . . . , h8k).

Finally, the homology of the Cayley projective spaces OP2k is non-zero only for indices which
are multiple of 8. In particular we have that OP2 can be decomposed into the three handles:
h0, h8 and h16. The boundary to which h8 is attached is S15. The boundary after the at-
tachment is again S15, and the attachment of the handle generates the eighth homology group
H8(OP2) = Z. More generally, we have that OP2k can be decomposed into the (2k + 1) handles:
(h0, h8, h16, . . . , h16k).

For more details on such projective spaces, see [Ba], and [St]. In [Ba] it is also shown that no
other orientable manifold can be seen as a projective space.

1.2 Abstract Lyapunov graphs

The motivation of what follows comes from Frank’s idea of Lyapunov graphs. In [F] he associates
with a continuous flow on a closed manifold and a Lyapunov function on it, the quotient space

M/ ∼ where x ∼ y ⇐⇒ x and y are in the same connected component of the level set

and sees such a quotient as a graph L according to the rule that a point of M/ ∼ is a vertex if
and only if it is the equivalence class of a chain recurrent component. Hence all the other points

3The quaternions are a 4-dimensional non-commutative field with basis 1, i, j, k and their multiplication is given
by the following rules:
i2 = j2 = k2 = −1;
index cycling identities: ij = k, jk = i, ki = j;
the elements of the basis anticommute : ij = −ji, ik = −ki, jk = −kj.

4The octonions are an 8-dimensional non-associative algebra with basis 1, e1, . . . , e7 and their multiplication is
given by the following rules:
e1, . . . , e7 are square roots of −1;
e1e2 = e4;
ei and ej anticommute when i 6= j: eiej = −ejei;
index cycling identities: eiej = ek ⇒ ei+1ej+1 = ek+1;
index doubling: eiej = ek =⇒ e2ie2j = e2k.
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are edge points of L. Moreover, L can be oriented according to the orientation of the flow. Note
that, in order for L to have a finite number of vertices, we have to consider only flows admitting
a finite number of chain recurrent components.
One can do the same process when the underlying manifold has some boundary. In this case, we
obtain a Lyapunov semi-graph.
The second general idea, in [Rez] and [CrRez], is to enrich a Lyapunov graph with labels concerning
the topology of the initial manifold or the original dynamics. Following [Rez] and [CrRez], here
we choose to label the graph with some homological information: its vertices are labelled with the
ranks of the homology Conley indices, and its edges are labelled with the Betti numbers of any of
the level sets associated with the given edge.

Of course, one can take the opposite point of view by defining a Lyapunov graph in an abstract
way and this is what we start from.

Definition 1.3. An abstract Lyapunov graph (semi-graph)5 is an oriented graph (semi-graph)
with no oriented cycles such that each vertex v is labelled with a list of non-negative integers
{h0(v) = k0, . . . , hn(v) = kn}. Also, the labels on each edge {β0 = 1, β1, . . . , βn−2, βn−1 = 1} must
be a collection of non-negative integers satisfying the Poincaré duality (i.e. βj = βn−j−1 for all
j’s) and if n = 2i then βi must be even.

In this abstract setting, a natural question is whether, given an abstract Lyapunov semi-graph,
there exist a manifold, a continuous flow on it and a Lyapunov function, such that the associated
Lyapunov semi-graph is the given one. Shortly we speak of the realization of an abstract Lyapunov
semi-graph.

1.2.1 Continuation results

In this section we want to introduce a special class of abstract Lyapunov semi-graphs, that is,
those which can be related to Morse flows on manifolds. In this particular case the singularities of
the flow are points, hence the corresponding vertices are labelled with {hj(v) = 1}, where j is the
dimension of the unstable manifold of this isolated singularity. Passing through a vertex along the
opposite orientation of the graph corresponds to attaching a handle of index given by the label of
the vertex. As for the boundary, attaching a handle of index j (j = 1 . . . n − 1) can have one of
the following effects:

1. the j-th Betti number of the boundary is increased by 1 (or by 2, if n = 2j + 1), and the
handle will be said of type j-d (d standing for disconnecting);

2. the (j − 1)-th Betti number of the boundary is decreased by 1 (or by 2, if n = 2j − 1), and
the handle will be said of type (j − 1)-c (c standing for connecting);

3. if n = 4k and j = 2k all the Betti numbers are kept unchanged, and the handle will be said
of type β-i (i standing for invariant).

Therefore, we have the following natural abstract definition:

Definition 1.4. An abstract Lyapunov graph (semi-graph) of Morse type is an abstract Lyapunov
graph (semi-graph) that satisfies the following:

1. every vertex is labelled with hj = 1 for some j = 0, . . . , n.

2. the number of incoming edges, e+, and the number of outgoing edges, e−, of a vertex must
satisfy:

5Given a finite set V we define a directed semi-graph G′ = (V ′, E′) as a pair of sets V ′ = V ∪{∞}, E′ ⊂ V ′×V ′.
As usual, we call the elements of V ′ vertices and since we regard the elements of E′ as ordered pairs, these are
called directed edges. Furthermore the edges of the form (∞, v) and (v,∞) are called semi-edges (or dangling edges
as in [Rez]). Note that whenever G′ does not contain semi-edges, G′ is a graph in the usual sense. The graphical
representation of the graph will have the semi-edges cut short.
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(a) if hj = 1 and j 6∈ {0, 1, n− 1, n} then e+ = 1 and e− = 1;

(b) if h1 = 1 then e+ = 1 and 0 < e− ≤ 2; if hn−1 = 1 then e− = 1 and 0 < e+ ≤ 2;

(c) if h0 = 1 then e− = 0 and e+ = 1; if hn = 1 then e+ = 0 and e− = 1.

3. every vertex labelled with h` = 1 must be of type `-d or (` − 1)-c. Furthermore if n = 2i,
(n = 0) mod 4 and hi = 1, then v may be labelled with β-i.

It was proved in [BeMRez1] that if an abstract Lyapunov semi-graph satisfies the Poincaré-
Hopf inequalities, then it can be continued to a Lyapunov semi-graph of Morse type. This means
that any vertex of the initial abstract Lyapunov semi-graph L can be replaced by a Lyapunov
semi-graph of Morse type LM , satisfying the same Betti numbers on the e+ and e− incoming and
outgoing (dangling) edges, and such that the k-th ranks of the Conley homology indices in L are
equal to the number of singularities of index k in LM . Moreover, an algorithm finding all possible
continuations of a given graph is described. Observe that this algebraic approach of continuation
has a dynamical counterpart in [Rei].

1.2.2 Minimal number of singularities

Another approach toward the realizability of an abstract Lyapunov semi-graph consists in fixing
a priori only the homological boundary data and ask what is the minimal number of singularities
needed in order to make the homological gaps between the two boundaries vanish. In other
words, we want some information about what are the manifolds, if any, with least homology whose
boundary satisfies the given data. More precisely,

Definition 1.5. Given positive integers e+ and e−, and n integers {(B+
j − B−

j )}n−1
j=0 such that

(B+
j −B−

j ) = (B+
n−1−j −B−

n−1−j) for all j = 0 . . . n− 1, and (B+
i −B−

i = 0) mod 2 if n = 2i + 1,
we say that an n-dimensional manifold M with boundary ∂M = N+ ∪N− such that N+ ∩N− = ∅
satisfies the given (homological) boundary conditions if e+ is the number of connected components
of N+, e− is the number of connected components of N− and (B+

j −B−
j ) is the difference of the j-th

Betti numbers of the boundary components, that is, (B+
j −B−

j ) = rank(Hj(N+))− rank(Hj(N−)).

In [BeRezVa] it is proved that the loose information about the boundary suffices to determine
the abstract minimal number of singularities that must be present in any realization, as well as
their indices and types (connecting and disconnecting).

Theorem 1.6. Let e+ and e− be positive integers. Let {(B+
j − B−

j )}n−1
j=0 be integers such that

(B+
j − B−

j ) = (B+
n−1−j − B−

n−1−j) for all j = 0 . . . n − 1. If n = 2i + 1, let (B+
i − B−

i = 0)
mod 2. Then any flow on any n-dimensional manifold M satisfying the given homological boundary
conditions must have at least hmin singularities, where

hmin =





e+ + e− − 2 +
∑i−1

j=1 | B+
j −B−

j | +
∣∣∣∣
B+

i −B−
i

2

∣∣∣∣ if n = 2i + 1;

e+ + e− − 2 +
∑i

j=1 | B+
j −B−

j | if n = 2i.

Moreover, such hmin singularities are of the following indices and types. Let hd
j denote the number

of singularities of index j and type j-d, and let hc
j denote the number of singularities of index j

and type (j − 1)-c.

∗ We have hc
1 = (e− − 1) and hd

n−1 = (e+ − 1).

∗ For j = 1 . . . bn
2 c − (n mod 2), let kj be any integer in 0 . . . | B+

j −B−
j |:

if B+
j ≥ B−

j then we have hd
j = kj and hd

n−j−1 = (| B+
j −B−

j | −kj), else we have hc
j+1 = kj

and hc
n−j = (| B+

j −B−
j | −kj).
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∗ If n = 2i + 1, then either B+
i ≥ B−

i and we have hd
i = |B+

i −B−i |
2 , or B+

i < B−
i and we have

hc
i+1 = |B+

i −B−i |
2 .

Of course, one knows the indices of the singularities realizing hmin from the above theorem
just by forgetting about their types (connecting and disconnecting). Note that the converse is also
true: if we apply the algorithm of continuation to any of the admissible lists of hj ’s realizing hmin,
then the associated continuation is unique, that is, the list of the indices uniquely determines the
corresponding types.

In this paper we shall construct a Morse flow on an n-dimensional manifold M with bound-
ary satisfying the given homological boundary data and with exactly hmin singularities (Proposi-
tion 4.1).

2 Combinatorics of the general vertex label

The fundamental result which allows us to guarantee that we shall be able to build models for
our realizations within a given class of manifolds lies on the combinatorial nature of our reference
settings.

Theorem 2.1. Let v be a vertex of a Lyapunov semi-graph. Let h ∈ Rn−1 denote its label, with
the convention that the j-th coordinate corresponds to the value of hj. Then h is compatible with
the boundary conditions if and only if it can be decomposed as

h = hmin + hconsecutive + hdual + hinvariant

where

hmin is one of the labels associated with hmin and the boundary conditions (theorem 1.6);

hconsecutive is a vector corresponding to a collection of couples (hj , hj+1) with adjacent indices
(necessarily of types (j-d, j-c));

hdual is a vector corresponding to a collection of couples (hj , hn−j) with dual indices (either of
types ((j − 1)-c, (n− j)-d) or of types (j-d, (n− j − 1)-c);

hinvariant is a vector which may be non-zero only in dimension n = 4k, corresponding to a
collection of middle dimension h2k’s of type β-i.

Proof: Since h is compatible with the boundary conditions (i.e, satisfies the Poincaré-Hopf
inequalities), the associated graph can be continued to an abstract graph of Morse type. Among
the vertices of any continuation, there are hmin of them which are labelled in such a way that their
total effect on the Betti numbers is to make the difference of the boundary Betti numbers vanish.
The vector associated with these hmin vertices is the vector hmin of the decomposition. Next, all
the other vertices together must have no total effect on the difference of the Betti numbers that
is, either they are β-invariant (and this is possible only for the middle index j = 2k in dimension
n = 4k), or each variation of one of the Betti numbers caused by a vertex of a given index and type
must be cancelled by a vertex of the appropriate index and type. This last situation corresponds
to the possibility of pairing up vertices either according to the rule (hd

j , h
c
j+1), which will be taken

into account in hconsecutive, or according to the rules (hc
j , h

d
n−j) and (hd

j , h
c
n−j), which will be taken

into account in hdual. 4

The decomposition of the above proposition is in general not unique. Consider the following
example in dimension n = 5 (see Figure 3 below, where it is understood that for every edge we
have β0 = β4 = 1 and β3 = β1). In this case e+ = 2, e− = 3, (B+

1 −B−
1 ) = (1+2)− (0+0+1) = 2,

(B+
2 −B−

2 ) = (0 + 10)− (2 + 2 + 4) = 2 and h = (3, 2, 3, 2).
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Figure 3: A vertex

For these data we have hmin = 6 and three vectors realizing it:




h
(0)
min = (2, 1, 2, 1) corresponding to {hc

1 = 2, hd
2 = 1, hd

3 = 2, hd
4 = 1};

h
(1)
min = (3, 1, 1, 1) corresponding to {hc

1 = 2, hd
1 = 1, hd

2 = 1, hd
3 = 1, hd

4 = 1};
h

(2)
min = (4, 1, 0, 1) corresponding to {hc

1 = 2, hd
1 = 2, hd

2 = 1, hd
4 = 1}.

The semi-graph of Morse type shown in Figure 4 represents one of the possible continuations of
the vertex we are studying. By considering only this special continuation it is easy to verify that
the label h admits at least the three following decompositions:

h = (3, 2, 3, 2) =

(0−c, 0−c, 2−d, 3−d, 3−d, 4−d)︷ ︸︸ ︷
(2, 1, 2, 1)︸ ︷︷ ︸

h
(0)
min

+

(1−d, 3−c)︷ ︸︸ ︷
(1, 0, 0, 1)+

(2−d, 2−c)︷ ︸︸ ︷
(0, 1, 1, 0)︸ ︷︷ ︸

hdual

=

(0−c, 0−c, 2−d, 3−d, 3−d, 4−d)︷ ︸︸ ︷
(2, 1, 2, 1)︸ ︷︷ ︸

h
(0)
min

+

(2−d, 2−c)︷ ︸︸ ︷
(0, 1, 1, 0)︸ ︷︷ ︸
hconsecutive

+

(1−d, 3−c)︷ ︸︸ ︷
(1, 0, 0, 1)︸ ︷︷ ︸

hdual

=

(0−c, 0−c, 1−d, 2−d, 3−d, 4−d)︷ ︸︸ ︷
(3, 1, 1, 1)︸ ︷︷ ︸

h
(1)
min

+

(2−d, 2−c)︷ ︸︸ ︷
(0, 1, 1, 0)+

(3−d, 3−c)︷ ︸︸ ︷
(0, 0, 1, 1)︸ ︷︷ ︸

hconsecutive

3 Choice of standard gluings

In this section we define the gluings which we allow for the construction of our models and we
emphasize the changes produced by these gluings on the boundary and inside the manifold. Note
that these choices of gluings are consistent and general because of the decomposition theorem of
the previous section.

We keep the same notation: in particular an n-dimensional handle of index q will always be
denoted by hq. Moreover, in what follows, the n-dimensional manifold obtained after step i will
be denoted by Mi and its modified boundary by Ni. Since we shall describe the changes produced
by the gluings we chose, notice that \ will denote the connected sum along the boundary, while ]
will denote the connected sum.
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Figure 4: A possible continuation of the vertex of Figure 3

3.1 Trivial gluing

Let us start from M0 and N0. A trivial gluing is a way of attaching a handle of index q in order to
create a q-handlebody. This gluing corresponds to the first step of the 2-step construction detailed
in Proposition 1.1. Let B0 be an n-dimensional ball. After gluing the q-handle to the upper
hemisphere of its boundary we obtain the q-handlebody Hq defined by

Hq = (Dq ×Dn−q)︸ ︷︷ ︸
B0

∪Sq−1×Dn−q (Dq ×Dn−q)︸ ︷︷ ︸
hq

= Sq ×Dn−q

From the point of view of M0 we have:

M1
def= M0 ∪Sq−1×Dn−q hq

= M0 \ Hq

(to see the connected sum, take an (n − 1)-dimensional disk in N0, identify it to the lower
hemisphere of B0, then remove the interior of B0 and identify the two hemispheres of its boundary).
From the point of view of N0 we have:

N1
def= N0 \ (Sq−1 ×Dn−q)︸ ︷︷ ︸

attaching region of hq

∪Sq−1×Sn−q−1 (Dq × Sn−q−1)︸ ︷︷ ︸
belt region of hq

= N0 ] ∂Hq = N0 ] (Sq × Sn−q−1)

Note that the effect of the trivial gluing on the Betti numbers of the boundary is that only the
q-th Betti number βq and its dual βn−q−1 have changed by being increased by 1. For this reason,
the trivial gluing of hq is of type q-d.
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3.2 Null gluing

Let us start from M0 and N0. A null gluing concerns two handles of consecutive indices, say, q
and q + 1. It is an application of the 2-steps construction detailed in Proposition 1.1:

1. Trivial gluing (Subsection 3.1) of the q-handle hq on a trivial disc Dn−1 of the boundary N0.
We get: {

M1 = M0 \ Hq

N1 = N0 ] ∂Hq = N0 ] (Sq × Sn−q−1)

2. According to Proposition 1.1, we glue hq+1 to Hq in order to obtain an n-dimensional disk.
Note that during this process the lower hemisphere of B0 of the previous step (same notation
as in Subsection 3.1) is never modified. Hence, in the same way as before, from the point of
view of M2 we have:

M2
def= M1 ∪(null)

Sq×Dn−q−1 hq+1 =

= M0 \ (Hq ∪(null)

Sq×Dn−q−1 hq+1)︸ ︷︷ ︸
Dn

=

= M0 \ Dn = M0

while from the point of view of N2 we have:

N2 = N0 ] ∂Dn = N0

Note that the effect of the null gluing on the Betti numbers of the boundary is globally null. After
the first step, only the q-th Betti number βq and its dual βn−q−1 have changed by being increased
by 1 (trivial gluing of hq of type q-d). After the second step the gluing of hq+1 decreases by 1 the
same Betti numbers βq and βn−q−1 (gluing of hq+1 of type q-c).

3.3 Dual gluing

A dual gluing can only be performed by using two handles of complementary indices q and (n− q).

1. The first step consists in gluing a q-handle hq to M0 via a trivial gluing (Subsection 3.1). We
hence create a q-handlebody Hq and the global result of the gluing is that

{
M1 = M0 \ Hq

N1 = N0 ] ∂Hq = N0 ] (Sq × Sn−q−1)

2. We want now to attach the (n−q)-handle hn−q by identifying its attaching region Sn−q−1×Dq

to the belt region of hq:

∂hq ∩N1 = ∂hq \ (Sq−1 ×Dn−q) = Dq × Sn−q−1 = Sn−q−1 ×Dq

The resulting manifold is
M2 = M0 ] Sq × Sn−q

and its boundary is
N2 = N0

In order to prove these claims, consider the q-handlebody Hq obtained in step 1 :

Hq = B0 ∪Sq−1×Dn−q hq = Sq ×Dn−q

12



Take a copy of it, called H̃q, which can be obtained by successively gluing to ∂Hq an (n− q)-
handle hn−q and an n-handle Bn (just take the definition of dual handles in Subsection 1.1.2).
Then

Hq ∪∂Hq H̃q = (Sq ×Dn−q

︸ ︷︷ ︸
Hq

) ∪Sq×Sn−q−1 (Sq ×Dn−q

︸ ︷︷ ︸
H̃q

) = Sq × Sn−q

This means that
Hq ∪Sn−q−1×Dq hn−q = (Sq × Sn−q) \Bn

where Bn is an n-dimensional ball.
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Figure 5: Dual gluing

B0 B0

hk hn−k

Summarizing our steps (see Fig. 5), we started from M0 and took away an n-dimensional ball
B0 such that upper hemisphere of ∂B0 is a Dn−1 in ∂M0. Therefore we can consider M0 as
the first member of the connected sum describing M2, and B0 the ball used to perform the
connected sum (even if B0 is not in the interior of M0, by taking collars one can show that
in our context the final result would be the same).
On the other hand, by attaching hq and hn−q to B0 we obtain a manifold homeomorphic to
(Sq×Sn−q)\Bn (therefore, (Sq×Sn−q) is the second member of the connected sum, and Bn

the ball used to perform the connected sum). Note that in this process the lower hemisphere
of ∂B0 has never been modified. By replacing B0 at its place in M0, we have proved the first
claim:

M2 = M0 ] Sq × Sn−q

As for the second step, it suffices to see that after the gluing of hq and hn−q, we have

N2 = N0 ] ∂Dn−1 = N0

Note that the effect of the dual gluing on the Betti numbers of the boundary is globally null. After
the first step, only the q-th Betti numbers βq and its dual βn−q−1 have changed by being increased
by 1 (trivial gluing of hq of type q-d). After the second step the gluing of hn−q decreases by 1 the
same Betti numbers βq and βn−q−1 (gluing of hn−q of type (n− q − 1)-c).

3.4 Invariant gluing

When the ambient dimension n is of the form n = 4k and the index of the singularity is the middle
dimension 2k, then there is the possibility of gluing the corresponding handle in an invariant way,
that is, in such a way that the Betti numbers of the boundary after such a gluing are the same
as those of the boundary before the gluing. For this reason, all gluings of a single handle h2k like
these are of type β-i.

We have examples of invariant gluings in the construction of the projective spaces CP2k,
HP2k and OP2k described is subsection 1.1.3: in all these cases the middle dimensional handle is
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necessarily of type β-i. We need to divide our study in different subcases according to the ambient
dimension.

Let us start from M0 and N0. If n = 4, take a 4-dimensional ball B0 out of M0 such that upper
hemisphere of ∂B0 is a D3 in ∂M0 = N0. Glue to B0 a 2-handle as in the handle decomposition
of CP2 (by identifying B0 to h0), thus obtaining the complement of a ball in the complex plane,
that is, CP2 \ Bn. By identifying the boundary of this manifold to that of B0 in M0, we have
made the following connected sum:

M1 = M0 ] CP2

whose boundary is N1 = N0.
In the same way, if n = 8, by considering the middle gluing in the handle decomposition of

HP2, we have: {
M1 = M0 ] HP2

N1 = N0

The same argument applies for n = 16 when considering the handle decomposition of OP2. In
this case we have: {

M1 = M0 ] OP2

N1 = N0

In the remaining cases (n = 12 or n = 4k with k ≥ 5) no invariant gluing can be expressed in
such a direct form. It is proved in [EK] that in dimension n = 4k with k = 3 or k ≥ 5 there exists
no orientable manifold having a handle decomposition of the form (h0, h2k, hn). Nevertheless,
invariant gluings are possible also in these dimensions, up to adding some hypotheses on the
boundary to which the invariant gluing is performed. For instance, in dimension n = 4k, consider
the handle decomposition (h0, . . . , h2k−2, h2k, h2k+2, . . . , hn) of CP2k and let W be the boundary
obtained after the gluing of the first k handles. Let V be the manifold obtained by gluing the
handle h2k as in the construction of CP2k. Because of the symmetry of the construction, the new
boundary is again W . To prove this claim, consider the Morse function defined on CP2k

f : [z0 : z1 : . . . : z2k] →
2k∑

j=0

(−2k + 2j) | zj |2

whose critical values are {−2k,−2k + 2,−2k + 4, . . . , 2k − 4, 2k − 2, 2k}. The attaching of the
handle h2k corresponds to passing through the critical value 0, that is, W can be thought of as
f−1(−1) and the new boundary after the attachment can be thought of as f−1(1). These two level
sets are homeomorphic via the map

[z0 : z1 : . . . : z2k] → [z2k : z2k−1 : . . . : z0]

Now, if we start from any boundary of the form N0 = N]W , N being any (n − 1)-dimensional
manifold, we can glue the handle h2k to the “W part”, as in the construction of CP2k. Hence the
result of the gluing is {

M1 = M0 \ V
N1 = N0

4 Isolating blocks

In this section we prove our main theorem by realizing step by step the isolating block. Each group
of handles appearing in the decomposition theorem (Theorem 2.1) will be treated separately in a
specific subsection.
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4.1 Realizations of hmin

Proposition 4.1. Let v be a vertex of a Lyapunov semi-graph labelled by a vector hmin compatible
with the boundary data and satisfying hmin. Then such a vertex can be realized explicitly as a
manifold with boundary contained in the n-dimensional sphere Sn.

Proof: Let Y denote the block realizing hmin. In the first step we build the exit boundary ∂−Y ,
while in the second step, starting from a collar of ∂−Y , we build the block Y itself. In order to
define ∂−Y , we do the following operations. We perform a continuation of the given vertex v. From
theorem 1.6 we know the explicit general form of the continuation in terms of the boundary data.
By using the same notation, we start building an auxiliary manifold X with empty exit boundary
and nonempty entry boundary ∂+X. Such ∂+X will be trivially identified to the exit boundary
∂−Y we are looking for. Here is the construction of X by attaching the following handles in such
a way that all their attaching regions are disjoint:

∗ Take e− attracting balls (singularities h0) and do the following operations on the appropriate
ball (use the boundary Betti numbers to choose);

∗ For j = 1 . . . bn
2 c − (n mod 2), let kj be the integer in 0 . . . | B+

j −B−
j | associated with the

given label of v:
if B+

j ≥ B−
j then attach in a trivial way B−

j handles hj of type j-d,
else if B+

j < B−
j attach in a trivial way kj handles hj of type j-d and (B−

j − kj) handles
hn−j−1 of type (n− j − 1)-d.

∗ If n = 2i + 1, attach in a trivial way B−i
2 handles hi and type i-d.

By construction ∂+X is an (n − 1)-dimensional manifold which can be described in terms of
connected sums of (n− 1)-dimensional generalized tori and whose Betti numbers are the ones we
need to define ∂−Y by ∂−Y := ∂+X. More precisely, for each incoming edge of v labelled by the
Betti numbers

(β̂0 = 1, β̂1, . . . , β̂n−2 = β̂1, β̂n−1 = β̂0 = 1),

the associated component will be the connected sums of generalized tori:
{

]i
j=1 ]β̂j Sj × Sn−j−1 if n = 2i;

(]i−1
j=1 ]β̂j Sj × Sn−j−1)] (]

β̂i
2 Si × Sn−i−1) if n = 2i + 1.

We shall refer to the handles used in the construction of the auxiliary manifold X as ghost handles
because they will not be seen in Y , the realization of hmin.

The second step consists in gluing the handles of hmin to a collar of ∂−Y . First we glue the
e− − 1 handles of index 1 and type 0-c in order to connect all the components of ∂−Y . Then,
for each one of the remaining handles, if it is of type j-d and j < n − 1, we glue it in a trivial
way, thus performing the connected sum with a j-handlebody, else, if it is of (index (j + 1) and)
type j-c, by construction it can be paired up with a ghost handle hj of type j-d and will be glued
in such a way that the two of them are glued in a null way (Subsection 3.2). We are left with
e+ − 1 handles of index (n − 1) and type (n− 1)-d, which we’ll use to disconnect – according to
the desired components and associated Betti numbers – the connected sum of generalized tori





]i
j=1 ]B+

j Sj × Sn−j−1 if n = 2i;

(]i−1
j=1 ]B+

j Sj × Sn−j−1)] (]
B

+
j
2 Si × Sn−i−1) if n = 2i + 1;

obtained in the last step. After gluing all the hmin handles, we have determined a manifold Y whose
entry and exit boundaries have the needed Betti numbers. Note that in particular the manifold
X ∪∂−Y Y can be completed to a sphere by gluing handles which can be paired in a null way with
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those which have not been paired yet and we are done. 4

It is worth pointing out that by construction a realization of hmin respecting given Betti numbers
(and not only their differences) is always possible.

Here we have made the choice of realizing hmin by a “slice” cut off from the sphere, other
analogous constructions are of course possible (for instance as “slices” cut off from connected sums
of generalized tori).

An important observation is that, since the attaching regions can all be chosen disjoint, the
rank of the Conley index is preserved at this stage (see [Co]), that is,

rank (Hj(Y, ∂−Y )) = number of handles of index j appearing in hmin.

4.2 Realization of hconsecutive

We recall that, by Theorem 2.1, handles in this class are couples (hj , hj+1) with adjacent indices
and of types j-d and j-c respectively. Of course one could realize them by considering them as
null pairs and glue them in a null way (Subsection 3.2), but in our setting this solution cannot be
accepted because handles like these can be removed from the isolating block without altering its
topology, hence a realization of this type would not match item 3 of our main theorem.

To solve the problem, we exhibit another way of gluing two consecutive handles which con-
tributes to the Conley index but which requires conditions on the Betti numbers of the exit
boundary.

The underlying idea is the following (to fix ideas let us consider dimension n = 3 and j = 1).
Suppose the initial boundary N0 is a torus S1×S1, the boundary of the 1-handlebody H1 = S1×D2,
and take a collar of N0. In order to glue the consecutive handles (h1, h2) in a non-null way, use
the handle of index 2 to “fill the hole” as in the second step of the null gluing, thus obtaining a
new boundary N1 = S2, then glue the handle of index 2 in a trivial way, thus obtaining a new
boundary N2 = S1 × S1 (see Figure 6).
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Figure 6: Isolating block of a consecutive pair of handles

∼=

Sj

Sn−j−1

hj

hj+1

Therefore, by definition, the homotopy Conley index of the block M is the homotopy type of
the wedge of spheres S1

∨
S2 (see Figure 8). The homology Conley index is: H1(M, N0) = Z,

H2(M,N0) = Z. The associated ranks are h1 = h2 = 1 as we needed.

The above construction can be easily adapted to the general dimension.

Proposition 4.2. Let e+ and e− be positive integers. Let {(B+
j − B−

j )}n−1
j=0 be a collection of n

integers such that (B+
j − B−

j ) = (B+
n−1−j − B−

n−1−j) for all j = 0 . . . n − 1. If n = 2i + 1, let
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Figure 7: Homotopy type of the block

∼

Sj

Dj+1

Sj

Figure 8: Conley index of the block

Sj ∨ Sj+1

(B+
i −B−

i = 0) mod 2. Moreover, let h be of the form

h = hmin + hconsecutive

Then such data are realizable in the sense of the Main Theorem.

Proof: Let ∂−Y be the exit boundary of the block realizing hmin as in Proposition 4.1. For
all j = 1 . . . n− 2, let cj be the number of consecutive couples of the form (hj , hj+1) appearing in
the class hconsecutive. Define N0 as the connected sum:

N0 = ∂−Y ] (]cj Sj × Sn−j−1)

and think of it as the boundary of the auxiliary manifold X ] (]cj Hj) where X is the auxiliary
manifold appearing in Proposition 4.1 and Hj denotes the j-handlebody Sj ×Dn−j obtained by
gluing a ghost handle of index j and type j-d in a trivial way to a ball (Subsection 3.1).

Take a collar of N0 and glue the handles of the class hmin to the “∂−Y part” as detailed in
the proof of Proposition 4.1. Now, for all handles (hj , hj+1) of the class hconsecutive, pair up the
one of index (j + 1) and type j-c with a ghost handle ĥj of one of the Hj ’s and glue it in such a
way that the total gluing of (ĥj , hj+1) is null (Subsection 3.2). Glue the remaining handle hj in a
trivial way. The result of this double gluing applied

∑
j cj times is that the new boundary N1 is

homeomorphic to N0 (implying no effect on the Betti numbers of the boundary).
On the other hand, after each of the consecutive gluings (hj , hj+1), the ranks of the homology

Conley indices have been increased by 1 at dimensions j and (j + 1), which can again be proved
by considering disjoint attaching regions (see [Co]) or by studying long exact sequences as shown
below.

Consider N = Sj × Sn−j−1 as the boundary of the j-handlebody H
(0)
j = Sj

(0) ×Dn−j
(0) . Let M

be the result of gluing two handles, of indices j and j + 1, on a collar of N in the way described
above. This means that we obtain

M = (Sj ×Dn−j) \ H
(0)
j = (Sj ×Dn−j) \ (Sj

0 ×Dn−j
0 )
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where H
(0)
j ⊂ Dn ⊂ M as in Figure 6.

If n 6= 2j +1, the only non-zero homology groups of M are (besides H0(M) = Hn(M) = Z and
Hn−1(M) = [∂M ] = Z):

Hj(M) = [Sj ] = Z
Hn−j−1(M) = [Sn−j−1] = Z

}
(see Figure 6)

while if n = 2j + 1, since j = n− j − 1, the only difference is that

Hj(M) = Hn−j−1(M) = [Sj , Sn−j−1] = Z⊕ Z.

Consider now the following long exact sequence of the pair (M,N):

. . .
∂k+2−−−→ Hk+1(N)

ιk+1
∗−−−→ Hk+1(M)

σk+1
∗−−−→ Hk+1(M, N)

∂k+1−−−→
∂k+1−−−→ Hk(N)

ιk
∗−→ Hk(M)

σk
∗−−→ Hk(M,N) ∂k−→

∂k−→ Hk−1(N)
ιk−1
∗−−−→ Hk−1(M)

σk−1
∗−−−→ Hk−1(M, N)

∂k−1−−−→ . . .

. . .
∂2−→ H1(N)

ι1∗−→ H1(M)
σ1
∗−→ H1(M, N) ∂̄1−→ {0}

We shall make our computations in details in the case n 6= 2j + 1, assuming without loss of
generality that j < n− j − 1. The remaining cases can be treated similarly.

First we show that Hj(M,N) = Z by showing that we have the following short exact sequence:

{0} → Hj(M)
σj
∗−→ Hj(M, N) → {0}

In fact, since Hj(N) is generated by [Sj ], its image under ιj∗ is zero because of the choice of the
gluing of hj+1, making it homologous to zero in M . Also, Hj−1(N) = {0} (if j = 1 there is nothing
to prove). Therefore σj

∗ is an isomorphism and we are done.
Next we show that Hj+1(M,N) = Z by showing the following short exact sequence:

{0} → Hj+1(M, N)
∂j+1−−−→ Hj(N) → {0}

The right null arrow has just been justified above. As for the left one, either Hj+1(M) is trivial
and there is nothing to add, or j + 1 = n − j − 1 and Hj+1(M) and Hj+1(N) are generated by
[Sn−j−1], hence, ij+1

∗ is an isomorphism and in this case the image of [Sn−j−1] under σj+1
∗ is zero

and we obtain the exact sequence above.

4

4.3 Realization of hdual

The realization of the class hdual is straightforward and no extra condition on the Betti numbers
of the boundary is needed. Just consider for (hq, hn−q) in hdual the dual gluing of Subsection 3.3.
It has already been explained there that the total effect on the Betti numbers of the boundary is
globally null. Moreover, each dual gluing (hq, hn−q) applied to a block M0 corresponds to taking
the connected sum of it with a generalized torus Sq×Sn−q. Therefore, the effect of each dual gluing
(hq, hn−q) on the Conley index of the isolating block is non-trivial only at ranks q and (n − q),
that is,

{
rank Hq(M2, N0) = rank Hq(M0 ] Sq × Sn−q, N0) = rank Hq(M0, N0) + 1
rank Hn−q(M2, N0) = rank Hn−q(M0 ] Sq × Sn−q, N0) = rank Hn−q(M0, N0) + 1

If the ambient dimension n is not a multiple of 4, then the construction of the isolating block
is done, otherwise another class of handles must be treated.
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4.4 Realization hinvariant

For n = 4, n = 8 and n = 16, the realization of the class hinvariant is also straightforward and no
extra condition on the Betti numbers of the boundary is needed. In these dimensions, let M0 be an
isolating block realizing hmin +hconsecutive +hdual. Let bi denote the number of middle-dimensional
invariant handles appearing in the decomposition of h. Then, by Subsection 3.4, the realization
M1 of our main theorem is achieved by applying bi invariant gluings and has the form:

M1 = M0 ] (]bi PP)

where PP is the complex projective plane CP2 if n = 4, the Hamiltonian projective plane HP2 if
n = 8, or the Cayley projective plane OP2 if n = 16. In all these cases we have

rank Hn
2
(M1, N0) = rank Hn

2
(M0 ] (]bi PP ), N0) = rank Hn

2
(M0, N0) + bi

In general, if n = 4k, k 6= 1, 2, 4, we need to construct boundaries ad hoc for the realization. Let
M0 be an isolating block realizing hmin +hconsecutive +hdual, and let N− denote the exit boundary
of such a realization. If bi denotes the number of middle-dimensional invariant handles appearing
in the decomposition of h, consider for instance the boundary ∂+W of the manifold obtained in
the construction of CP2k after gluing the handles h0, . . . , h2k−2, and define

N0 = N− ] (]bi ∂+W )

Consider the collar of N0, glue to the “N− part” of it all the non-invariant handles as in the
realization of M0. Then glue each of the bi handles h2k of type β-i to one of the ∂+W of the
collar and do this by using an invariant gluing (as for the construction of CP2k). At the end, the
realization M1 is achieved after these last operations and has the form:

M1 = M0 \ \bi V

where V denotes the manifold obtained by gluing h2k on ∂+W in an invariant way.
In particular, the Betti numbers of the boundary are kept unchanged, while the homology

Conley index of the isolating block has been modified at position 2k by the invariant gluings :

rank H2k(M1, N0) = rank H2k(M0 \ \bi V, N0) = rank H2k(M0, N0) + bi

Our main theorem is now completely proved.

5 Final remarks

The explicit realization of isolating blocks described in this paper allows us to answer a ques-
tion asked in [BeMRez2]. Given a closed manifold and a continuous flow it is known that the
Morse inequalities are satisfied. So, in order to have a necessary condition for the realization of
abstract Lyapunov graphs it was important to consider when the Morse inequalities are satisfied.
In [BeMRez2] it was shown that given abstract data (h0, h1, . . . , hn) satisfying the Poincaré-Hopf
inequalities we can find a Betti number vector (γ0, . . . , γn) that satisfies the Morse inequalities, and
vice-versa. The collection in the positive orthant can create all the possible Betti number vectors
that satisfy the Morse inequalities for the initial data. In this same paper it was shown that it
is possible to have negative γ’s and the authors asked about an interpretation of these negative
numbers. For instance for n = 2i + 1 the definition of γ is:

γ0(hcd) = γ2i+1(hcd) = 1

γj(hcd) =





hd
j − hc

j+1, if 1 ≤ j < i
hd

i , if j = i
hc

i+1, if j = i + 1
−hd

j−1 + hc
j , if i + 2 ≤ j ≤ 2i
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Take n = 7 and the Lyapunov graph of Figure 9.

Such a graph can be realized as S2 × S5 by attaching to h0 the dual handles h5 of type 5-d

u

?

u

u

?

h2 = 1, h5 = 1

β1 = β2 = β3 = 0

β1 = β2 = β3 = 0

h0 = 1

h7 = 1

Figure 9: A Lyapunov graph

(hence hd
5 = 1) and h2 of type 1-c (hence hc

2 = 1) with the dual gluing and by closing the manifold
with h7. In this case the only non-zero γj ’s are γ0 = γ7 = 1 and γ1 = γ6 = −1. Of course one can
realize the same manifold with handles with the same index by attaching to h0 the dual handles
h2 of type 2-d (hence hd

2 = 1) and h5 of type 4-c (hence hc
5 = 1) with the dual gluing and by

closing the manifold with h7. In this case all the γ’s are positive and the only non-zero γj ’s are
γ0 = γ7 = 1 and γ2 = γ5 = 1. Of course these examples as closed manifolds can be transformed
into examples of manifolds with boundary by taking h0 and h7 away from the construction.
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