RELATÓRIO DE PESQUISA

Asymptotically Linear Elliptic Problems in which the Nonlinearity Crosses at Least Two Eigenvalues

Francisco O. V. De Paiva

Janeiro

RP03/05

INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA

UNIVERSIDADE ESTADUAL DE CAMPINAS

Asymptotically linear elliptic problems in which the nonlinearity crosses at least two eigenvalues *†

FRANCISCO O. V. DE PAIVA [‡]
IMECC - UNICAMP,
Caixa Postal 6065.
13081-970 Campinas-SP, Brazil
E-mail address: odair@ime.unicamp.br

Abstract

In this paper we establish the existence of multiple solutions for the semilinear elliptic problem

$$-\Delta u = g(x, u) \quad \text{in} \quad \Omega$$
$$u = 0 \quad \text{on} \quad \partial \Omega$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, $g:\Omega\times\mathbb{R}\to\mathbb{R}$ is a function of class C^1 such that g(x,0)=0 and which is asymptotically linear at infinity.

1 Introduction

Let us consider the problem

$$\begin{aligned}
-\Delta u &= g(x, u) & \text{in } & \Omega \\
u &= 0 & \text{on } & \partial \Omega,
\end{aligned} \tag{1}$$

where $\Omega \subset \mathbb{R}^N$ is a open bounded domain with smooth boundary $\partial\Omega$ and $g:\Omega\times\mathbb{R}\to\mathbb{R}$ be a function of class C^1 such that g(x,0)=0. Assume that

$$g_0 := \lim_{t \to 0} \frac{g(x,t)}{t}, \quad \text{ uniformly in } \Omega,$$

^{*1991} Mathematical Subject Classification: 35J65 (35J20)

[†]Key words and phases: asymptotically linear, Morse theory, Shifting theorem, multiplicity of solution

[‡]The author was supported by ProDoc-CAPES/Brazil

$$g_{\infty} := \lim_{|t| \to \infty} \frac{g(x,t)}{t}$$
, uniformly in Ω .

Denote by $0 < \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_j \leq \ldots$ the eigenvalues of $(-\Delta, H_0^1)$, where each λ_j occurs in the sequence as often as its multiplicity. We also denote by φ_j the eigenfunction associated to λ_j .

We will suppose that $\lambda_{k-1} \leq g_0 < \lambda_k \leq \lambda_m < g_\infty \leq \lambda_{m+1}$, and we will look for the existence of two nontrivial solutions of (1). There are many works that prove this kind of results, we can cite [2, 3, 4, 7, 8, 9, 10, 11]. If g(x,t) = g(t) and g'(t) > g(t)/t, we can conclude from [3, Theorems 2.2 and 2.3] that if k=2 and m>2, then problem (1) has at least two nontrivial solutions (see [3, Corollary 2.4]). In [3] the authors also consider the resonant case $g_\infty = \lambda_{m+1}$, in this case they assume a Landesman-Lazer condition in order to get a compactness condition. The main aim in this paper is to improve these results in two ways: first we substitute the condition g'(t) > g(t)/t, by the weaker one $g'(x,t) \geq \lambda_1$ (see Theorem 2.1); second, we show the same result holds for any $k \geq 2$ and m > k (see Theorem 2.2).

We also obtain a result, Theorem 2.3, related to [11, Theorem 2.1], in this theorem the authors assume that $\lambda_{k-1} < g_{\infty} < \lambda_k \le \lambda_m < g_0 < \lambda_{m+1}$ and $g'(x,t) \ge \alpha > \lambda_{k-1}$. In Theorem 2.3 we assume that k=2 without the assumption on the g'(x,t). We remark that the Theorem 2.3 in the case $m \ge 3$ follows from Theorems 2.1 and 2.3 in [3].

The classical solutions of the problem (1) correspond to critical points of the functional F defined on $H_0^1 = H_0^1(\Omega)$, by

$$F(u) = \frac{1}{2} \int_{\Omega} |\nabla \dot{u}|^2 dx - \int_{\Omega} G(x, u) dx, \quad u \in H_0^1, \tag{2}$$

where $G(x,t) = \int_0^t g(x,s)ds$. Under the above assumptions F is a functional of class C^2 .

If U is a neighborhood of an isolated critical point u_0 with $F(u_0) = c$, then by the excision we have for the critical groups of u_0

$$C_p(\Phi, u_0) = H_p(\Phi^c \cap U, \Phi^c \cap U \setminus \{u_0\}).$$

2 Main theorems and proofs

Theorem 2.1 Suppose that $g'(x,t) \ge \lambda_1$ for all $x \in \Omega$ and $t \in \mathbb{R}$. Assume that $\lambda_1 \le g_0 < \lambda_2$, and that there exists $m \ge 3$ such that $\lambda_m < g_\infty < \lambda_{m+1}$. Then problem (1) has at least two nontrivial solutions.

Proof: From $\lambda_m < g_{\infty} < \lambda_{m+1}$ the functional F satisfies the (PS) condition and has the geometry of Saddle Point Theorem. Then there exists u_1 , a critical point of F, such that, see [12],

$$C_m(F, u_1) \neq 0. (3)$$

The proof of theorem follows of the next lemma and from the assumption that m > 2.

Lemma 2.1 There exists a critical point u2 of F such that

$$C_p(F, u_2) = \delta_{p2} \mathbb{Z}.$$

Proof: The existence of u2 satisfying

$$C_2(F,u_2)\neq 0, (4)$$

follows as in the proof of Theorem 3.6 in [3] (see also the proof of Theorem 1.3 in [7]). Let be $m(u_2)$, the Morse index of u_2 , it follows by Shifting Theorem ([6, Theorem 5.4, Chapter 1]) that

$$C_p(F, u_2) = C_{p-m(u_2)}(\tilde{F}, 0).$$
 (5)

So, by (4), we have $m(u_2) \le 2$. Since $g'(x,t) \ge \lambda_1$ we have $m(u_2) \ge 1$ (the eigenfunction φ_1 satisfies $F''(u_2)(\varphi_1, \varphi_1) < 0$). Then the eigenvalue problem

$$\begin{aligned}
-\Delta v &= \mu g'(x, u_2)v & \text{in } \Omega \\
v &= 0 & \text{on } \partial\Omega,
\end{aligned} \tag{6}$$

has the first eigenvalue $\mu_1 < 1$. Let be $\phi > 0$ the eigenfunction associated with μ_1 . Then by $\mu_1 < 1$ we have $F''(u_2)(\phi,\phi) < 0$, since φ_1 and ϕ are linearly independent, we obtain that $m(u_2) = 2$. Now, by (4) and (5), follows that $C_0(\widetilde{F},0) \neq 0$. Therefore 0 is a minimizer of \widetilde{F} then $C_p(\widetilde{F},0) = \delta_{p0}\mathbb{Z}$, and we get

$$C_{p}(F, u_{2}) = \delta_{p2}\mathbb{Z},$$

and the lemma is proved.

Finally, we show that u_1 and u_2 are nontrivial. Indeed, by $g'(x,0) < \lambda_2$ follows that $F''(0)(\varphi_j, \varphi_j) < 0$ for all $j \geq 2$. Then $m(0) + n(0) \leq 1$, where $n(0) = \dim \ker F''(0)$, and by a corollary of Shifting Theorem [6, Carollary 5.1, Chapter 1], we have $C_p(F,0) = 0$ for all $p \geq 1$. Therefore u_1 and u_2 are nontrivial critical points of F.

Theorem 2.2 Assume that $g'(x,t) \ge g(x,t)/t \ \forall x \in \Omega$ and $t \in \mathbb{R}$. Suppose that there exist $k \ge 2$, $m \ge k+1$ such that $\lambda_{k-1} \le g_0 < \lambda_k$ and $\lambda_m < g_\infty < \lambda_{m+1}$. Then problem (1) has at least two nontrivial solutions.

Proof: As in the proof of previous theorem we have a critical point u_1 of F such that

$$C_m(F, u_1) \neq 0. (7)$$

And by the proof of Theorem 1.1 in [7], we have a solution u_2 that satisfies

$$C_k(F, u_2) \neq 0. \tag{8}$$

By $\lambda_{k-1} \leq g'(x,0)$ we have $m(0) + n(0) \leq k-1$, and as in the previous theorem, this implies that u_1 and u_2 are nontrivial.

The theorem follows from the next claim.

Claim: $C_p(F, u_1) = \delta_{pk}G$.

By (7) and the Shifting Theorem we have that $m(u_1) \leq k$. We will show that $m(u_1) = k$. Indeed, by $g(x,t)/t \geq \lambda_{k-1}$ we have that $\mu_i(g(x,u_1)/u_1) < \mu_i(\lambda_{k-1}) \leq 1$ for all $i \leq k-1$. Now, we have that

$$-\Delta u_1 = \frac{g(x, u_1)}{u_1} u_1,$$

this implies that $\mu_k(g(x,u_1)/u_1) \leq 1$. Then $\mu_k(g'(x,u_1)) < 1$, it follows from $g'(x,t) \geq g(x,t)/t$. This implies that $m(u_1) \geq k$, then $m(u_1) = k$. Again, the Shifting Theorem and (7) imply the Claim.

Theorem 2.3 Assume that $\lambda_1 < g_{\infty} < \lambda_2$, and there exists $m \geq 2$ such that $\lambda_m < g_0 < \lambda_{m+1}$. Then problem (1) has at least two nontrivial solutions.

Proof: Let $u_1 \neq 0$ be such that $C_1(F, u_1) \neq 0$. First we prove the claim: $C_p(F, u_1) = \delta_{p1}\mathbb{Z}$.

Actually, we have that $m(u_1) \leq 1$. If $m(u_1) = 1$ the claim is proved. If $m(u_1) = 0$, then we have that the first eigenvalue μ_1 of the problem

$$-\Delta v = \mu g'(x, u_1)v \quad \text{in} \quad \Omega$$

$$v = 0 \quad \text{on} \quad \partial \Omega,$$
(9)

satisfies $\mu_1 = 1$ and is simple. It follows that $n(u_1) = 1$, and so the claim follows by Shifting Theorem.

We also have that $C_p(F,0) = \delta_{pm}\mathbb{Z}$. If u_1 and 0 are the unique critical points of F, then the Morse inequality reads as

$$(-1) = (-1) + (-1)^m$$
.

This is a contradiction.

Remark 2.1 We observe that the resonant case $g_0, g_\infty \in \sigma(-\nabla)$ can be treated as [3] and [11]. We leave for the reader to consider this case

References

- S. Ahmad, Multiple nontrivial solutions of ressonant and nonressonant asymptotically linear problems, Proc. Amer. Math. Soc. 96 (1987), 405-409.
- [2] A. Ambrosetti & G. Mancini, Sharp nonuniqueness results for some nolinear problems, Nonlinear Anal. 5 (1979), 635-645.
- [3] T. Bartsch, K.C. Chang & Z-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z 233 (2000), 655-677.
- [4] A. Castro & A.C. Lazer, Critical Point Theory and the Number of Solutions of a Nonlinear Dirichlet Problem, Ann. Mat. Pura Appl. 120 (1979), 113-137.
- [5] G. Cerami, Un criterio de esistenza per i punti critic su varietà ilimitade, Istit. Lombardo Accad. Sci. Lett. Rend. A 112 (1978), 332-336.
- [6] K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems, Birkhäuser, Boston (1993).
- [7] F.O.V. De Paiva, Multiple Solutions for Asymptotically Linear Ressonant Elliptics Problems, Topol. Methods Nonlinear Anal. 21 (2003), 227-247.
- [8] N. Hirano, Multiple nontrivial solutions of semilinear elliptic equations, Proc. Amer. Math. Soc. 103 (1988), 468-472.
- [9] N. Hirano, Existence of nontrivial solutions of semilinear elliptic equations, Nonlinear Anal. 13 (1989), 695-705.

- [10] N. Hirano & T. Nishimura, Multiple results for semilinear elliptic problems at resonance and with jumping nonlinearities, Proc. Amer. Math. Soc. 103 (1988), 468-472.
- [11] S-J. Li, & M. Willem Multiple solutions for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue NoDEA 5 (1998), 479-490.
- [12] J.Q. Liu, A morse index for a saddle point, Syst. Sc. and Math. Sc. 2 (1989), 32-39.
- [13] J. Mawhin & M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, 1989.
- [14] N. Mizoguchi, Multiple Nontrivial Solutions of Semilinear Elliptic Equations and their Homotopy Indices, J. Differential Equations 108 (1994), 101-119.

ÚLTIMOS RELATÓRIOS DE PESQUISA — 2005

- 01/05 A Bootstrap Test for the Expectation of Fuzzy Random Variables, M.D. Jiménez-Gamero, R. Pino-Mejías and M.A. Rojas-Medar
- 02/05 Multiple Sign Changing Solutions to Semilinear Elliptic Problems. Francisco O. V. de Paiva
- 03/05 Asymptotically Linear Elliptic Problems in which the Nonlinearity Crosses at Least Two Eigenvalues. Francisco O. V. de Paiva

IMECC-UNICAMP

Universidade Estadual de Campinas CP 6065

13083-970. Campinas-SP

Brasil

O conteúdo do presente Relatório de Pesquisa é de única responsabilidade do(s) autor(es).