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Abstract

In this paper we establish the existence of multiple solutions for the
semilinear elliptic problem

—Au=g(z,u) in 0
u=0 on 4Q,

where  C R¥ is a bounded domain with smooth boundary 89, g :
Q xR — R is a function of class C* such that g(z,0) = 0 and which is

asymptotically linear at infinity.

1 Introduction

Let us consider the problem

-Au=g(z,u) in O "
u=0 on 99, (1)

where Q ¢ RV is a open bounded domain with smooth boundary 8¢ and
g: 2 xR — R be a function of class C! such that g(z,0) = 0. Assume that
9(z,t)

go = }l_f‘% T, uniformly in Q,
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Joo := lim M, uniformly in §.
[t|=o0

Denote by 0 < A\; < A2 £ :++ £ Aj £ ... the eigenvalues of (A, HY),
where each ), occurs in the sequence as often as its multiplicity. We also
denote by ¢; the eigenfunction associated to A;.

We will suppose that MA—1 < g0 < Mk < M < goo £ Am+1, and we will
look for the existence of two nontrivial solutions of (1). There are many
works that prove this kind of results, we can cite [2, 3, 4, 7, 8, 9, 10, 11]. If
g(z,t) = g(t) and g'(t) > g(t)/t, we can conclude from [3, Theorems 2.2 and
2.3] that if k = 2 and m > 2, then problem (1) has at least two nontrivial
solutions (see [3, Corollary 2.4]). In [3] the authors also consider the resonant
€ase goo = Am+1, in this case they assume a Landesman-Lazer condition in
order to get a compactness condition. The main aim in this paper is to
improve these results in two ways: first we substitute the condition ¢'(t) >
g(t)/t, by the weaker one g'(z,t) > A; (see Theorem 2.1); second, we show
the same result holds for any k > 2 and m > k (see Theorem 2.2).

We also obtain a result, Theorem 2.3, related to (11, Theorem 2.1}, in
this theorem the authors assume that Ax—1 < oo < Ak £ Am < 90 < Am+1
and ¢/(z,t) > @ > A—1. In Theorem 2.3 we assume that k£ = 2 without
the assumption on the g’(z,t). We remark that the Theorem 2.3 in the case
m > 3 follows from Theorems 2.1 and 2.3 in [3].

The classical solutions of the problem (1) correspond to critical points

of the functional F defined on H} = H}(f), by
F(u) = l/ |Vi|2dz — / G(z,u)dz, u€ H}, (2)
2Ja Q

where G(z,t) = fot g(z, s)ds. Under the above assumptions F' is a functional

of class C2.
If U is a neighborhood of an isolated critical point ug with F(ug) = ¢,

then by the excision we have for the critical groups of ug

Cy(®, u0) = Hp(®°NU, 8N U \ {uo}).

2 Main theorems and proofs

Theorem 2.1 Suppose that g'(z,t) > A1 for allz € Q and t € R. Assume
that A, < go < M2, and that there ezists m 2> 3 such that Am < goo < Am+1.
Then problem (1) has at least two nontrivial solutions.




Proof: From A; < goo < Ama+1 the functional F satisfies the (PS) condition
and has the geometry of Saddle Point Theorem. Then there exists u;, a
critical point of F, such that, see [12],

Cm(F,u1) # 0. (3)

The proof of theorem follows of the next lemma and from the assumption
that m > 2.

Lemma 2.1 There ezists a critical point uz of F such that
Cp(F,uz) = épaZ.
Proof: The existence of uj satisfying
Ca(F,u3) #0, (4)

follows as in the proof of Theorem 3.6 in (3] (see also the proof of Theorem
1.3 in [7]). Let be m(uz), the Morse index of u3, it follows by Shifting

Theorem ([6, Theorem 5.4, Chapter 1]) that
Cp(F, u2) = Cpm(uy)(F,0). (5)

So, by (4), we have m(uz) < 2. Since g'(z,t) > A; we have m(uz) > 1 (the
eigenfunction ) satisfies F"'(uz)(y1,%1) < 0). Then the eigenvalue problem

-Av =pugd(z,u)v in (6)
v = O on 69.

has the first eigenvalue p; < 1. Let be ¢ > 0 the eigenfunction associated
with p;. Then by p3 < 1 we have F"(u2)(¢,¢) < 0, since ¢; and ¢ are
linearly independent, we obtain that m(uz) = 2. Now, by (4) and (5), follows
that Cg(f, 0) # 0. Therefore 0 is a minimizer of F then C,(F,0) = dp0Z,

and we get
Cp(F,uz) = 6p2Z,

and the lemma is proved.
Finally, we show that u; and u; are nontrivial. Indeed, by ¢'(z,0) < A,

follows that F"(0)(wj, ;) < 0 for all j > 2. Then m(0) + n(0) < 1, where
n(0) = dim ker F*(0), and by a corollary of Shifting Theorem [6, Carollary
5.1, Chapter 1], we have Cp(F,0) = 0 for all p > 1. Therefore u; and u; are

nontrivial critical points of F. m|



Theorem 2.2 Assume that g'(z,t) > g(z,t)/t Vz € Q andt € R. Suppose
that there ezist k > 2, m > k + 1 such that Ap—1 < go < Ak and A < goo <
Am+1- Then problem (1) has at least two nontrivial solutions.

Proof: As in the proof of previous theorem we have a critical point u; of
F such that

Cm(F,'U-l) '-lé 0. (7)
And by the proof of Theorem 1.1 in [7], we have a solution uy that satisfies
Ci(F,uz) #0. (8)

By M-1 < ¢'(z,0) we have m(0) + n(0) < k — 1, and as in the previous
theorem, this implies that u; and u; are nontrivial.
The theorem follows from the next claim.

Claim: Cp(F,u;) = 6pkG.

By (7) and the Shifting Theorem we have that m(u;) < k. We will show
that m(u;) = k. Indeed, by g(z,t)/t > Ak—1 we have that u;(g(z,u1)/u1) <
pi(Ak—1) <1 for all i < k — 1. Now, we have that

ozuw),

—Au1 =
Ul

1y

this implies that ug(g(z,u1)/u1) < 1. Then pr(g'(z,u1)) < 1, it follows
from ¢'(z,t) > g(z,t)/t. This implies that m(u;) > k., then m(u;) = k.

Again, the Skifting Theorem and (7) imply the Claim.
' O

Theorem 2.3 Assume that \} < goo < A2, and there ezists m > 2 such that
Am < 90 < Am+1. Then problem (1) has at least two nontrivial solutions.

Proof: Let u; # 0 be such that C;(F,u;) # 0. First we prove the claim:

Claim: Cp(F,u;) = 6p1Z.

Actually, we have that m(u;) < 1. If m(u;) = 1 the claim is proved. If
m(u1) = 0, then we have that the first eigenvalue p; of the problem

—Av = pg'(z,u1)v in Q
v=0 on 09, (9)

satisfies u; = 1 and is simple. It follows that n(u;) = 1, and so the claim
follows by Shifting Theorem.




We also have that Cp(F,0) = dpmZ. If u; and 0 are the unique critical
points of F, then the Morse inequality reads as

(1) = {-1}+[—1}™.
This is a contradiction. a

Remark 2.1 We observe that the resonant case go, goo € 0(—V) can be
treated as (3] and [11]." We leave for the reader to consider this case
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