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ABSTRACT. We present a new discretization of financial instruments in terms
of a martingale expansion constructed using Haar wavelets systems. In par-
ticular, expansions on these bases give the pointwise convergence needed for
hedging derivatives. Examples of these systems are constructed which illus-
trate the discrete, spacewise, nature of the approximations. We describe natu-
ral conditions under which our Haar hedging strategy can be realized by means
of a self financing portfolio consisting of binary options.

1. INTRODUCTION

Continuous models for the underlying asset are well established although in practice
the hedging of options depending on this underlying is performed through a time
discretization. In delta hedging the underlying itself is used for constructing the
portfolio replication, this involves an implicit linear spatial approximation of the
option. This approximate hedging gives a pointwise error, the quality of this error
depends on the efficiency of this space-time approximation.

We present an approximation which is based on an explicit discretization of the
probability space. The discretization iteratively defines atomic sigma algebras con-
structed via random variables which are representatives of the process, this is the
basic ingredient to achieve pointwise convergence to the option being hedged. The
main technical tool is the use of H-systems (or Haar systems) which are a basic
generalization of the Haar wavelets on the interval [0, 1], with Lebesgue measure,
to a general probability space (2,8, P). The choice of this particular wavelet is
not arbitrary, besides giving an orthonormal basis of L?(Q, B, P), partial sums of
expansions in this basis form a martingale sequence. This last property is crucial
for the Haar based hedging we propose, it allows for self financing strategies.

A successful deployment of our proposal involves the construction/definition of the
above mentioned atomic sigma algebras. When the formalism is used for hedging,
the probabilistic events involved need to have specific financial meaning, moreover,
the efficiency of the Haar based hedging will depend on the way in which the atoms
of the algebras are generated. A financial realization of the proposed mathematical
constructs requires the existence of binary options associated to these atoms. We
present examples where this requirement is naturally met.

We will restrict ourselves to arbitrary European type portfolios in a one dimensional
setting. We hope it will be clear that the ideas and techniques are also meaningful
in more general situations.
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We now describe informally the main ideas behind our approach, precise definitions
will be found elsewhere in the document. Let {B;} denote a bank account and {S;}
a price process where Tp < t < T. Our constructions give the following identity
valid for any random variable X,

(1.1) E(X|B,) = E(X|ug, 1, ..., tn) = Y _(X,un)tn, n>0.
k=0

The simple functions u,, the Haar functions, are an orthonormal set in L? (2, F, P),
where (Q, F) is the sigma algebra generated by the price process and P is the risk
neutral measure. The sigma algebra B,, is generated by ug,- .., u, and contains
n + 1 atoms, these atoms give a space-time discretization of the process and, un-
der natural conditions, can be realized financially via binary options. It follows
that (1.1) can be realized by means of a dynamic portfolio of binary options. The
left hand side of (1.1) is a martingale which, under appropriate conditions, converges
to X almost everywhere (a.e.). Therefore, we have a portfolio of binary options
converging a.e. to X, moreover this portfolio can be implemented dynamically,
via financial transactions, in a self financing way due to the martingale property.
In short, we have a discrete, self-financing, hedging strategy to replicate X. This
hedging strategy will be referred to as Haar hedging below.

To explain the usefulness of (1.1) it is better to give a brief indication of some ba-
sic ideas in modern computational harmonic analysis (CHA). The right hand side
of (1.1) is just a rewrite of the left hand side in terms of the martingale differences,
which always form an orthogonal set. The novelty is in the appearance of the inner
products (X, u,), these are a set of new coordinates with useful properties and
information. In particular, these inner products can be efficiently computed via
the multiresolution analysis algorithm (see Appendix A). Moreover, the setting is
flexible enough so that the actual Haar functions u,, can be chosen via some opti-
mization, see Section 5.2, in order to give efficient representations of X. Efficient
representations of functional classes is a chief concern of CHA, see for example [7],
these representations can be used, in signal processing settings, for several tasks,
in particular compression and denoising, see for example [5] and [6]. Potentially,
the representation (1.1) can be used for analogous tasks in finance, reference [14]
describes possible uses of a Hilbert space basis for valuation and hedging. Never-
theless, our main motivation to search for efficient representations is the desire to
achieve a small error of approximation to X while incurring in a small number of
financial transactions when implementing the portfolio of binary options. This will
keep the number of transactions in the Haar hedging portfolio realistically small.
The number of transactions is, roughly speaking, the number of Haar functions in
the approximation. Our approximations also open the possibility of reducing the
transaction costs while achieving a small hedging error. Assuming the cost of a
transaction is d-proportional to the volume of transactions, the following definition
is meaningful when studying transaction costs.

Definition 1. Let w € Q, and 11y and Iy be two approximating hedging portfolios
for X. We say that 11y is more efficient than Iy (at w) if

ITT; (w) — X (w)] < |Ha(w) — X(w)] and VT(I1;)(w) < VT (1) (w),

where VT (IL;)(w) is the volume of transactions necessary to implement the portfolio
II; at w.



HAAR WAVELETS SYSTEMS FOR HEDGING FINANCIAL DERIVATIVES 3

Clearly, the above definition can be easily modified to require the inequalities to
hold with large probability or in the mean. For technical reasons, this paper will
not address the issue of minimizing the volume of transactions (while keeping a
small hedging error) directly but instead concentrates in minimizing the number of
transactions which is a more standard quantity in wavelet theory.

We now explain the empirical meaning of the representation (1.1) and compare it
with “static” hedging and delta-hedging. Usually, static option replication involves
hedging an option X with other options, see for example [4]. For simplicity, consider
an option X that initiates at Ty and expires at 7', assuming one can perform a
static hedging that does not involve short selling the cost of exact static hedging
replication is § Vi, (X) where Vg (X) is the risk neutral price of X. On the one
hand, static hedging generally does not involve By, on the other hand, the bank
account is a crucial ingredient in delta-hedging. We may assume that there are
no transaction costs related to By, hence the transaction costs depend only on the
volume of transactions associated to the price process, this opens the possibility to
have a smaller cost than § Vr, (X). We note that ug = 1q and therefore, it can
be implemented by means of the bank account, the Haar functions are of the form
up = ala,+b1la, where Ag and 4; (AgNA; = 0) are atoms of B; for some ¢ < k and
A= AgU A, is an atom of B; ;. The simple functions uy, for k¥ > 1, are wavelets,
namely [, ug(w) dP(w) = 0, which under natural conditions can be realized by
means of binary options, involving short selling. It will be clear that (X, ur) ug
approximates the oscillations of X —E 4(X) on A (the support of uy) where E4(X)
denotes the expectation on A. In general, the events Ay and A; will be level sets
of financially relevant random variables, hence the wavelet uj, captures fluctuations
in X due to these two financial events. In short, the financial meaning of (1.1) is
the use of the bank account to capture the mean value of X and the use of binary
options (involving short selling) to capture the oscillations of X about this mean
value. Even though Haar hedging uses (binary) options to build the replicating
portfolio, it will be misleading to call it a static type of hedging as we explain next.
In general, each uy is localized to its support, say the atom A, this atom will be
localized in time to same interval [s,, t,] (essentially, this means that A is generated
by the random variables {S;}s,<¢<¢,) and will also be localized in space (it will be
the level set of some appropriate random variable). This localization of the Haar
functions, and hence of the binary options, has the effect that for a given unfolding
path w € Q only the Haar functions in (1.1) whose support contain this w have
to be implemented by the Haar hedging portfolio. This is the essence of dynamic
hedging. The localization property opens the possibility, through the dynamic
conditioning on the unfolding path, of obtaining efficient Haar hedging portfolios
for general options X. It is also recognized in signal processing applications that
localization of wavelets is a key property to represent discontinuities efficiently [5],
we have observed this phenomena also in our numerical examples, see Section 6.
Finally, in order to have a useful insight into our approach one can think that the
linear approximation implicit in delta-hedging is replaced in Haar hedging by an
appropriate simple function. This point of view clearly indicates the fundamental
nature, relative to delta-hedging, of the newly proposed hedging.

One simplified way to put our contributions into perspective is to emphasize that we
are studying the use of binary options for hedging general derivatives. More to the
point, our contributions reveal a martingale structure underlying binary options.
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This structure is then used to set up hedging strategies and related algorithms.
Our contributions give evidence to the notion that digital options are fundamental
building blocks for other options, this suggestion has already been made in [17].

The paper is organized as follows, in Section 2 we introduce H-systems, some ba-
sic properties and several examples, some of these examples will be used in later
sections. Section 3 describes some fundamental constructions and computational
properties of H-systems. Section 4 starts by describing simple, but revealing, ex-
amples of Haar hedging and continues with a general approach to hedging via
H-systems and the self-financing property of Haar hedging is proved. Section 5
introduces two general and powerful approaches to obtain efficient H-system rep-
resentations, in particular the greedy splitting algorithm is introduced which con-
structs adapted H-systems, for a given option X, under rather general conditions.
Section 6 presents numerical output as well as comparisons with alternative ap-
proaches. Section 7 describes possible extensions and summarizes the main results
of the paper. Appendix A states and proves the properties of a multiresolution
analysis for H-systems. Appendix B recalls, for completeness, known results and
inequalities for martingales applicable in our setting. We also discuss the issue of
working with finite or infinite H-systems. As a final note, for the sake of simplicity,
we did not qualify many statements with the phrase “up to a set of measure zero”.

2. H-SYSTEMS

Let (Q,B,P) denote an arbitrary probability space. The notation || [|? = (,)
stands for the inner product on L?*(Q, B, P). The following Gundy’s [8] definition
is motivated by the standard Haar system of L*([0, 1]).

Definition 2. An orthonormal system of functions {uy}r>o0 defined on Q) is called
an H-system if and only if for any X € L?(Q, B, P)

n

(2.1) Xp, = E(X|ug,u1,...,up) = Z(X, Up)Up, for allmn >0,
k=0
where B, = o(ug,...,u,). The intended meaning of k£ > 0 in the above definition

is to allow the system {uy}r>0 to be finite or infinite. We caution the reader that
we will attach the word Haar to several definitions and constructions even though
they may refer to general H-systems, see also Definition 4. Underlying our proposed
pointwise hedging approximations is the associated martingale convergence theorem
which is stated in Appendix B. The following proposition, which is proven in [8],
gives an alternative characterization of H-systems equivalent to Definition 2.

Proposition 1. An orthonormal system {u}r>o0 defined on Q is an H-system if
and only if the following three conditions hold:

(1) Fach ug assumes at most two nonzero values with positive probability.

(2) The o-algebra By, consists exactly of n + 1 atoms.

(3) E(ugy1|uo,u1,.-.,ux) = 0; k > 0. So the functions uy are martingale
differences.

Corollary 1. Assume {uy}r>o is an H-system. Then, for each n > 0, upi1 takes
two nonzero values (one positive and the other negative) only on one atom of By,
(hence this atom becomes its support). Consequently, B,y1 consists of n atoms
from B,, and two more atoms obtained by splitting the remaining atom from B,,.
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Proof. According to the property (2) of Proposition 1, By must be generated by
exactly one atom, Q, then ug = 1. By the orthonormality condition, and (1) from
Proposition 1, u; must take two nonzero values, then it has to take each one on
each atom of B;. Now, reasoning inductively, let {A; : £ = 0,...,n} be the set of
atoms of B,,. It is clear that {w € Q : u,41(w) # 0} intersects properly at most one
Ay, otherwise Bj,+1 would have more than n+2 atoms. Since 4,41 assumes at most
two nonzero values with positive probability and is orthonormal to ug, K =0, ..., n,
it has to take two different nonzero values on that A;. Moreover, since B, must
have n + 2 atoms, u,y1 can not vanish on that Agx. Then we can conclude that
Unt1 Splits one atom of B,, to create two new atoms which will belong to B, ;. O

It is then obvious that an H-system naturally defines a binary tree of partitions,
the next definition introduces, recursively, a convenient indexation of this tree.

Definition 3. A sequence of partitions of Q, Q := {Q;};>0, is called a binary
sequence if Qo = {Ao,0 = Q} and for j > 1 consider A € Q;, if A= Ay,; € Q1
then A preserves its index, otherwise (i.e. A ¢ Q;_1) then there exists A' € Q;
and Ay € Qj_1 such that

(22) Api=AUA
then set Ak+1,2i = A and Ak+1,2i = A,

The index j in A;; will be called the scale parameter (we will also call it the level),
it indicates the number of times Ay has been split to obtain A4;;. The name
scale is borrowed from wavelet theory where it indicates the extent of the spatial
localization (or spatial resolution) of the wavelet, in our setting the analogy is strict
in the case of equal probability splitting.

Although the essential computations introduced in this paper, in particular the
ones described in Section 5.1 and Appendix A, can be carried out in a binary tree
data structure, we will introduce a refinement of this data type by means of weak
dyadic partitions, see Definition 7.

Definition 4. We say that an H-system {up}o<k<m s a Haar system if m = oo
or m = 27 — 1 and each atom of o(ug,...,us_1) is the union of two atoms of
o(ug,...,usi+1_1) for all j such that j < J —1.

Definition 5. Given A € B, P(A) > 0, a function ¢ is called a Haar function on
A if there exist A; € B, AgNA1 =0, A=AgUA, ) =als,+b1la, and

/ Y(w) dP(w) =0, / Y% (w) dP(w) = 1.
Q Q

Examples:

Five examples of H-systems are described next, the first one is a classical one from
wavelet theory, the remaining ones belong to the realm of finance. The examples
illustrate basic constructions, some of the examples will be further developed once
we introduce the notion of Haar hedging.

1. The Haar system in L?([0,1]):
We use the classical notation L?([0,1]) for the set of square integrable functions
with respect to the Lebesgue measure of [0, 1].
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Let vy : R — R be the Haar function

1 if 0<t<1)2
wH(t)_{ -1 if 1/2<¢t<1

uo =1 and uyi4(t) = 292 (29t — i),
forj =0,1,...and i = 0, ..., 27 — 1. The family of functions {uj}3° , is known as “the
Haar system”. Observe that {u;}$°, C L?([0,1]), notice that since 0 < 27t—i <1
implies 2773 < ¢t < 279 (i+1) we obtain supp ug; ,; = [2794,277(i+1)]. From wavelet
theory it is standard to denote, for each fix j, with V; the subspace of L?([0,1]) of
piecewise constant functions on each interval [2774,277(i +1)], i = 0,...,2/ — 1. It
is clear that
Vi CVin
and
W; = span{ugi; :i=0,...,27 —1} C L*([0,1])
is the orthogonal complement of V; in Vj;1. In other words,

Vi =W; &V,
moreover, for j > 1
j—1
v=Too D
k=0

From this last expression it follows that {uk}i;_ol is an orthonormal basis of V;.
Having in mind the definition of Vj, it is known that U2 V; = L?([0,1]) hence
L2([0,1]) = Vo ® @2, W; and then {u;}>, is an orthonormal basis of L*([0, 1]).

It is clear that {uy}r>o is an H-system, in fact is also a basis of L?[0, 1]. Moreover,
if we choose m = oo or m = 27 — 1, for some J > 1, we have that {ur iz, is also
a Haar-system. In fact, for all j we have that the atoms of o(ug, ..., u2i _1), are

{277,279 + D]}
2. Haar-Systems for the binomial model:

Let S the price of an stock and tg, t1, ..., t, the trading dates. The price S, = S(t;),
i =0,1,...,n, varies according to the rule

Sti+1 = St,-Hz'-g—l, = 0, ]., ey T,

where the H;’s are independent random variables such that
o= U with probability p

*7 1 D with probability q ’
where 0 < D < 1 < U and p + ¢ = 1. The situation can be written in terms
of the probability space (Q,B,P), where Q = {w : {to,t1,....tn} — {U,D}},
B := P(Q) and P the corresponding product probability measure. Then S : Q x
{to,t1, -, tn} = R and Sy(w) := S(w,t) = So [1;, <, w(ts)-
Let us consider the sets A;;, 0 <j<n-—1and 0 <4< 2/ —1 defined by 4gp = Q
and

(2.3) Aji12ip1 = Aji N {w(tjr1) = U}, Ajyi,2i = Aji N {w(tj1) = D}
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From independence, it is clear that P(A;11,2;) = ¢ P(A;;) and P(Ajt1,2i41) =
p P(A;;), consequently P(A;;) = po---pligt=o...q'=% where i = Y 7_, ;2! is
the binary representation of ¢ (with j + 1 digits).

Define now, for j =0,....,n —1;4 =0,...,2/ — 1 the normalized functions

ug =1,

= 1 4 _ q
U2i4q = P(A;0) (\/; 1Aj+1,21’ \/; 1Aj+1,2i+1)7

see (3.2) for the normalization.
It is clear, by definition of the functions uy, that the system {uj}o<r<on_1 verifies
trivially the items (1) and (3) of Proposition 1. Having in mind also the choice of
the sets A;;, it follows that for any j > 0 and i = 0,...,27 — 1 fixed, the atoms
generating o (ug, . - ., Ugi ;) are

(2.4)

{Ajr10- -5 Ajrrzis Ajrr2itt, Ajivrs - Aji by

which are 27 +i+1, thus (2) of the referred Proposition also holds, and consequently
the system forms an H-system for L2(2, B, P). Now observing that for each j > 0
the atoms of o(ug,...,us_1), are {441, : i = 0,...,297t — 1} it follows that
{ur}o<r<2—1 is also a Haar-system. Particularly the sub-system {uq,...,u2 1}
is an orthonormal basis of L*(Q, F,, P), where Fy; = 0(Sy,,...S¢;)-

3. A non Haar-System for the binomial model:

We are now going to construct another H-system for the binomial model. This time
associated with a particular partition of the final o-algebra o(S;,). Let J be the
smallest integer such that n +1 < 27 thenfor 0 < j < Jand 0 <i <2/ —1 we
define the sets A; ;, as follows. For ¢ # 0,

1 1 t+1
whenever this set is not empty, and for : =0
1 1

where |w|y is the number of ¢;’s such that w(t;) = U. We calculate the probabilities

and

P(Aj0) = (n)psq”s-

S
0<s<t

=

s
n

%)
<.

It is important to observe that A;; = Aj11,2;UAj41,2i41 or Aj; = Aj+1,:- The cor-
responding H-system is given, through Theorem 1 and Remark 2 (to be introduced
shortly), by

v =1,
(2.7) 1 P(A;41,2i41) P(A;11,2:)
i \/P(Aj,i)( P(Ajt1,2:) Lajin00 — P(Aj+1,2i+1)1AJ'+1’2"+1)

if Aj; = Ajt1,2i U Ajqi1 2i41. It results in a Haar system only if n = 27 —1.
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The tree illustration below corresponds to the H-system with n = 5. We have la-
belled the atoms of the final o-algebra to clarify the situation, with e.g. < ppppU >=
{(p,D,D,D,U),(D,D,D,U,D),(D,D,U,D,D),(D,U,D,D,D),(U,D,D,D,D)}.

Ao,o

Az o Asz1 Aoy Az A3z Az
< DDDDD > < DDDDU > < DDDUU > < DDUUU > < DUUUU > < Uuvuvuvu >

Observe that Az, = Ay; and Az 4 = Ay because Az 3 = Az 5 = .
4. The H-system associated to the Willinger s almost sure approximation scheme:

W. Willinger introduces in [19] and [20] an approximation scheme for random vari-
ables and processes, we briefly indicate here that this scheme also gives an example
of H-system specially designed to represent a given random variable. Let (2, F, P)
be a probability space and X be an integrable random variable. Let us consider
the sets A;,;,0<j,i=0,...,27 — 1, defined by Ago = 2 and

1
2. A; it1 = A X < — XdP
@8 A = (o€ 4 X6 S gy [ Xar)

— ) 1
(2.9) Ajjipi={we d); : X(w) > P4, /Aj ,— X dP}.

it P(A;;) > 0. We organize the family of sets A;; by levels defining Ry = {0}
and recursively, for Ay ; € R; with P(Ag;) > 0, Agy1,2i, Art1,2i41 will belong to
Rjt1, but if P(Ag;) =0, Ag,; will be in R ;41 too. The sequence of partitions R =
{R;};>0 is an example of a special type of sequence of partitions, the weak-dyadic
ones. Theorem 1 below, associates an H-system {u; ;} to this sequence of partitions.
We observe three facts (we rely on notation from (3.1)): o(X) = o(U;R;), E(X |
0(Ry)) = Yo<j<s 2o(kier, (X ki) Uk, and X = limy o B(X | 0(Ry)) almost
everywhere.

5. An H-System in the Black-Sholes model:

This example describes how to construct a basic class of Haar systems associated
to the Black-Scholes model. It will follow that these systems can be used to ap-
proximate a general class of options of European type. The building block for the
Black-Scholes model is a Brownian motion defined on a probability space (22, F, Q)
with filtration (F;)r,<i<7- The splitting of atoms will be performed using the
Brownian motion increments. The price process under the risk neutral measure P
isgivenby S;: Q >R, Ty <t<T,

St(w) = Sty exp(w(t — To) + o/ (t — To) Wi(w)),

where v = (r — 02/2), and we have used the Gaussian random variables W; ~
N(0,1) which are defined on (Q, F;, P).
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The construction will be based on two parameters, the first parameter ny will turn
out to be the number of transaction dates during the period [Ty, T'] and the second
set of parameters ji,...,jn, Will be the scale or space discretizations associated
to each trading date. For simplicity, the splitting of atoms will be in pieces of
equal probability, this constrain can be easily removed. For convenience, we first
introduce a “purely static” Haar system, considering n = 1, which is applicable to
path independent European options. This system will be the building block for the
more general construction with ny > 1. Therefore, we first concentrate on the sigma
algebra o(St) = S7'(B(0,00)), due to o(St) = 0(S7"((a1,as]),0 < a; < az < o),
the following equation specifies P on o(Sr), let B = S1" ((a1,az))

s 2
1 /az - <1n(S—TO) - V(T - TO)) ds
= ex —
o 2r(T =To) Ju, 7 2 0*(T = Tp) s
From our previous notation, Wy : 2 — R
1 v>
P(W;(A :_/G—Td,
( T ( )) \/ﬂ 4 Y

for any Borel subset A C R. This equation gives P on o(Wr) = W (B(R)) C Fr,
clearly, o(St) = o(Wr). Denote the cumulative standard normal distribution by

1 2
@(z)z\/T_ﬁ/ e~ T dy.

Given an integer j, define the numbers —oo = cf; <d<...< cgj = oo such that

P(B)

: , 1 _ ,
®(cl,) —®(c]) = % foralli=0,...,27 — 1.

Whenever encountered, the inequality < oo should be interpreted to mean < oo.
We define the binary splitting of atoms inductively by setting Ago = Q and for
given j consider 0 < i < 27 —1,

(2.10)

Ajripi = {w € il G <Wr(w) < g} = {w| & < Wr(w) < g,
Ajirzin = {w € Ag| G, < Wr(w) < &fL) = {w| g, < Wr(w) < &iL)
Note that A;; = Aj11 2;UAj11,2i41, therefore we have defined a dyadic sequence of
partitions P = {P;};>o with P; = {4;,},i =0,...,27 —1 (see Definition 6 below),

where the atoms satisfy
1

To have an alternative perspective on these atoms, notice they correspond to par-
titioning the range of St as follows,

(2.11) Aji={w| a! < Sr(w) < al,,} where i =0,...,2/ — 1,
the real numbers 0 = a% <...< aéhl < agj = 00, satisfy
al = Sy, exp (cf o/ (T —Tp) + v(T — TO)).

Setting m = 27 and By, = 0({4;;:i=0,...,m — 1}) gives Boo = 0(Um>0Bm) =
o(St). Being this a situation similar to the one in Example 3.
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Associated with the sequence of partitions P, we have the functions

Ug = 1,
U2i i = aj,ilAj+1,2i + bjai]‘Aj+1,2i+15

defined for 0 < j, and i = 0,...,2/ — 1, with a;; and b;; as in (3.3) and (3.4). It
follows from Theorem 1 that {u; }?ial is a Haar system capable of approximating
any random variable in L%(2, o(Sr), P), choosing a sufficiently large J.

We are now ready to describe the construction of a finite Haar system for an
arbitrary np > 1. The idea is simply to construct a Haar dyadic system by a con-
catenation of several Haar systems, each of them analogous to the case nr = 1 but
this later one now restricted to smaller time intervals. Given an arbitrary sequence
of times Tp = tp < t1 < ... < tpy—1 < tpy, =T, we consider the Brownian motion
increments v/fi11 — &; Wy, 1,,, where the random variables Wy, 4, ., ~ N(0,1) are
independent. Fix a corresponding sequence of scales {j; = ji, };.2;, we will define
the splitting of atoms on stages according to the time intervals {¢;,%;+1}. For the
first stage {to,t1} we define the binary splitting of atoms inductively by setting
AO,O = and for 0 S ] < jl, 1= 0,.. .,2j - ]., Aj+1,i as in (210), using Wto,tl
instead of Wr.

For the second stage {t1,2}, and as a model for the subsequents, consider 0 < j < jo
andi =0,...,271" —1 as usual, let pand 0 < g < 2/*! be respectively the quotient
and residue in the integer division of ¢ by 27t then define inductively the sets

j+1 j+1
Ajvjrrz = {w €Al gy <Wiyn(w) <}
+1 +1
= {we€ 4, C%:; < Wi 1o (W) < C‘;;;+1}
+1 +1
Ajipimzinn = {w€ Aj il Ay < Wi (W) <dfly}

j+1
= {we€ A, Cg—H < Wiyt (w) < Cgﬁ-z}-

Notice that P(Aj, 41,:) = 1/271+1 by independence of Wy, +, and Wy, +,. The com-
pletion of a generic stage {t,tr+1} is done exactly as in the previous described
stage replacing ji by Ji = j1 +...+jr and Wy, 4, by Wy, 4, ., . This induction must
be continued until k + 1 = ny.

We have defined, once again, a dyadic sequence of partitions (see Definition 6 below)
{P;}j>0 with P; = {A,,},i =0,...,27 — 1 and consequently, following the steps

1

J
in the proof Theorem 1, there is a Haar system {Uj}?:a associated with it.

3. CONSTRUCTIONS AND PROPERTIES OF H-SYSTEMS

This section introduces some elementary properties of H-sytems and partitions.
It represents the computational core of our approach, we introduce most of the
notation to be used in the rest of the paper as well as the main constructions. The
reader who wishes to see financial applications first should then read the next two
sections first and then refer to the present section as needed.

We have shown in the examples above that sequences of partitions of 2 and H-
systems are mutually associated. A natural and computationally useful binary
sequence of partitions are the dyadic ones.
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Definition 6. Let P := {P;};>0 be a sequence of partitions of (Q, we say that it
s a dyadic sequence if

291
P;={Aji}tise and Aji= Ajt1,2iU Ajpa2i41

We observe that the Haar systems in Examples 1 and 2 induce a sequence of dyadic
partitions, naturally associated with the multi-resolution analysis of wavelets the-
ory, [9]. Example 3 shows H-systems which produce a sequence of binary partitions
that is not dyadic. We call this type of sequence of partitions weak dyadic.

Definition 7. We say that a binary sequence of partitions of Q, R := {R;};>0, is
o weak dyadic sequence if Ro = {Q} and for j > 1, R; satisfies:
AeR;if
there exist another A' € R; such that AUA" € Rj_q

or
A€ERy forall k>j5—1.

Notice that if A € Ry forall k£ > j — 1, the index of A in R;_; is preserved.
Therefore, we obtain sequences R; where Ay ; € R; if and only if k¥ = j or oth-
erwise Ap; € R, for all r > j — 1, in which case £k = j — 1. In other words,
we collect, in R, all atoms with the same scale parameter and also include those
atoms which will not be further split. To this type of partitions we will associate a
Multiresolution Analysis Algorithm (MRA) (see Appendix A) in complete analogy
with wavelet theory and, in particular, allows the computation of inner products
and the corresponding approximations to be organized by the scale parameter.
Observe that R; can have at most 2/ members, and if Ay; € R; then k < j and
0 < i < 2¥—1. We remark that all information about the splitting of atoms is stored
in this indexation. The figure displayed in Example 3 will clarify this indexing.
The following sets of indexes will be useful later. Consider j > 0 and let

Ij = {z : Aj’i € R]' and Aj,z' = Aj+1,2,' U Aj+1,2,'+1}, and
(3.1)
Kj = {(k,l) : Ak,i € Rj }
Theorem 1. Every H-system induces naturally a sequence of weak dyadic partitions
and reciprocally.

Proof. Let {ur}r>0 be an H-system and Ago = Q. We define recursively the
following sequence of partitions.

Ro = {AO,O}-

Assuming R; has been defined, we will generate R;,1. Consider a generic atom
Ap,i € Rj, by Corollary 1 it is enough to consider the following cases:

e For Ak,i € R; with k < j we add Ak,z’ to Rjt1

o If k = j and A;; is not the support of any u,, we add A;; to Rj41.

e If k =j and A;; = u, for some u,. Then we add

Ajpr2i = up ((—00,0)) and Ajy1 241 = ug, ' ((0,00))
to Rj+1.

Clearly this sequence of partitions is weak dyadic. Reciprocally, let R be a sequence
of weak dyadic partitions, We are going to define a family of Haar functions {v,;},
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associated with R. Consider A;; € R; such that A;; = Aj 112 U Ajp12i41, let
;i be defined on Q by

aji if - w e Ajp,
(3.2) Yji(w) =19 bji if  w€ Ajii4 and,

0 if w ¢ Aj,i.
Where a;; and b;; are chosen requiring that 1);; is a Haar function. The above
equations define (up to a sign) 1; ;(w) for all w € 2, indeed we choose

P(Ajt1,2i41)
(3.3) a ",L' = ] 3
7 P(Ajt1,2:)P(Aj)
and
P(A j+1 2i)
34 bji=— = )
(3.4) 7 \/P(Aj+1,2z'+1)P(Aj,i)

Give the natural order to the set N = {29 +i:j > 0,i € I;} and let 7 be an order
preserving isomorphism from N to an integer interval [1, N] or N. Defining

V(29 44) = U2i4i = Vji

and vo = ¢oo(w) = 1la(w), the resulting sequence {v;};>o is orthonormal and
trivially verifies (1), (2) and (3) of Proposition 1, thus, it is an H-system. O

Remark 1. The above theorem applied to a dyadic sequence of partitions P implies
that P; = {Aj’i}?ial with I; = [0,27 — 1], the system of functions {uy}r>0 defined
by

Ugiyi = Pjii
18 actual?y a Haar-system. This holds because a given integer k> 1 can be written
as k = 27* +iy, where ji is the mazimum integer satisfying 27¢ < k, resulting in con-
sequence iy, € I, = [0,2/* —1]. Moreover, P; is the set of atoms of o(ug, . .., usi_1).

Remark 2. It is also clear that if we start with the sequence of partitions R induced
by an H-system {vi}r>0, then the H-system built in Theorem 1 is a rearrangement

{ka}kzo of {’Uk}kzo-

Let R := {R;};>0 be a sequence of weak dyadic partitions of  and the sequence
of functions {1);;} associated with R in (3.2). We will now introduce the natural
orthonormal basis of characteristic functions at level j, for each A, ; € R;, let

_ ]'Ak,i
¢k,z \/.P(Tk,,)
Given a random variable X, our aim is to study the relationship between the
coefficients in this basis, which represent samples at level j, with the coefficients in
the H-system {1);;}.
Taking j > 0, {##,i}(x,5)ek; is an orthonormal basis of the subspaces V; of piecewise
constant functions on the atoms of R;. The ¢ ; correspond, in our setting, to
the scaled and translated scale functions from wavelet theory. Similarly the ;;
correspond to the wavelets [9]. We have the simple, but relevant, relations:

o (piaf2d], [piwa[2i4+1]
(35) ¢J,’L_ pJ[l] ¢]+1,2z+ p][z] ¢]+1,2z+1
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and

"pj,i = ajsi]‘Aj+1,2i + ij'i]'Aj+1,2i+1
= aj,i\/Pi+1 (205112 + bjiv/Pira[20 + 1] 2001
where a;; = \/% and bj; = —/ #J% were calculated in (3.3) and

(3.4) respectively, and
pili] = P(4;4)-

(3.6)

Observe that since

21 + / / Zz
pj+1 pJ+1[2Z - p]+1[ ] z\/p]+1[2’t +1]=1#0,

{¥j,i,¢;,i} and {¢j+1’2j,¢j+172i+1} span the same 2-dimensional subspace. Thus
{¢0,0} U {t¥r,i Yo<k<j—1,ic1, is a basis of L?(2,0(R;), P) = V;, and moreover it is
also orthonormal as the basis {@,i}(k,i)ek; -

For X € L?(2) and j > 0, for simplicity set
Xj = Xa('Rj) = E(X'(T(R]))

Then we have the following expansions

(3.7) X;(w) = co[0] ¢o,0(w +szk | Yri(w) = Z cnl] Br,i(w)

k=04E I, (k,i)EK;
where
ckli] = (X, br,i) and  dy[i] = (Xj, Pr,q)-
Given that the conditional expectation X; of X is constant on each Ay ;, we have
that for w € Ay ;

(38)  exli] = (X;, dns) = !

vV Pk [7' ~/Ak i \/ Dk [7/] Ap;

Analogously, we have that di[i] = (X, x,;). Moreover we can state the following

Proposition 2. Given X € L*(Q, B, P) and a sequence R = {R;}§ of weak dyadic
partitions of Q, for each j' < j < J, the following holds

XdP = (X, pr,i)-

j—1
(3.9) X=Xy + > difilvbn
k=j" i€},
and
j—1
(3.10) Sooqlil= Y G+ Y>> dilil
(k,i)EK; (k,i)EK k=3" i€l

Proof. For each j < J we have that V; = span {¢r,; : (k,i) € K;}, let W; =
span {v;,i 4 € I;}. It is clear that X; € V; and V;_; C V.

By definition ;_1,; € V;NV;L,, also as we have noted before {¥j-1,i;bj—1,:} and
{2, ¢j2i+1} span the same subspace, thus V; = V;_; @ W;_;. This is one reason
we have used the classical wavelet notation.
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Since E(X|o(R;)) and E(X|o(R;-1)) are the orthogonal projections of X onto V;
and Vj_; respectively, we see that E(X|0(R;)) — E(X|o(R;-1)) is the orthogonal
projection of X onto W;_; and then we have the expansion

X;=Xja+ Y dialivi,
iEIj_l

from which (3.9) follows inductively. Equation (3.10) is a direct consequence of
(3.7) and (3.9). O

The precedent proposition, with the aid of (3.5) and (3.6), also gives a relation
between the coefficients ¢;[i] and d;[i], which permit us to have expansions on all
coarser “levels j”, starting from the correspondent to {¢x,:}(x,)cx, on a finer level
J. These are the fundamentals of the multiresolution algorithm for H-systems, it
is an adaptation of the well known algorithm for wavelet theory given for S. Mallat
[15] to our probabilistic setting. This algorithm produces a relation between the
samples of X, zx[i] = X;(w), w € A, for (k,i) € K;, and the coefficients dy[i].
This algorithm is described in Appendix A.

4. HAAR HEDGING

This section introduces two hedging strategies, Haar hedging and binary hedging
which will be denoted by HII and BII respectively. HII is based on the lef side
of (3.7) and BII is based on its right side. They are both realized financially via
binary options whenever these options are available for trade. For its financial
implementation, HIT will require short selling of some of the binary options. The
values of the constructed approximating portfolios are the same but the financial
transactions differ, in particular the volume of transactions are not equal. We define
the number of transactions as the number of binary options needed to implement
the given portfolio, both portfolios will have the same number of transactions. The
new hedging strategies may require a potentially large number of transactions, this
crucial problem is tackled in Section 5. We start with two revealing examples before
the formal developments.

4.1. Basic Examples. Here we describe, for the sake of clarity, two of the simplest
examples of Haar hedging strategies applied to a path independent European option
X. The new notions defined below will be defined formally and in a more general
context in Section 4.2.

Recall Example 5 from Section 2, consider first the Haar system with ny = 1, fixed
j and define n = 27, the atoms at this finest scale are given by (2.11), namely,
Aji = {w] al < Sr(w) < agﬂ}. The binary option with payoff 14, ; is available
for trading either as a double digital option, [21] pages 409-410, or as a linear
combination, involving short selling, of two cash or nothing options. We will use,
unambiguously, the notation 14 for the payoff of the binary option as well for the
actual option itself when speaking, for example, of a portfolio of binary options.
Recall that X, given by (3.7), is a simple function on the atoms A;;. We will
associate 14,, = 1o with a bank account. The binary hedging portfolio strategy
consists on purchasing an amount

<X7 lAj,i)

(4.1) Xj(w) = m;

where w € A;;,
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of each binary option 14;,, % = 0,...,2/ — 1. We denote this portfolio with BII.
The cost of setting up this portfolio is

291
Vi (BI) = €01 57 (X, 1) = T [ X(w) dP(w) = Vi, (X),
i=0 Q
hence the proposed binary hedging strategy is self financing. This means, of course,
that only the value of the option X, namely Vg, (X), is needed to set BII. Similarly,
the Haar hedging portfolio strategy consists in purchasing an amount

(4.2) X;(w) —E(X), where w € 4;;,

of each binary option 14, ,,i = 0,...,2/—1. Moreover, we also invest e (T~ TOE(X)
in the bank account. We denote this portfolio with HII, as is the case with the port-
folio BII, HII is also self financing. We formally think of these two strategies as
predictable processes, HII takes values in R**! | where the values are given by (4.2)

plus the bank account investment, and BII takes values in R™, the values for this
portfolio are given by (4.1). These two strategies are static because all binary op-
tions have to be purchased only at time Ty. Therefore, these hedging portfolios are
constant for Ty < ¢t < T. The number of transactions in the present case is n = 27

for both portfolios.

Notice that we have not mentioned the Haar functions ug, k =0, ...,2/ — 1, which
offer an alternative way of setting HII. It should be clear that each of the Haar
functions can be realized financially purchasing two binary options of the form 14, ;

with 0 < k < j. It is important to add that short selling have to be allowed for this
to take place.

Remark 3. Recalling (3.7), we see that the financial implementation of X; —E(X)
could be done in terms of these Haar functions. It should be clear that this alter-
native is more inefficient in terms of both, the number and volume of transactions.
These observations can be generalized, the idea is that whenever several Haar func-
tions can be combined into a single simple function one should implement this later
one directly using the corresponding binary options.

The case nt > 1 is considered next, for pedagogical reasons we set j = j; =
... = Jny = 1. Notice that that pointwise convergence is only achieved in the limit
j — o0, hence considering ny — oo alone will not result in strong convergence.
Assume that a sequence of rebalancing times Ty = tg < t1 < ... < tp, = T is
given, we will define two hedging portfolios, HII; and BII;, which will be R* and R?
valued (predictable) processes respectively. These processes will be defined to be
constant on the intervals ¢;_; <t < t;. Details are only provided for HII;, setting
up BII; is completely analogous. Given the premiun Vi, (X), i.e. the risk neutral
value of X, we would like to set up, at time %o, the Haar hedging portfolio HII;,
so that at time #; it has a value equal to V;, (HIT;, )(w) = e~ " T=tE(X|ug, u1 ) (w).
The Haar hedging portfolio strategy consists then on purchasing an amount

e "(T—t1) (X;(w)-EX)) = e_’"(T_tl)(X, u1) a1,0 where w € A g,

of the binary option 14, , and a1 is given by (3.3). We also have to purchase an
amount

e "T1) (X (w) — E(X)) = e T 1)(X, uy) b1,0 where w € Ay 1,
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of the binary option 14,, and by, is given by (3.4). Finally, E(X)e "(T—%) is
invested in the bank account. Given that E(ui|Fr) = E(u1) = 0, the cost of
setting up HII;, equals V7, (X), hence the first step of the strategy is self financ-
ing. Now we describe, inductively, how to rebalance the portfolio HII;, , condi-
tionally on the information at a generic time t,_ ;. Given that the sets A, 1,
i=0,...,2°71 — 1, belong to F;,_, and they form a partition of 2 we may assume
there exists A,_1, € {As_1,i}2g ~ ' such that w € A,_y ;,. Now according to the
constructions described in Example 5, Section 2, we know that A;_; ;, will be split
into two sets which we call C' and D. More explicitly, we know that

C = As—l,ig n {U)' -0 < Wts—l,ts < 0} and D = As—l,io n {U)|0 < Wts_hts < OO}

For notational simplicity set A = A;_1;, and ua = a 1¢+b 1p is the corresponding
Haar function on A. As indicated, we proceed inductively assuming that at time
ts_1 the value of the Haar hedging portfolio is

(4.3) Viuoy (HIL, o) (W) = e T4 VE(Xuo, - .., tups-1-1) ()

at the given w. This capital is used to rebalance HII;, , to HII;, , by depositing
Vi._, (HII;, ,)(w) in the bank account and purchasing an amount

(4.4) e "It (X uy) a
of the binary option 1o. We also have to purchase an amount
(4.5) e Tt (X u4) b

of the binary option 1p. Using the fact that u4 has mean equal to 0, we can see
that the value at t;_1 of the new portfolio HIT;, , (i.e. V,_, (HII;, ,)(w)) equals
Vi._, (HII;, _,)(w) hence our portfolio rebalancing was self financing. Moreover the
value of HII;, , at t, equals

(4.6) Vi, (HIL, ) () = e "7 ") (X,up)ua(w) + " =DV, (HIT, , ) (w)) =

e " TLIB(X |ug, . . ., Upem1_1,u4)(w),

after a comparison with equation (4.3) it follows that we have proven the inductive
step, namely (4.6) gives the correct value for the Haar hedging portfolio at the step
ts. We then have proved that

Vr(HIL,,, ) (@) = Xug ).

The portfolio BII; is completely analogous and can be understood from the case
ny = 1, the key difference being the fact that the bank account is not used. More
details can be found in the description of the general case in Section 4.2. We remark
that both, HII and BII, have a number of transactions equal to 27 .

4.2. Formal Developments.

We will work in a frictionless market model (Q, F, (F;)m<t<7, P) with the usual
assumptions, we refer to [1] for background. Let B = (B(t) = e") be the bond
and a non-negative adapted stochastic process S = (S;)1,<i<7, the price process.
We assume that P is the risk neutral measure, that is, the discounted price process
(e7"(T=9S,) is a martingale. Let R = {R;};>0 be a sequence of weak-dyadic
partitions as described in Definition 7, associated, via Theorem 1, with the H-
system {1;,;} defined on (2, and an European derivative X in L*(Q,0(U;>0R;), P).



HAAR WAVELETS SYSTEMS FOR HEDGING FINANCIAL DERIVATIVES 17

As a sufficient condition for the atoms in R to be used in a dynamic hedging
portfolio we will impose a natural association between the martingale property of
the H-system and a sequence of rebalancing times. In particular, in order to define
dynamic hedging strategies, we will use the concept of time support of events.

Definition 8. Let E € Fr, set sy = sup{s € [To,T] : E € (S, : r > 5)} and
tg =inf{t € [To,T] : E € F}. We then say that E is localized to the time interval
[sE,tE] and call [sg,tg] the time support of E. We denote the time support of E
by t — supp(E).

The following definition is an extension to partitions of the notion of time localiza-
tion of events.

Definition 9. Let P C Fr be a partition of Q. P is said to be localized (in time)
to the interval [a,b] if t — supp(B) C [a,b] or t — supp(B) C [To,a] for each B € P.
Moreover, define the t — supp(P) as the intersection of the all intervals [a,b] such
that P is localized to that interval.

The definition below is the cornerstone of our dynamic hedging strategy based on
H-systems.

Definition 10. Let R = {R;}s>j>0 be a sequence of weak-dyadic partitions, we
say that R is localized to the time sequence to = Tp < ... < t, = T if there exist
a sequence j1 < ... < jn = J such that t — supp(R;,) = [ts—1,ts] for s =1,...,n.
We call the sequence j1 < ... < jn, = J the levels of localization of R.

The financial blocks underlying R are the binary options B;; =

(1a;,(t) = 1, ., 1 (0)14; ), with j, < j < js11 which are acquired at time ¢, and
reach its maturity at time #,;;. These binary options have payoff 14, at time
ts+1-

To have a financial realization of the hedging we are proposing we need to assume
R to be admissible as defined in the next definition.

Definition 11. Assumption on Financial Realization: The weak dyadic par-
tition R s called admissible if for any integer j and each atom Ay ; € R; the binary
options By ; are available for trading, in particular, short selling is possible.

For clarity of exposition, when defining the Haar hedging portfolio, we will further
define the Haar obligations as follows: W;; = (¥;:(t) = 1p,,, m(t)Y;:), with
js < 7 < js+1 which are obligations at time t,4; that are acquired at time ts.
Obviously, the Haar obligations can be realized in terms of the binary options B; ;,
see Remark 3.

Next we will define two hedging strategies via self-financing portfolios, of static
and dynamic types, to replicate an European option using H-systems. In fact,
we introduce two strategies, HII associated to Haar obligations and another BII
associated to binary options. The examples in Section 4.1 are special cases of the
formalism to be introduced.

Haar Hedging Portfolio. HIIz(X) = (HIIz(X);) will be a predictable, vector
valued, stochastic processes constant on the intervals t;_ 1 < t < t;. The portfolio
HIIz(X); is rebalanced at times t,_; replicating e~ "(T~t)E(X|0(R;,)) for s =
1,...,n. As indicated in the Introduction and it is clear from the examples in
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Section 4.1, this portfolio approximates fluctuations of the option about its mean
value by means of the Haar functions. Taking n = 1 the construction gives, as a
special case, an example of static hedging. At each time ¢, 1 we will specify how
much to invest in the bond and how much to invest in the Haar obligations available
at that rebalancing time, this will specify the coordinates of the vector HIl (X);.
Here are the coordinates of HIIg (X); for ¢ € [to,1)

e "I~ E(X) invested in the bond and

(4.7) e Tt d,[i] invested in ¥, ; j =0,...5 —1,i € I},

where the coeflicients d;[i] are given by (3.7).

Observe that the purchasing value of this portfolio is V;, (HIIz (X)) = e 7T~ E(X).
The following (inductive) step will be to rebalance the portfolio at time t; 1, as-
sume that at this time we are in the event Ay, ;, with (ko,é0) € Kj,_,, and the
value of this portfolio is e‘T(T_ts—l)m i) g i XdP. There are two cases to
consider, the event is split or not at the next level.

I) In the first case, here are the coordinates of HIIg (X); for t € [ts—1,ts)

1
77'(T7ts_1) o ] )
(e P(Ako,io) /A X dP) invested in the bond and

ko,io
(4.8) e~"(T=t) d;[i] invested in W;; j = jo_1,...js — 1,i € I}°,

where I;O = I; N[20ds-141)j4 20=Js=1+1) (j 4 1) — 1]. Recall that the obligations
U, ; expire at time ¢,.

IT) In the second case, we need only to invest

1
4.9 e T(Ttemt) __— / X dP,
( ) P(Akoﬂ'o)

in the bond, and this specifies the portfolio for all future times i.e. ¢t € [ts—1,T).
The quantity of Haar obligations involved in this dynamic portfolio is at most

271 4 2j2—j1 4 4 2/=—Ji=-1_ Now we are in conditions to establish the following
theorem.

Theorem 2. The portfolio Hllx (X); is self-financing and replicates
e "TT-LIE(X|0(R,,)) at s=1,...,n.

Proof. We proceed by induction on s. For s = 1 the portfolio HII (X); is given by

(4.7) when t € [to,t1). It is clear from (3.7) that HII (X)q, replicates e " (T~ E(X|0(R;,))
and is self-financing because V;, (HIIz (X)) = e (Tt E(X) since E(¢;;) = 0.

For convenience, we will use the notation ¢~ =t — ¢, ¢ > 0. For the inductive step,

at time t,_ we are in some event Ay, ;, with (ko,é0) € Kj,_,, and assume

(T e*T(Tfts_l)
Vi (TR (X)) () = ¢ "7~ BX|o(R,, )w) = G- [ Xap
0,20

ko,io

for w € Ap,,i,- The rebalancing of HIIx(X); at ts_1 is given by (4.8), for all
t € [ts—1,ts), if Aggy,i, splits at the next level or by (4.9) with ¢ € [ts—1,T] if Agq,i,
does not split any further. The purchasing of HIIg (X),_, is self-financing since
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—r(T—tg_1)

the value of the portfolio given by (4.8) or (4.9) is £ Pl / A, , XdP. Consider
i 0,%0
again case I), and t = t,, by (3.9) and (4.8) we compute

—T‘(T ts_l)
Vi, (HHR(X)t;) = (m/A X dP) er(ta—ts_1) 14+
0,20

ko,i0

Js—1

e Tt NN i) Vi, (85,4(ts)) =

J=ls-1ier;°

Js—1

efr(Tfts)
(7/ X dP) ]-A i +67T(T*ts) d:li w',z’ —
P(Argio) Jany 1o YooY dilil ¢y

i=ds-1 jerio
e " T=LIB(X|0(R;,)) a. e. on Ag, 4.

For the case IT), we have
e—’r‘(T—ts_l)

— X dP) e"temte-t)1, =
( P(Ako,io) ~/Ak0,i0 ) oo

eT"I=t) E(X|o(R;,)) a. e. on A, -

Vi, (HIIR (X)) =

O

Now, we will present the dynamic strategy BIIr(X);. Let R = {R;} be a weak
dyadic sequence of partitions localized in the sequence of times tg =Ty < ... < t,, =
T, and X € L*(,0(Uj>oR;), P). We will show how to construct a self-financing
portfolio BIIz (X); to hedge X.
The portfolio BIIz (X); will be also rebalanced at times g, ..., %, 1, replicating

e TTIE(X|o(R;,)) for s = 1,...,n. We recall that zx[i] are the coefficients of
X in the basis {1,4,0’1 (ki) € K } see (A.1).
We formalize BIIz (X); as a vector valued process which is constant on the intervals
ts—1 <t <ts. At time to it is defined, for ¢ € [to, 1), by specifying its coordinates,
namely how much to invest in each of the binary options,

(4.10) e " T=10) g, [i] By; where (k,i) € Kj, .

The cost of purchasing this portfolio is V;, (BIlr (X)) = e "(T—t)E(X). The in-
ductive step will be to rebalance the portfolio at time t;_;. Assume that at this

time we are in the event Ay, ;, with (ko,40) € Kj,_,, and the value of this portfolio
e~ T(T—ts_1)
TP(Argig)
does not split at the next level. In the first case, for t;_1 < t < t;, we need to
specify the coordinates of BIl (X), namely,

(4.11) e "(T=t=1) g,[i] By,; where (k,i) € K,

is £ f Ay XdP. There are two cases to consider, the event splits or it
0,0

and K° = {(k,i) € Kj, : 20+ 79s=1jg < i < 20s7ds=1 (4o 4 1) — 1},
In the second case, we invest the value of the current portfolio in the bond, namely
77’(T7t3_1)
e

(4.12) e~ 7 / XdP,
P(Akg,io) Jangiq

and this specifies BIIg (X); for all ¢ € [t;,T). In an analogous way to the done for
HII (X) is easy to prove that the strategy BIlx (X) is self-financing and replicates



20 P. J. CATUOGNO, S. E. FERRANDO, AND A. L. GONZALEZ

e " T=t)E(X|o(R;,)) at s = 1,...,n. It should be clear that the hedging strategies
BIIz (X) and HIIg (X) can be intermixed at different time intervals [ts_1,ts).

Below we especialize the formalism to simple situations.

Consider the case of hedging an European option in the binomial model. Let us
consider the sequence of partitions R = {R;}o<j<n where R; = {4, i}o<i<2i—1 and
Aj; as defined in (2.3). It is clear that the sequence of partitions R = {R;}o<j<n
is dyadic and localized at times tg,...,t,. Therefore, we can hedge any European
derivative X, with the strategies HIIz (X) and BIlz(X). The A-Hedging strategy
IIA(X) = A S+ B is generally used to hedging derivatives [1], its value at w € A, ;
is

IA(X)i, (W) = B(X | 0(Ry))(w) = e T=%a5i] = Ay[i] S;li] + By[il-

Computing the amount to hedge on the stock gives

o g T [20 1] — 241 [21]
4.13 Al =e (T t1+1)$1+1[ - hE e S
(419 4 Sj+1[2i + 1] = Sj41[24]

where the notation S;[¢] refers to the stock values in the binomial model. In order
to compare the different hedging strategies, we observe that

—eT(T—tj41)
Ajli] = — d;[4].
S;li] (U —D)\/p q P(A;)

The relation between the portfolio BIlz (X) and A-Hedging is given by equation
(4.13) since the coefficients of the portfolio BIl (X), corresponding to the binary
option B ;, are equal to €Tt z;[i].

Now we consider the sequence of partitions R = {R;}o<j<n from Example 3 of
Section 2 where R; = {A;,;}ic1; and A;; were defined in (2.5) and (2.6). It is easy
to verify that R is a sequence of weak dyadic partitions localized in [Ty, T]. Then
the hedging strategies HIIx (X) and BIIg(X) are static. We observe that these
strategies can only hedge derivatives in L?(a(Sr)).

Consider now hedging an European options in the Black-Sholes model. We have
defined, in the Example 4 of section 2, a dyadic sequence of partitions {P;};>0
with P; = {4,,},i =0,...,27 — 1. We observe that this sequence is localized in
the times tg =Ty < ... < t, = T. Given a derivative X € L?(a(Py)), we have two
hedging strategies HIIp(X) and BIIp(X). Complete details of special cases of this
example have been developed in Section 4.1.

5. OPTIMIZING H-SYSTEMS APPROXIMATIONS

As outlined in the Introduction, a main goal is to study approximations given by
H-systems in order to obtain efficient hedging strategies. Namely, while keeping
a small approximation error we seek to minimize transaction costs. In this paper
we settle for minimizing the number of transactions, the reason being that this
last quantity is more easily described in terms of inner products. See Section 6
for some numerical information and a discussion on transaction costs. Minimizing
the number of transactions has an intrinsic interest beyond the issue of transaction
costs, namely, it keeps the number of transactions in the Haar hedging portfolio
realistically small and, at the same time, isolates the most relevant binary options
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needed in the portfolio implementation. The present section makes clear the rele-
vance of the use of Haar functions to obtain hedging strategies with a small number
of transactions.

In this section we present two approaches to optimize H-systems, loosely speaking
we try to capture as much as possible of the L? norm of the option X with as few
Haar functions as possible. We notice that the first approach, compression, could
be combined with the second approach, the greedy splitting algorithm.

5.1. Compressing H-systems. Our next discussion can be applied to an arbi-
trary H-system, nevertheless we prefer to phrase the discussion in terms of the Haar
systems introduced in Section 2, more specifically Example 5 from that section. The
system with ny = 1 is a purely static approximation and requires 2/»r transactions.
We will employ some of the notation used in Appendix A. Consider ny > 1 and
J =7j1 = ... = jn, (for simplicity), we then have a Haar hedging portfolio which
is dynamic and hence allows us to condition on the path as it unfolds. Still, this
portfolio requires ny27 transactions (along each path) which, even by taking j < J,
gives the problem of an unrealistic number of transactions. A solution to this prob-
lem is to introduce some kind of optimization, in the present case it will be an
aposteriori optimization of our martingale expansion. Consider first the case of
nt = 1, we do this optimization by compressing our expansion, namely, we sort the
inner products |dg[i]|,k = 0,...,J — 1,4 =0,...,2¥ — 1 and |z0[0]| in decreasing
order and keep a small number of them, say R, to synthesize a new approxima-
tion. More precisely, let n = 27 and X,, denote our martingale approximation, let
ug;,t = 0,...,n be a new indexing for our Haar system {ux},k = 0,...,n, such
that [(X,up,,,)| > [(X,ux;)|- So our compressed approximation, which we will
denote by X[, is given by

R—1
(51) X’TCL = Z<x7uki)uki7

i=0
X¢ approximates, in the space L?, the martingale expansion X,, with the following
error

2

2J
(5.2) X0 = X5 P = [, ur;)
i=R

We have taken R to be fixed because we later intend to compare against a delta
hedging approximation. Alternatively, one may decide how many terms R to include
by specifying an epsilon level of error via (5.2). All the above computations can
be performed with a computational cost of order n. We note that the compression
operation can be also performed for Haar systems with parameter np > 1, to this
end, introduce the compression parameters R;, ¢ = 0,...,n7 — 1, which will play
the role of R in (5.1) (for each of the stages {¢;,t;+1}). Therefore a compressed
approximation for this system will contain E?:TO_I R; Haar functions along each
path. Therefore, when comparing the performance of this class of models against
a delta hedging in which the Black-Scholes portfolio is rebalanced R times along
each sampled path, one should need to consider R = E?:T(;l R;.

In Section 6 we compare the performance of the above approximation against a
delta hedging approximation in which the portfolio is rebalanced a fixed number of
times along each sampled path.
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One can see the effect of compression in Table 1. For example, on the one hand,
using R = 32 an error of 0.05 can be attained for the parameter J = 16 (hence we
are choosing the most relevant 32 Haar functions out of a set of 219 Haar functions),
on the other hand, using no compression when J = 8 (which gives R = 28 = 256,
hence using almost ten more times Haar functions) gives a larger error of 0.07.

5.2. Greedy Splitting Algorithm. We briefly describe here an alternative to the
above mentioned aposteriori optimization. This algorithm iteratively generates an
H-system by sequentially splitting one atom at a time. For a given X € L? the idea
is to generate an H-system by reducing the L? norm of X as much as possible in
each iteration of the basic splitting. Due to the general nature of the algorithm, the
atoms constructed by the algorithm may not correspond to readily tradable binary
options. In particular, several transactions with available binary options may be
needed to implement one of the constructed atoms.

To give an intuitive understanding of the algorithm described below define the 0 —
residue by R°X = X —E(X), and continue inductively defining the nth. — residue
by R"X = R"'X — (X, uy) up, notice that X = Y} (X, u)ur + R"X. Due
to the Pythagorean relationship ||R"X|? = ||[R"1X||? — {X,u,)|?, the greedy-
splitting algorithm can then be described by indicating that it maximizes |(X, u,)|?,
or equivalently, it minimizes ||R"X||?, under the constrain of constructing an H-
system. The maximization is greedy because it is only one look ahead, namely it
searches for one Haar function at a time. The maximization of [{X, u,)|? requires a
combinatorial number of computations if implemented naively. Under appropriate
conditions it can be shown that this combinatorial explosion can be avoided and the
construction of uq, ..., u, requires a number of computations of order O(n log(n))
where the constant of proportionality is related to the cost of maximizing a one
dimensional continuous function on a close interval.

In the remaining of this section we describe formally the greedy splitting algorithm.
The algorithm is based on Proposition 3 and constructs an H-system which ap-
proximates a given X € L?(f), B, P). First we mention some notation to be used
in the remaining of this section, let B4 = {BN A : B € B}; X4 = X|A (the
restriction of X to A) and P4 = ﬁp, It is clear that X4 € L?(A,Ba, Pa)
and Fx, (t) = Pa(X4 < t) = ﬁP({X < t} N A), where Fx denotes the dis-

tribution function of X. Fx' denotes the right continuous inverse of Fy. The
norm ||Y]|4 = (Y,Y)4 denotes the inner product in L2(A4, B4, P4). Expectation
on (A,Ba, P4) will be denoted with E 4.

We do describe first the main steps, then we indicate how to set up these steps
computationally and finally we give precise mathematical statements that justify
the computational setup. We will define the H-system implicitly by describing a
binary partition Q = {Q;};>0. Start by setting Qp = {Ago = Q} and assume,
inductively, that O, k& < j has been constructed. We need some intermediate
definitions in order to define Q;,, for a given measurable set A define,

(5.3) Ca={¢Y: 9 is a Haar function on A},
under appropriate conditions, it follows from Proposition 3 that there exists ¥ =

algm + b 147 in C 4 satisfying

(54) X4 = supyec, (X — ﬁ /A X, )| = supyec, (X, ¥
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Select now A € Q;, such that

(5.5) (X, > (X 97|

for all A € Q;. According to the indexing of binary partitions introduced in Def-
inition 3, A = Ay ; for some index (k,i), k < j, now define Agy12; = AP and
Ak+1,2i+1 = Ain Finally, set Q]'-i-l = QJ\{A} U {Ak+1,2z’;Ak+1,2z’+1}- It follows
from the developments below that we have |Q;41| = |Q;| + 1 (where |S| denotes
cardinality of a set S) unless E(X|Q;) = X in which case the algorithm terminates.
We now indicate how to carry out the key computations implicit in the algorithm,
the crucial point is that our approach avoids the exponential explosion in the num-
ber of computations involved in a direct approach at computing ¢. Two optimiza-
tions are defined (one over subsets of C4 and another one over [0, 1]) in such a way
that they may be carried out under the sole assumption X € L2, extra hypothesis
are needed for these optimizations to deliver ¢} in (5.4).

Let A € Qj, it follows from the above description of the algorithm that the key
step is to indicate how to compute 97", hence in the discussions below an arbitrary
A € Q; will be assumed to be fixed once and for all.

Observe that any 1) € C4 can be written, in the form

(5.6) Y=aly,+bly,
for some u € (0,1), Ay C A with P4(Ag) = u, and A; = A\ Ag. With this notation

(1) (X} = (@D, Ligh+H(X, 1) = () (Ba(Xa) —

: (Xa, le)A> :

Noticing that b = £, /m, in order to calculate the supremum in (5.4) we
define

_ P(A) u 1
(58 Aalu) = {Ao:Pil(I}Zo):u} (1—wu) (EA(XA) B §<XA’ 1A°>A) '

Observe that we have chosen b > 0 in (5.7). It is clear that if ¢ € C4 then
Y E€Cau={0 €Ca: P(Ay) = u} for some u € (0,1). Therefore

(5.9) sup {X,¢¥)| = sup sup |X,¢¥) = sup Aa(u).
PeCa u€(0,1) YECa,u u€(0,1)

Under appropriate conditions we will prove
sup |<X7¢)| = )‘A(u*) = (Xawu*)v
PpeCa

for some u* € (0,1) and ¢+ € Ca,,». We will need a series of intermediate results.

Lemma 1. Assume X € L?(Q,B,P) and A € B. Then the fuction A4, in (5.8),
is well defined for all u € (0,1) and in fact

(5.10) [Aa(u)] < VP(A)[|X]| -

Moreover, assuming Fx to be continuous, the Haar function 1, defined by
PA) (1 —u) P(A) u

G1)  tu=—\ Lt @y T\ T g HXaFE ()

satisfies
Aa(u) = (X, u).
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Proof.

|EA(X4) — (X4, 14,) 4] Ja X4 = 214)dPs| < (I Xallallla — $14,]14

IXallaClTa, )% + 111 = 2)14,]1%)1/2
1Xallay/ o),

u

Consequently (5.10) holds. For the last assertion consider

Ma(u) = S p(ag—uy \ t (Ba(Xa) = £(Xa,14,)4) =
= Izﬁ)u)" (Ba(Xa) — < infpagpiag)=u} (Xa,14,)4) -

In order to find the minimizer of (X4,14,)4, for fixed u, we apply the bathtub
principle from [13] to the probability space (A, B4, P4) and remark that continuity
of F'x implies continuity of Fx,. The application of this principle and the continuity
of Fx, immediately give A9 = {X4 < F‘,Ei (u)} and P4(Ap) = u. This gives (5.11)
and concludes the proof. a

The following result gives sufficient conditions under which A4 (u) is continuous on
[0, 1] and also for its supremum to be realized for some u* € (0,1).

Lemma 2. Assume Fx to be continuous then Aa(u) is continuous on (0,1). Fur-
thermore, if X € L™ then Aa(u) is continuous on [0,1] and

(5.12) lim Ag(u) = lim A4(w) =0.
u—0+ u—1-
Proof. According to Lemma 1, we have

P(A)u
(1—-w)

1
Aa(w) = (BaCxo - 30X 1)
where Ay = {X4 < Fy, (u)}. Notice that [, Xa(w)dPa(w) = f{FXA (xa)<u} XA @)APA (W)

is continuous for u € (0,1), this proves continuity of A4(u) on (0,1). Notice that
P4(Ag) = u, hence

u _
(5.13) |1 XallooVa < % | X(@)dPa) < VaF | (w),
0
both left and right sides of the above equation converge to 0 because X4 is a
bounded function, therefore, A4(0%) = 0.
In order to evaluate A4(17) define 4; = A\ Ay and write

(5.14)  Aa(u) = (; (;1)“13 ( i iu) [ x(@)pw) - /A (X(w)dP(w)> _
Observe that P4(A1) =1 — u, hence
VvV1—wu

(5.15) V1—u Fx)(u) < X (w)dPa(w) < [|XalleVT -1,

1—u Aq

both left and right sides of the above equation converge to 0 because X4 is a
bounded function. It follows from (5.14) that we have stablished A4(17) =0. O
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Proposition 3. Assume X € L2(Q2, B, P) and that the hypothesis in Lemma 2 are
satisfied. Then there exist u* € (0,1) such that Y7 = Yy+ € Cayr, where Yy is
given by (5.11), verifies

(5.16) (X,¢%) = sup [(X,4)|.
YeCa

Proof. Since A4 is continuous, by Lemma 2, let u* be its maximizer and ¢} = ,~.
Consider now 9 € C4, we know that

¢ =b+/P(4) (_(1_u)1A0+ 1A1)

u
b= VR L, [T

_ [P ()
- (l—u”l; (_ u’u 1A6+1A11)’

where u' = 1 —u, Ay = Ay and A} = Ao, thus ¢ € Caw with b/ = | /%5 > 0.
Thus, 9 belongs to some Ca,,, with b > 0. Consequently

O

Essentially, whenever Fx is continuous and X bounded, we are able to prove that
the greedy splitting algorithm satisfies some optimality properties. Moreover, the
computations can be reduced to maximizing a continuous functional on [0, 1] where
several powerful algorithms are available. Analogous results to Propositions 3 and 2
are also possible for the case when X is a purely discrete random variable. In
this last case we need to do a search over the set of u, € (0,1) such that there
exists s, with Fx,(sn) = u,. It may not be possible to avoid an exhaustive
search for this optimization. The case of general X is also solved by the bathtub
principle mentioned above but it requires the use of “Haar” functions outside of
the scope of our paper. If X is a path independent European option that is an
increasing function of St, the atoms constructed by the greedy splitting algorithm
will correspond to binary options associated to a single interval St € [a, b], for other
type of options this is not necessarily the case.

The algorithm converges pointwise and in LP by the simple fact that it constructs
a martingale. Under appropriate conditions, it is possible to prove that it actually
converges to X. We plan to study questions related to this algorithm, as well as
software realizations, in a future publication.

6. NUMERICAL EXAMPLES

In this section we present output from a computer implementation based on Exam-
ple 5 from Section 2. More specifically, we concentrate on the case where we have a
Haar dyadic system, Definition 6, whose sequence of partitions P; = {4, ;} are con-
structed via the increments of the Brownian motion and are characterized through
the parameters nyp and jq,...,7,,- We will also use compression as described in
Section 5.1 and some of the definitions and notions introduced in Section 4.

To indicate the potential improvements that can be expected for this example it
is enough to consider the case of ny = 1, therefore, all the atomic sigma algebras
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B, are included in o(Wr) and By, = o(Wr). The case ny > 1 is essentially a
concatenation of several steps where each step is algorithmically equivalent to the
case np = 1. Moreover, the errors along these steps accumulate as is the case with
delta hedging.

We compare the errors in the approximations as well as the volume of transactions
as a function of the number of transactions. We find generic cases where Haar
systems outperform delta hedging, moreover, in these examples, the improvements
have a simple intuitive financial meaning. Our numerical output uses the parame-
ter R, introduced in (5.1), R is (essentially) equal to the number of Haar hedging
transactions plus one. This is just a peculiarity of our software and it can be un-
derstood by noticing that the bank account ug may or may not be chosen during
the compression step (in practice it is one of the largest contributing inner prod-
ucts). In short, the parameter R is equal to the number of times the Black-Scholes
portfolio is rebalanced when performing delta hedging and equals the number of
Haar functions used in the final approximation when performing Haar hedging. We
rebalance the Black-Scholes portfolio at uniformly spaced time intervals.

Here we will give the initial data for the MRA (this algorithm is described in
Appendix A) for the H-system {usi ;} in Example 5 and X an European option.
As previously remarked, computations can be carried out by specifying the finest
scale J. We will then perform compression by only keeping the R Haar functions,
including also ug, with the largest inner products. Fixed an acceptable error € > 0,
we approximate X specifying the finest scale J, in such way that the conditional
expectation satisfies

sup | X (w) — E(X|o({As;: 0<i <27 —1))(w)| <e,

this is possible because every bounded random variable can be approximated by
simple functions supported on atoms of probability 2% As a matter of convenience,
according to computational costs, we have used J = 14 or J = 16. The input to
the MRA is obtained by computing

(6.1) z i) =27/ A ‘X(w)dP(w),

or, more conveniently, for the case of continuous X (w) = X (St(w)), by first com-
puting

sjli] = 27 fA“ St(w)dP(w) =
(62) = [ ST TT ) o gy =

= Sp,e(T-To) % 27 (®(c)y —b) —®(c] - 1)),
whereb=0 /(T —Tp) and v = (r — "72) Therefore, by taking J sufficiently large,
we can use the approximation z;[i] ~ X (ss[i]). We recall that ps[i] = P(4s;) =

1

2_.]'

For the sake of clarification, consider the European call X (w) = (S7(w)—K), where
T = t, is the time of exercise and K is the strike price. Clearly X is unbounded,
but lim, ;o X1{x<.} = X a.e., hence one can always consider an approximation

of a desired quality.
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Next we comment on the output displays; numerical values were obtained by sam-
pling S7(w), the limited range in these values (x-axis on most displays) corre-
spond to these sampled values (after sorting). Consider first a single European call
X(w) = (Sr(w) — K)+ as above, values of parameters are indicated in the text
surrounding the figures. In Figures 1, 2 and 3 we present the Black-Scholes and
Haar approximations with R = 1, 2, 20 respectively. Notice how Figure 1 shows the
Haar approximation with u; = 1/2 (14, , — 14, ,) which happens to give the largest
inner product. Figure 2 shows the Haar approximation when ug is added, giving
the second largest inner product in this example. Figure 4 shows the estimation of
the L? norm of the errors as a function of R.

As a second example we consider a portfolio built as a linear combination of Euro-
pean calls and puts as follows, X = (St — K1) + (St — K2) — (ST — K3). values of
parameters are indicated in the text surrounding Figure 5. Finally, Figure 6 shows
the estimation of the L? norm of the errors as a function of R.

Tables 2 and 3 show the volume of transactions for the Haar hedging portfolio, and
for the binary hedging portfolio (see Section 4), which for the case np = 1 are both
constant quantities, and the volume of transactions for the Black-Scholes portfolio.
Using the notation X from (5.1), the volume of transactions for the Haar hedging
portfolio, is equal to

(6.3) VI(HI) = e~ X3 B(X) 1 = @™ [ X (0) B0 |dP ().
Q
The volume of transactions for the portfolio of binary options is
(64)  VT(BII) = e~ T=70)||X¢|[ 2 = =T~ T0) / X5 (w)|dP(w).
Q

Analogous expressions for (6.3) and (6.4) are also possible for the case ny > 1. On
the other hand, letting
_ OV, (X)
ti — asti )
the volume of transactions for a Black-Scholes portfolio with rebalancing dates
{t:},i=0,...,R—11s
R-1
(6.5) Z[ lot; — ¢tiy| St + (By; — Bti—1eT(ti_ti71))+ ],
1=0
with ¢¢_, = B;_, = 0. We have used equally spaced rebalancing dates starting
at t¢ = Tp. Given that (6.5) is a random quantity we will report the average
(AverageVolTrBS) over many samples.
The smaller the oscillations of X around E(X) the smaller VT (HII) will be com-
pared to VT'(BII). Notice the difference in magnitudes with AverageVolTrBS. The
volume of transactions offer a clear numerical evidence of the different nature be-
tween Haar hedging and delta heding. In both cases, Haar hedging and binary
hedging, the explicit use of space discretization implies that the volume of transac-
tions is essentially the same when the number of transactions increases. For delta
hedging, its relience on time discretization implies much larger volumes of transac-
tions when the rebalancing frequency is increased to reduce the hedging error.
We now comment on our choice of examples. It is expected, and it is confirmed by
our experience with numerical examples, that the Haar approximation outperforms
(in the sense of smaller error for equal value of R) the Black-Scholes approximation
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whenever the payoff, or its derivative, contains discontinuities. Moreover it is im-
portant that the Haar functions are adapted to these discontinuities, for example,
we can choose u; such that it is supported in the union of A; g = {Sy < K} and
A1 = {Sr > K} for the case of the European call. Our examples reflect these
choices, for example S7;, was taken close to K so as the discontinuity in the first de-
rivative of the European call becomes problematic for Black-Scholes approximation
and can be reproduced efficiently by the Haar expansion. An extreme example of
this kind will be the case of a digital option where, of course, the Haar expansions
have no bearing as a hedging tool.

One can, of course, easily find situations where delta hedging ouperforms Haar
hedging as, for example, a position in a European call which is well in or out of
the money. This is a situation where the linear approximation in delta hedging
becames very efficient. It may be interesting to see under what conditions delta
hedging and Haar hedging are complementary and to investigate how to combine
both techniques.

7. CONCLUSIONS AND EXTENSIONS

We have introduced a basic and general new framework to represent European
options. Key ingredients are the flexibility given by the possible space and time
discretizations which can be adapted to the given option and the potential for fi-
nancial realization of these discretizations. From a theoretical point of view, the
approach is as fundamental as delta hedging and it is reasonable to think that can
be extended to settings where this last technique is available. Some of the computa-
tional tools introduced can also be used even when an actual financial realization is
not available, pricing computations is an example,. We have emphasized the issue
of efficient representations of a given option X, this notion isolates a few binary
options with small approximating error. The representation in terms of Haar func-
tions was created with this goal in mind, Section 5 provides examples of how this
tool could be deployed.

Further empirical and theoretical work is needed to assess the realm of applications
where the new constructions offer a financial advantage. The techniques could likely
be extended to the setting of American options and higher dimensional models.

APPENDIX A. MULTIRESOLUTION ANALYSIS FOR H-SYSTEMS AND
APPLICATIONS

Here we complete the computational material and describe the Multiresolution
Analysis Algorithm (MRA) for a general H-system. The intended use of this al-
gorithm is for pricing and hedging derivatives. It is known that the price of one
european option X at time T in a market without arbitrage opportunities is given
by e "TE(X) where r is the interest rate of a risk free bond and the expectation
is taken with respect to the risk neutral measure. The MRA for an H-system {u,}
is a useful tool for calculate this expectation, furthermore it is a fast way to obtain
the expansions of X at all levels of approximation in the associated H-system. Fix
X € L?(Q2, B, P) and assume a sequence R = {R; }JJZO of weak dyadic partitions of
Q is given.

To facilitate the definition of the MRA algorithm we introduce a signal vector with
the following notation

X; = (zk[i]) (k,5)eK; > Where,
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(A.1)

1
il = =——— X(w) dP(w) = X(w) for any w € Ay, with (k,i) € K;.
P(Ak;) Ja, .
For purposes of the algorithm specification we will set a finest scale J and initialize
our input signal vector with x ;.

Proposition 4. The following equations hold for 1 < j < J and i € I;.
) 1 ) ) . .
(A.2) zj[i] = P (p;[2i] =;(2d] + p;[2i + 1] x;[2i + 1)),
i—

(4.3 el = [HELEE (oy) —sfai+ 1).

Also we have the reconstruction equations, starting with xo[0] and d;[i], 1 < j <
J—1i€lj.

120 = 0y i) + PR
(A'4) Lj [2 ] = J*l[ ] + pj—l[i] pj[Qi] del[ ]a
(A.5) o[ + 1] = z;[20]) — pimilll .

pj[2i] p;[2i+1]
Proof. From (3.8) and (3.5) we have that

ciailil = (X, dj10) = (X, | 2o b2+ BT baier) =

pj—1li]

= m(\/mcj[%] + v/pj[2i + 1]c;[2i + 1))

and, for w € A;_1

._# = ‘17: W) = '_1i$'i
cf‘l[’]‘mﬂj_l,f‘dp i1 1X(w) = /31 [iJz;1i],

from where (A.2) follows. Similarly, combining (3.8) and (3.6), (A.3) can be ob-
tained. Finally (A.4) and (A.5) follows adding and subtracting (A.2) and (A.3). O

The above propositions contain all the essential information to set up the algorithm,
here are the details.

MRA Description.

We will need to keep, besides the information on inner products and sample values,
the probabilities at different scales. To avoid misunderstandings lets clarify the
notation. At scales j < J we will compute the vector

(A6) (Xjadjadj-i-la"'ad.]—l);

where each vector d; has length |I;|. Similarly, starting with the probability input
vector py = (px[i])(k,i)ck, at scale j < J we will compute the vector

(A7) (pj7dpj7dpj+17"'7dp.]—1)7

where each vector dp; has length |I;|.

We describe how the different data structures are updated when going from step
jtoj—1(1<j<J) this is called the analysis part of the algorithm, and how
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to go from step j — 1 to j in the synthesis part of the algorithm. For the analysis
algorithm we proceed as follows. For 1 <j < Jand i € I;_;

(A.8) pj—1[i] = p;[2i] + p;[2i + 1] and dp;_1[i] = p;[2i],

x;j_1[i] and d;_1[i] are given respectively by (A.2) and (A.3).
Analogously, for the synthesis algorithm,

(A.Q) pj [22] = dp];l['i] and pj[2i + 1] = pjfl[i] - dpjfl[i],
x;[24] and z;[2¢ + 1] are given respectively by (A.4) and (A.5)

Applications.

In that follows we consider the H-systems developed in the examples of Section 2,
and show some the interest in the MRA for financial computations.
1. PATH DEPENDENT OPTIONS IN THE BINOMIAL MODEL.
We now illustrate the MRA for the Haar system {u,} in Example 2, for the case of
a path dependent option. We consider the arithmetic Asian call X (w) = (Ar(w) —
K), where T = t,, is the time of exercise, K is the strike price and Ar(w) is the
average of the values of the stock. In this case the signal vector for initializing the
MRA is

x7 = (zsi]) fo<i<27 -1}~
because {u;;} is actually a Haar system. z;[i] can be calculated observing that
the path of stock prices is stored in the index. In fact, writing ¢ in its binary
representation with J + 1 ﬁgures 1= ElJ:o ;2! we have that

' § []"Lo . [711 Dl—io . Dl—‘i[ K
zsli <J+ 1 )
+

Recall that the probability vector p;y = (ps[i]){o<i<2/-1} is given by ps[i] =
po--.ptvgt~io...q'=%  The analysis algorithm have the equations:

zj-1[i] = g z;[2d] + p 2;[20 + 1],

dj1[i] = \/pi-ali] p ¢ (2;[2i] — z;[2i + 1)),

where p;_1[i] = p;[2i]+p;[2i+1]. Clearly, e "7 z4[0] is the price of X in this model.
Finally, we observe that the synthesis algorithm have the equations:

p

zj[2i] = zj_1[i] + pialla dj—1[d],
2l g
(214 1] = 2,020) = o dy i)

2. EUROPEAN OPTIONS IN THE BINOMIAL MODEL.
We now indicate the initial data of the MRA for the H-system {v;;} in Example
3 for a, path independent, European option. Consider the European call X (w) =
(St(w) — K)4 where T = t,, is the time of exercise and K is the strike price. In
this case the signal vector to initialize the MRA is

x; = ((SoUGH D=2k — K) ) kiyek,

where «(i, k) is the integer part of % In this case, the probability vector is

given by pili] = (a(zk))pa(i’k)q"’“(i’k) for (k,i) € K;. It is important to observe
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that the MRA is most effective to calculate the value Vg, (X) = e "Tx0[0], of the
derivative X, than the usual pricing algorithm in this model.

APPENDIX B. MARTINGALE INEQUALITIES AND HEDGING ERRORS

In this section we review some well known results, in particular we state the fun-
damental martingale convergence theorem. We also review a few of the basic mar-
tingale inequalities that are available for assesing the quality of the approximations
while performing Haar hedging.

Here is a martingale convergence theorem relevant to our setting. Assume a se-
quence of increasing sigma algebras (not necessarily atomic ones) B,, n = 0,1, ...
is given relative to a probability space (Q2, B, P). We also use the notation By, =
U(Unzan).

Theorem 3. Letp € [1,00) be a given real number. For every X € LP, the sequence
X, = E(Z|B,,) is a martingale which converges a.s. and in L? to Xo, = E(X|Bx).

When applying the above result to a given option X one needs to argue separately
for 0(X) C Bw, this inclussion should be clear in our simple examples but in
general it requires to prove that the atomic approximation satisfies some kind of
Vitali covering property, [18] chapter 7. Usually, convergence results on martingale
theory are described for an infinite sequence, this is the case for the above theorem.
It is trivial to make most statements also applicable to a martingale indexed by
a finite index set of integers but this new version of the result is not informative.
Nevertheless, some results can also be made informative for the finite index case.
For example, in some of our applications, we may start with a finite martingale
converging to E(X|o(R;)) where R; = {A,,(k,3) € K;} is a partition of
satisfying

(B.1) | X (w) — 1/P(Ak,;) X (w)dP(w)| < €,q for all w € Ay ;

A i
and for all (k,¢) € K;. Hence, convergence statements and supporting inequalities
will give information on convergence to E(X|o(R;)) which is useful if the (; ;) are
taken sufficiently small.
We state the following results using the setting and notation introduced in Sec-
tion 2 even though the results may hold under more general conditions. Recall the
notation X, = E(X|B,) and set & = (X, ug)uy.
To simplify the statements we assume X € L? in the remaining of this section. The
simplest inequality valid for any orthogonal system is Chebychev’s inequality which
gives information on weak convergence.

Proposition 5. For any A > 0,
D (X ug)?
A2 '
The next inequalities are directly related to pointwise convergence and do depend
crucially on martingale properties.

(B.2) P(IX = X,| > )) <

Theorem 4. Fizn <m and e > 0 then,

1 m
Z§k|<e,forall],n+1<]<m2 _22 (X, up)? >
k=n+1 k=n+
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1 n
(B3) 1—6—2(||X||2—Z|<X,uk)l2)-
k=0
Moreover
(B.4)
7 K m K n
<8 2 o 8 2 2y
P(n+11n§a?{§m|k_zn+1£kl >e€) <5 kZMlI(X,Uk)I < = (1X]] kZ_OKX,Uk)I )

Clearly the above inequalities give information for the error of an H-system approx-
imation, namely e,(X) = X — X, =302 . &k-

The inequalities in the previous equations uniformly bound the error on a large
portion of the space. The next inequalities, whenever applicable, are more detailed,
[10], [11] pp.125. We first introduce some notation, set W2 = >°0 &2 T, =

j=n R
Y2, & and t, = E(T}), notice that t, — 0 as n — oo.
Theorem 5. Assume the following condition where the limit is a.s. (also the
inequality is a.s)
(B.5) t2W2 = n> > 0.

Moreover if the following two conditions are satisfied (I( ) is the indicator function)

o

(B.6) >t TE(XGI(IX] > € t5)) < oo for all € >0,
=1
and J
(B.7) it;4E(XfI(|Xj| <4 t;)) < oo for some & > 0,
Then a.s., a
(B.9) ~1 = liminf[p(W2)] T, = limsuplo(W)] T, = 1,

where ¢(t) = (2tlog|logt|)'/?
Let Z,QL = E;X):" E(é?lBj_l), then, if

oo

(B.9) th(@z- - E(§J2-|Bj,1)) converges a.e.

j=1

we can replace W2 by Z2 in the above results.

APPENDIX C. FIGURES AND TABLES
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TABLE 1. L? norm for errors, between X and X§, in terms of
number of transactions and scales. Single European Call. Values
of parameters as in Figure 1.

No. of Transactions | J=6 | J=8 | J=10 | J=12 | J=14 | J=16
R=28 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22
R=16 0.15|0.10 | 0.10 | 0.10 | 0.10 | 0.10
R =32 0.14 | 0.08 | 0.06 | 0.05 | 0.05 | 0.05
R =064 0.14 | 0.08 | 0.05 | 0.03 | 0.02 | 0.02

R =128 x |0.07| 0.05 | 0.03 | 0.02 | 0.01
R =256 x |0.07| 0.05 | 0.03 | 0.01 | 0.00

10

Payoff Samples
9F | e B&S Samples
——— Haar Samples

Option Value

-3 = I L L L L L L L L L L L L L L L

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Stock Samples

FIGURE 1. Approximations to single European Call using delta
hedging and the Haar system constructed via Brownian motion
increments. Values of the parameters used: R =1, Sp, =20, r =
0.05, c =01, T-Ty =1, K = 21.
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