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Abstract Fatigue is structural damage produced by cyclic stress and tension. An important statistical

model for fatigue life is the Birnbaum-Saunders distribution, which was developed to model ruptured

lifetimes of metals that had been subjected to fatigue. This model has been previously generalized and in

this article we extend it starting from a skew-elliptical distribution. In this work we found the probability

density, reliability, and hazard functions; as well as its moments and variation, skewness, and kurtosis

coefficients. In addition, some properties of this new distribution were found.
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1 Background

Fatigue is structural damage which is produced when material has been subjected to cyclic
stress and tension. Valluri [24, 1963] proposed a theory for material fatigue based on a three
stage process: (i) the beginning of an imperceptible fissure, which, according to Murthy [20,
1974] occurs at the 5 to 10 % mark of material use life; (ii) the growth and propagation of
the fissure, which provokes a crack in the material due to cyclic stress and tension; (iii) and
the rupture or failure of material, whose stage, according to Saunders [23, 1976], occupies
an negligible lifetime. For this reason, statistical models for fatigue processes are primarily
concerned with describing the random variation of lifetimes associated with second stage (ii)
of this process, through life distributions, whose parameters allow those materials subjected
to fatigue to be characterized and at the same time predicting its behavior under different
cyclic force patterns and tension (see for example, Galea, Leiva-Sánchez, and Paula [13, 2004]).
Among the probability models that more popularly have been proposed to describe lifetime due
to fatigue, we find these distributions: Weibull, lognormal, gamma, and inverse-Gaussian, all
of which fit with great precision into the central zone of the life distribution. Nevertheless, it
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is important to concern ourselves with the very low or very high percentiles of distribution,
zone precisely where little data is usually found. This in turn leads to a poor fit of the models
previously mentioned.

An important lifetime model, differing from those previously mentioned, originating from a
problem of material-fatigue, is the one developed by Birnbaum and Saunders [4, 1969]. This
model fits very well within the extremes of the distribution, even when there is little data.
Desmond [8, 1985] showed that the Birnbaum-Saunders (B-S) distribution describes the total
time that passes until some type of damage has accumulated, produced by the development and
growth of a dominant crack, surpassing a threshold, and causing the material to fail.

The B-S distribution is defined in terms of the normal distribution, by means of the random
variable (r.v.)

T = β

[
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√
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2
Z
)2

+ 1

]2

, (1)

where Z ∼ N(0, 1), α > 0 is the shape parameter and β > 0 is the scale parameter and the
median of the distribution. This is denoted by T ∼ BS(α, β). The probability density function
(pdf) of T is

fT (t) =
1√
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exp

[
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, t > 0. (2)

It is easy to show that if T ∼ BS(α, β), then

Z = α−1

[
√

T

β
−
√

β

T

]

∼ N(0, 1). (3)

On the other hand, some multivariate distributions that have been of great importance lately
is the family of elliptical contour densities or simply elliptical distributions. This family includes
distributions with a lesser or greater kurtosis than the normal distribution. Furthermore, the
elliptical family has the normal distribution as a particular case.

The elliptical laws have been studied by numerous authors and the most important results
obtained have been summarized in the books by Fang, Kotz, and Ng [12, 1990] and by Gupta
and Varga [17, 1993], as well as in the most recent work by Dı́az-Garćıa, Leiva-Sánchez and
Galea [9, 2002] and [10, 2003]. The use of elliptical distributions as a generalization of normal
distribution is not based on empirical arguments or on physical laws. In general, its reasoning is
purely statistical and/or mathematical, in the sense that: (a) the theory developed under normal
distribution is a particular case of the theory derived within elliptical distributions; (b) many of
the properties of a normal distribution can be generalize to the case of elliptical distributions;
(c) some important statistics in the theory of normal inference are invariant within the elliptical
family. For these reasons, currently, a large part of normal theory is being reconstructed using
elliptical distributions, allowing that any statistical analysis in which a normal distribution can
be assumed, can be generalized to this whole family.

For a r.v. (one dimensional case), the elliptical distributions are symmetrical distributions
in R. A r.v. X with elliptical distribution is characterized by the parameters µ and σ, and is
characterized by a function generator of densities, g, for which the notation X ∼ EC(µ, σ2; g)
is used. In general, µ and σ are position and scale parameters respectively. µ = E(X) when
the first moment of the distribution exists. Var(X) = c0σ

2 when the first two moments exists,
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where c0 = −2φ′(0) and φ′ is the derivative of the function φ associated with the characteristic
function of X. In this article we consider only spherical distributions. That is Z ∼ EC(0, 1; g).
Thus, the characteristic function of Z is given by

ψ(s) = φ(s2); s ∈ R, (4)

with φ : R
+ → R, and the pdf of X is given by

f(z) = c g(z2); z ∈ R, (5)

where g is the kernel of the pdf of Z and c the normalization constant.
Some specific distributions EC(0, 1; g) are presented next. Z follows the Pearson VII distri-

bution with parameters r > 0 and q > 1/2 if its pdf is

f(z) =
Γ(q)

(rπ)1/2Γ(q − 1/2)

(

1 +
z2

r

)−q

and follows the type Kotz distribution with parameters r, s > 0 and q > 1/2 if its pdf is

f(z) =
sr(2q−1)/2s

Γ ((2q − 1)/2s)
z2(q−1) exp(−rz2s).

Remark 1. The following are particular cases of distributions previously mentioned.

i) The distribution t (denoted by t(ν)), where ν are its degrees of freedom, is a particular
case of the Pearson type VII distribution when q = (ν + 1)/2 and r = ν.

ii) The Cauchy distribution is a t(ν) with ν = 1 and it does not have moments.

iii) The normal distribution is a particular case of the Kotz type when q = s = 1 and r = 1/2.

Recently, Dı́az-Garćıa and Leiva-Sánchez [11, 2005] presented a generalization of the distri-
bution given in (2) assuming now that

Z =
1

α

(
√

T

β
−
√

β

T

)

∼ EC(0, 1; g). (6)

Starting from (6), they got that

T = β

[

α

2
Z +

√

(α

2
Z
)2

+ 1

]2

(7)

follows a generalized Birnbaum-Saunders distribution, which is denoted by T ∼ GBS(α, β; g).
The pdf of T is

fT (t) = c g

(

1

α2

[

t

β
+
β

t
− 2

])

t−3/2(t+ β)

2αβ1/2
, t > 0, (8)

where c and g are given in (5). So, if we define the function at(α, β) by

at(α, β) =
1

α

(

√

t

β
−
√

β

t

)

, (9)
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we get
d

dt
at(α, β) =

t−3/2(t+ β)

2αβ1/2
, (10)

thus being able to write (8) as

fT (t) = f(at(α, β))
d

dt
at(α, β), (11)

where f is given in (5). Several examples of the function f are considered in Dı́az-Garćıa and
Leiva-Sánchez [11, 2005], thereby obtaining a new and more general type of distributions that
can be utilized as alternative models to Birnbaum and Saunders [4, 1969]. This generalization,
in addition to the one mentioned earlier, are based on the search for life distributions that grow
rapidly, and that have left tails heavier or lighter than the classic B-S distribution, among other
interesting properties, such as for example the absence of moments in the life distribution. With
this, the B-S distribution was generalized starting with an elliptical distribution. In this same
article they also mention the importance of log-life distribution studies and the possible use of
skew-distribution in the reliability analysis.

Now, outside the context of reliability and from a multivariate and elliptical perspective,
the topic of log-distributions and skew-distributions have been posed, with the goal being to
obtain greater degrees of generalization for problems which up until now have been resolved.
On the one hand, the log-elliptical distribution have been defined as an extension of the log-
normal distribution, which is dealt with in Fang, Kotz, and Ng [12, 1990]. Currently though,
being treated similarly to the multivariate, skew-normal distribution, whose principle results
are accredited to Azzalini, Dalla-Valle, and Capitanio [2, 1996] and [3, 1999]; and to Gupta,
Faŕıas-González, and Domı́nguez-Molina [15, 2004], among others, great strides have been made
in the skew-elliptical distribution theory as seen in work done by Branco and Dey [5, 2001],
and Arellano-Valle, Del Pino and San Mart́ın [1, 2001] among others. All of which have been
adequately summarized in Genton’s [14, 2004] new book.

From a univariate perspective, a skew-elliptical distribution (SEC) is denoted by Y ∼
SEC(µ, σ2, λ; g), where µ, σ and λ are the position, scale, and skewness parameters respec-
tively. In particular, if λ = 0, this distribution coincides with an elliptical distribution in R.
Thus, if Y ∼ SEC(0, 1, λ; g), then the pdf of Y is

fY (y) = 2f(y)F (λy); y ∈ R. (12)

Going back to the area of reliability, there are two aspects that foremost motivate this work.
On the one hand, from a theoretical point of view and always in search of greater generalizations,
we propose the use of skew-elliptical distributions in the generalization of a B-S distribution in
order to get a new and wider type of life distributions due to fatigue. This new model has as
particular cases the classic B-S distribution [4, 1969] and the generalization of Dı́az-Garćıa and
Leiva-Sánchez [11, 2005]. With this generalization, a more flexible distribution was obtained and
one that is closer to reality. On the other hand, from an empirical point of view a second aspect
that is highly motivating comes when we consider a system connected in parallel formed by two
identical components both subjected to fatigue. Therefore, if we assume that these components
have failure lifetimes independently and identically distributed (iid), then the failure lifetime
of the system corresponds to the maximum failure lifetime of these components. The pdf of
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the distribution of this order statistic, surprisingly, coincides with that of the B-S distribution
generated by SEC distributions, which we will show later. This interesting property of the B-S
distribution can in the same way be applied to calculations of the reliability of the strain-stress
model, given by P(X > Y ) (see Gupta and Brown [16, 2001]), where X is the strain of the
material and Y the stress that the material receives, which is also the reason for developing this
new lifetime model.

This article has been divided into two sections. In the first section we have introduced the
topic and done a bibliographical review. In second section we will present the new model, its
density along with some graphs, its reliability and hazard functions; as well as its moments
and variation, skewness, and kurtosis coefficients. In addition, some properties of this new
distribution will be presented.

2 The New Model

In this section we present a new fatigue life model, obtaining greater generalization than what
was obtained recently by Dı́az-Garćıa and Leiva-Sánchez [11, 2005]. This double generalization
is accounted for on the one hand by the extension of the normal distribution to the elliptical
distribution and on the other by the parameter of skewness of the SEC distribution. Specifically,
we found the pdf of the doubly generalized Birnbaum-Saunders (GBS′′) distribution and some
of its most important properties.

To specify some ideas, we now consider

Z =
1

α

(
√

T

β
−
√

β

T

)

∼ SEC(0, 1, λ; g). (13)

Then, from (12), the pdf of Z given by (13) is

fZ(z, λ) = 2f(z)F (λz), z ∈ R, (14)

where f is given in (5), F is its respective cumulative distribution function (cdf) and λ ∈ R

is the skewness parameter. Thus, if we follow the same procedure used in Dı́az-Garćıa and
Leiva-Sánchez [11, 2005],

T = β

[

α

2
Z +

√

(α

2
Z
)2

+ 1

]2

(15)

has the GBS′′ distribution, denoted by T ∼ GBS ′′(α, β; g, λ).

2.1 Density Function

Next we present the pdf of the r.v. given in (15) and other aspects associated with this.

Theorem 1. Let T ∼ GBS ′′(α, β; g, λ). Then, the pdf of T is given by

fT (t, λ) = 2f(at(α, β))F (λat(α, β))
d

dt
at(α, β), t > 0, (16)

where at(α, β) is given in (9) and f , F in (14).
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Proof. It is direct starting from (14).

Remark 2. Note that (16) can be written in terms of the pdf given in (11), with which it is
only necessary to calculate

F (λat(α, β))) =

λat(α,β))
∫

−∞

f(x)dx, (17)

where f , F are given in (14), in order to find specific expressions for the pdf of T . Particular
cases for the pdf given in (11) are presented in Dı́az-Garćıa and Leiva-Sánchez [11, 2005], and
some of which we summarize in Table 1.

Table 1. pdf of the generalized Birnbaum-Saunders distribution which are as follows.

Elliptical law pdf GBS

Pearson VII
Γ(q)

(rπ)1/2Γ(q − 1/2)

�
1 +

1

rα2 � t

β
+

β

t
− 2 ��� −q � t−3/2(t + β)

2αβ1/2 � ; α, β, r > 0, q > 1/2

t(ν)
Γ((ν + 1)/2)

(νπ)1/2Γ(ν/2)

�
1 +

1

να2 � t

β
+

β

t
− 2 ��� −(ν+1)/2 � t−3/2(t + β)

2αβ1/2 � ; α, β, ν > 0

Cauchy
1

π

�
1 +

1

α2 � t

β
+

β

t
− 2 ��� −1 � t−3/2(t + β)

2αβ1/2 � ; α, β > 0

Type Kotz
s

Γ ((2q − 1)/(2s)) � r

α2s
� 2q−1

2s
�

t

β
+

β

t
− 2 � q−1

exp

�
−

r

α2s � t

β
+

β

t
− 2 � s � � t−3/2(t + β)

2αβ1/2 � ; α, β, r, s > 0, q > 1
2

Normal
1

√
2π

exp

�
−

1

2α2 � t

β
+

β

t
− 2 ��� � t−3/2(t + β)

2αβ1/2 � ; α, β > 0

2.2 Density Graphs

Next, we present various density graphs in which it is possible to observe how the skewness
parameter influences the GBS′′ distribution. In these graphs we also present a comparison with
the generalized B-S distribution of Dı́az-Garćıa and Leiva-Sánchez ([11, 2005]), that is, when
λ = 0.

The graphs were done with a software program call Mathematica 5.0. In addition to the
analysis based on the skewness parameter, a routine made in the same program was used to make
an animation of the graphs. With this animation we made an analysis of how the parameters
of each SEC distribution analyzed influenced the pdf of the GBS′′ distribution.

In general, with respect to the skewness parameter (λ), based on the density graphs given
in Figures 1-3, we can observe the following: the new life model which we proposed yields
distributions with tails heavier than those generated by elliptical distributions. When λ is
positive (λ = 1 in our analysis) this situation is accentuated for unimodal distributions. When
λ is negative (λ = −1 in our analysis) we noticed that the unimodal distribution is concentrated
around the mode in which case we also observed that the distribution fits better to observations
of small magnitude.

Specifically and based on the graphical animation, we observed the following. For the Pearson
type VII distribution (Figure 1), as r or q increases, the GBS′′ distribution tends to become more
platykurtic and symmetrical, the position moves to the right, and variability diminishes. For the
Kotz type distribution (Figure 3), as q increases, the GBS′′ distribution tends to become more
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leptokurtic, symmetrical, and bimodal, whereas the separation of the modes becomes greater.
As r increases, the GBS′′ distribution tends to become more leptokurtic and variability increases
slightly. As s increases, the GBS′′ distribution tends to become more leptokurtic and variability
diminishes slightly.
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Figure 1: Density graphs of a GBS′′ distribution for α = 0.5 and β = 0.8 obtained from a
Pearson VII distribution with parameters r and q (PVII(r, q)).

2.3 Properties and Characterizations

Next, we present some properties of the distribution of the r.v. given in (15), some of which
were presented in Birnbaum and Saunders [4, 1969], when Z ∼ N(0, 1) and in Dı́az-Garćıa and
Leiva-Sánchez [11, 2005]), when Z ∼ EC(0, 1; g).

Theorem 2. Let T ∼ GBS ′′(α, β; g, λ). Then,

i) aT ∼ GBS′′(α, aβ; g, λ), a > 0,

ii) T−1 ∼ GBS′′(α, β−1; g, λ).

Proof. The proof of i) and ii) are immediate from the theorem of the change of variable.

Remark 3. Just like the B-S and GBS distributions, we see that the properties established in
Theorem 2ii) show that the GBS′′ distribution also belongs to the family of random variables
closed under reciprocation (see Saunders [22, 1974]).
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Figure 2: Density graphs of a GBS′′ distribution for α = 0.5 and β = 0.8 obtained from the
distributions indicated.
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Figure 3: Density graphs of a GBS′′ distribution for α = 0.5 and β = 0.8 obtained from a Kotz
type distribution with parameters q, r, and s (K(q,r,s)).
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Theorem 3. Let T ∼ GBS ′′(α, β; g, λ) and FT its cdf, F given in (14) and FZ the cdf of Z
given in (13). Then,

i) FT (t;λ) = FZ(at(α, β), λ). In particular, for λ = 0, FT (t;λ) = F (at(α, β)).

ii) FT (t;−λ) = 2FT (t;λ = 0) − FT (t;λ).

iii) For λ = 1, FT (t;λ) = [F (at(α, β))]2.

Proof.

i)FT (t;λ) =

t
∫

0

2f(ax(α, β))F (λax(α, β))
d

dx
ax(α, β)dx

=

at(α,β)
∫

−∞

2f(x)F (λx)dx

= FZ(at(α, β), λ)

ii)FT (t;−λ) =

t
∫

0

2f(ax(α, β))F (−λax(α, β))
d

dx
ax(α, β)dx

=

t
∫

0

2f(ax(α, β))(1 − F (λax(α, β)))
d

dx
ax(α, β)dx

=

t
∫

0

2f(ax(α, β))
d

dx
ax(α, β)dx−

t
∫

0

2f(ax(α, β))F (λax(α, β))
d

dx
ax(α, β)dx

= 2FT (t;λ = 0) − FT (t;λ)

iii)FT (t;λ = 1) =

at(α,β)
∫

−∞

2f(x)F (λx)dx

=

at(α,β)
∫

−∞

d

dx
F 2(x)dx

= F 2(at(α, β))

Remark 4. From Theorem 3i) and following the same procedure from Chang and Tang [6,
1974], the p-th percentil of the distribution, tp = F−1

T (p;λ), is given by

tp =
β

4

(

αzp +
√

α2z2
p + 4

)2

,
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where zp is the p-th percentil of the SEC distribution. For λ = 0, that is when Z ∼ EC(0, 1; g),
t0.5 = β. Also, if Z ∼ N(0, 1), tp is given as in Jeng [18, 2003] in whose case zp is the p-th
percentil of the standard normal distribution.

Theorem 4. Let T ∼ GBS ′′(α, β; g, λ) and FT its cdf, F given in (14) and FZ the cdf of Z
given in (13). Then, the reliability, and hazard functions of T are respectively,

RT (t;α, β) = 1−FZ(at(α, β), λ) and hT (t;α, β) = 2f(at(α, β))

(

F (λat(α, β))

1 − FZ(at(α, β), λ)

)

d

dt
at(α, β).

Proof. It is immediate basing ourselves again in Theorem 3i) and in the definitions of the
reliability and hazard functions (see for example, Meeker and Escobar [19, 1998] given by
RT (t;α, β) = 1 − FT (t;α, β) and hT (t;α, β) = fT (t, α, β)/RT (t, α, β).

As it was mentioned previously, a surprising property of the classic B-S distribution given in
(2) is that the maximum of the two B-S iid random variables follow a GBS′′ distribution whose
formal aspects are stated in the following theorem.

Theorem 5. Let T1 and T2 two r.v. iid of according to T ∼ BS(α, β). Then,

T(2) = max{T1, T2} ∼ GBS′′(α, β; g, λ = 1).

Proof. It is direct from the maximum distribution.

Remark 5. Starting with Theorem 5 it is possible to calculate the reliability of the strain-stress
model (see Gupta and Brown [16, 2001]), P(X > Y ), where X is the strain of the material and
Y is the stress that it receives.

2.4 Moments

Most of the elliptical distributions have moments. The presence or absence of moments is
transferred to SEC distributions. In order to determine the moments of T ∼ GBS ′′(α, β; g, λ),
we are going to use binomial representation (a+ b)m =

∑m
k=0 a

kbm−k and the properties of the
distribution of Z, T and T−1, given in (13), (15) and Theorem 2 respectively. We will show that
the moments of the k-th order of T depends on the existence of the moments of the same order
of Z2.

Lemma 1. Let T ∼ GBS ′′(α, β, λ; g) and suppose that E(T 2k) and E(T 2k+1) exist. Then,

i) E

(

T

β
+
β

T

)2k

= 2
∑

0≤j<k

(

2k
j

)

β−2(k−j)
E(T 2(k−j)) +

(

2k
k

)

.

ii) E

(

T

β
+
β

T

)2k+1

= 2
∑

0≤j≤k

(

2k + 1
j

)

β−(2k+1−2j)
E(T 2k+1−2j)).

Proof. From the binomial theorem, we have
(

T

β
+
β

T

)2k

=
n
∑

j=0

(

2k
j

)

β2(k−j)T 2(j−k))

=
∑

0≤j<k

(

2k
j

)

β2(k−j)T 2(j−k) +
∑

k<j≤2k

(

2k
j

)

β2(k−j)T 2(j−k) +

(

2k
k

)

.
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We can see from Theorem 2 that T and β2T−1 have the same distribution as GBS ′′(α, β; g, λ).
Consequently, for j < k, we have

E(T 2(j−k)) = β−4(k−j)
E(T 2(k−j)). (18)

Thus, taking the expected value of (T/β + β/T )2k and substituting E(T 2(j−k)) by (18), we have

E

(

T

β
+
β

T

)2k

=
∑

0≤j<k

(

2k
j

)

β−2(k−j)
E(T 2(k−j)) +

∑

k<j≤2k

(

2k
j

)

β2(k−j)
E(T 2(j−k)) +

(

2k
k

)

(19)

In (19) the two first terms on the right side are equal. So, finally,

E

(

T

β
+
β

T

)2k

= 2
∑

0≤j<k

(

2k
j

)

β−2(k−j)
E(T 2(k−j)) +

(

2k
k

)

For the proof of part ii), we consider the relationship

(

T

β
+
β

T

)2k+1

=

k
∑

j=0

(

2k + 1
j

)

β2k+1−2jT 2j−2k−1 +

2k+1
∑

j=k+1

(

2k + 1
j

)

β2k+1−2jT 2j−2k−1 (20)

Now, if we calculate the expected value in (20) and we substitute (T 2j−2k−1) for

E(T 2j−2k−1) = β−2(2k+1−2j)
E(T 2k+1−2j), 0 ≤ j ≤ k, (21)

we get that the two terms from E (T/β + β/T )2k+1 are equal, proving part ii).

Theorem 6. Let T ∼ GBS ′′(α, β, λ; g) and Z given in (13). Then, E(Z2n) exists if and only if
E(Tn) exists, and

E(Z2n) =
1

α2n
[(−2)n +An +Bn],

where

An =
∑

1≤k≤n: even

(

n
k

)

(−2)n−k



2
∑

0≤j<k/2

(

k
j

)

β−(k−2j)
E(T k−2j) +

(

k
k/2

)





and

Bn =
∑

1≤k≤n: odd

(

n
k

)

(−2)n−k



2
∑

0≤j≤(k−1)/2

(

k
j

)

β−(k−2j)
E(T k−2j)



 .

Proof. Of Z given in (13), we have

Z2 =
1

α2

(

T

β
+
β

T
− 2

)

. (22)
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Therefore, raising to the n the expression (22) and applying the binomial development, we have

Z2n =
1

α2n

(

T

β
+
β

T
− 2

)n

=
1

α2n

[

(−2)n +
n
∑

k=1

(

n
k

)

(−2)n−k

(

T

β
+
β

T

)k
]

(23)

=
1

α2n

[

(−2)n +
∑

k: even

(

n
k

)

(−2)n−k

(

T

β
+
β

T

)k

+
∑

k: odd

(

n
k

)

(−2)n−k

(

T

β
+
β

T

)k
]

.

In this way, if we take the expected value in (23), we note that E(Z2n) depends on E (T/β + β/T )k,
k ≥ 1. Also, applying Lemma 1 for the values of k evens and odds, we see that the expected
values of the second and third term within the parenthesis are equal to An and Bn respectively,
which the theorem proves.

Corollary 1. Let T ∼ GBS ′′(α, β, λ; g) and Z given in (13). Then,

i) E(T ) = β
2 (2 + E(Z2)α2);

ii) E(T 2) = β2

2 (2 + 4E(Z2)α2 + E(Z4)α4);

iii) E(T 3) = β3

2 (2 + 9E(Z2)α2 + 6E(Z4)α4 + E(Z6)α6);

iv) E(T 4) = β4

2 (2 + 16E(Z2)α2 + 20E(Z4)α4 + 8E(Z6)α6 + E(Z8)α8).

Proof. From Theorem 6, we have that for n = 1, 2, 3, 4,

a) α2
E(Z2) = −2 + 2β−1

E(T );

b) α4
E(Z4) = 6 − 8β−1

E(T ) + 2β−2
E(T 2);

c) α6E(Z6) = −20 + 30β−1E(T ) − 12β−2E(T 2) + 2β−3E(T 3);

d) α8
E(Z8) = 70 − 112β−1

E(T ) + 56β−2
E(T 2) − 16β−3

E(T 3) + 2β−4
E(T 4).

The proof of Corollary 1 follows from the results given in a)-d). For example, from a) we have
that E(T ) = β

2 (2 + E(Z2)α2). Now, substituting E(T ) in b), the proof of ii) is proved. Similarly
the proof of iii) and iv) is also proved.

Remark 6. Let T ∼ GBS ′′(α, β, λ; g) and Z given in (13). Then, from Corollary 1 it follows
that

Var(T ) =
(αβ)2

4
[4E(Z2) + (2E(Z4) − E

2(Z2))α2].

Furthermore, from Theorem 2 and Corollary 1, we have

E(T−1) =
1

2β
(2 + E(Z2)α2) and Var(T−1) =

α2

4β2
[4E(Z2) + (2E(Z4) − E

2(Z2))α2].

12



In the following theorem we will present the variation, skewness, and kurtosis coefficients.
For Z given in (13) and k integer positive, we denote Vk = E(Zk) as the k-th moment of the
SEC distribution.

Theorem 7. Let T ∼ GBS ′′(α, β; g, λ). Then, the variation, skewness, and kurtosis coefficients
of T are respectively

γ =
α
√

[4V2 + (2V4 − V 2
2 )α2]

(2 + V2α2)
,

β1(T ) =
4α2[6(V4 − V 2

2 ) + (2V6 + V 3
2 − 3V2V4)α

2]2

[4V2 + (2V4 − V 2
2 )α2]3

and

β2(T ) = −(−8V8 + 16V6V2 − 12V4V
2
2 + 3V 4

2 )α4 + (−32V6 + 48V2V4 − 24V 3
2 )α2 − 16V4

[4V2 + (2V4 − V 2
2 )α2]2

.

Proof. Remember that the variation, skewness, and kurtosis coefficients are defined by

γ =
σ

µ
, β1(T ) =

(µ3)
2

(µ2)3
and β2(T ) =

µ4

(µ2)2
(24)

respectively, where σ =
√

Var(T ), µ = E(T ) and µk = E[T − E(T )]k, with k = 2, 3, 4.

Now, as Var(T ) = (αβ)2

4 [4V2 + (2V4 − V 2
2 )α2] = µ2 and µ = β

2 (2 + V2α
2), due to Corollary 1

and Remark 6, we find the variation coefficient, γ, given in (24).
On the other hand, as µ3 = E(T 3) − 3E(T )E(T 2) + 2E

3(T ), basing ourselves in Corollary 1
and after some algebraic manipulations, we get

µ3 =
β3

4
[6(V4 − V 2

2 )α4 + (2V6 + V 3
2 − 3V2V4)α

6].

Substituting µ2 and µ3 in β1(T ) given in (24), we find the skewness coefficient.
Similarly, since µ4 = E(T 4) − 4E(T 3)E(T ) + 6E(T 2)E2(T ) − 3E

4(T ), using the Corollary 1
and manipulating algebraically, it follows that

µ4 = −(αβ)4

16
[(−8V8 + 16V6V2 − 12V4V

2
2 + 3V 4

2 )α4 + (−32V6 + 48V2V4 − 24V 3
2 )α2 − 16V4].

To get the kurtosis coefficient you can substitute µ2 and µ4 in β2(T ) given in (24).

Remark 7. These three indicators are of great use in the reliability analysis, in fact a variety
of uses of the variation coefficient in this area have been proposed (see for example, Chhikara
and Folks [7, 1977], and Meeker and Escobar [19, 1998, pp. 81-82 and p. 110]). Similarly, the
skewness and kurtosis coefficients have great relevance in the life distribution fit, since skewness
coefficient shows the degree of asymmetry, and the kurtosis coefficient the degree of flatness (see
Dı́az-Garćıa and Leiva-Sánchez [11, 2005]). These two last indicators were also proposed in Ng,
Kundub, and Balakrishnan’s [21, 2003] work related to the topic.
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Concluding Remarks

In this work, we have discussed a wider generalization of the Birnbaum-Saunders life distribution
due to fatigue starting with a skew-elliptical distribution, obtaining its density and some of its
graphics to see how the skewness parameter influences on its behavior. We have also outlined
some important properties of this new model, which has allowed us to outline its complete char-
acterization. For those distributions that have moments, we also found its moments and using
these as a starting point, obtained the variation, skewness, and kurtosis coefficients, all of which
play an important role in the reliability analysis. Therefore, with this double generalization, we
developed a new family of life distributions which can be used in wider and different situations.
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