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Abstract

Let V be an n-dimensional vector space over a finite field Fq and
P = {1, 2, . . . , n} a poset. We consider on V the poset-metric dP . In
this paper, we give a complete description of groups of linear isometries
of the metric space (V, dP ), for any poset-metric dP . We show that
a linear isometry induces an automorphism of order in poset P , and
consequently we show the existence of a pair of ordered bases of V
relative to which every linear isometry is represented by an n×n upper
triangular matrix.
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Coding theory takes place in finite dimensional linear spaces over finite
fields. One of the main questions of the theory (classical problem) asks to find
a k-dimensional subspace in Fn

q , the space of n-tuples over the finite field Fq,
with the largest minimum distance possible. There are many possible metrics
that can be defined in Fn

q , the most common ones are the Hamming and Lee
metrics.

In 1987 Harald Niederreiter generalized the classical problem of coding
theory (see [7]). Brualdi, Graves and Lawrence (see [2]) also provided in 1995
a wider situation for the above problem: using partially ordered sets and
defining the concept of poset-codes, they started to study codes with a poset-
metric. This has been a fruitful approach, since many new perfect codes have
been found with such poset metrics (see [1], [2], [3], [5] and [6]).
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We let P be a partially ordered set (abbreviated as poset) of cardinality n
with order relation denoted, as usual, by ≤. An ideal of P is a subset I ⊆ P
with the property that x ∈ I and y ≤ x implies that y ∈ I. Given A ⊆ P , we
denote by 〈A〉 the smallest ideal of P containing A. Without loss of generality,
we assume that P = {1, 2, . . . , n} and that the coordinates of vectors in Fn

q are
in one-to-one correspondence with the elements of P .

Given x = (x1, x2, . . . , xn) ∈ Fn
q , the support of x is the set

supp (x) := {i ∈ P : xi 6= 0} ,

and we define the P -weight of x to be the cardinality of the smallest ideal
containing supp(x):

wP (x) = |〈supp (x)〉| .
The function

dP : Fn
q × Fn

q → N

defined by dP (x, y) = wP (x− y) is a metric in Fn
q ([2, Lemma 1.1]), called

a poset-metric or a P -poset-metric, when it is important to stress the order
taken in consideration. We denote such a metric space by

(
Fn

q , dP

)
.

An [n, k, δP ]q poset-code is a k-dimensional subspace C ⊂ Fn
q , where Fn

q is
endowed with a poset-metric dP and

δP (C) = min {wP (x) : 0 6= x ∈ C}
is the P -minimum distance of the code C. If P is an antichain order, that
is, an order with no comparable elements, P -weight, P -poset-metric and P -
minimum distance become the Hamming weight, Hamming metric and mini-
mum distance of classical coding theory.

A linear isometry T of metric space
(
Fn

q , dP

)
is a linear transformation

T : Fn
q → Fn

q that preserves P -poset-metric,

dP (T (x) , T (y)) = dP (x, y) ,

for every x, y ∈ Fn
q . Equivalently, a linear transformation T is an isometry if

wP (T (x)) = wP (x) for every x ∈ Fn
q . A linear isometry of

(
Fn

q , dP

)
is said

to be a P -isometry. We denote by GLP

(
Fn

q

)
the group of linear isometries of(

Fn
q , dP

)
. In this work, we give a complete description of those groups, for any

given poset-metric P .
The paper is arranged as follows:
In the first section of this work we give a full description of the linear isome-

tries of the vector space Fn
q endowed with the most simple (non trivial) cases
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of poset-metrics: when the partial order is a total order (Theorem 1.1), one
single chain of length n, or when it is a disjoint union of chains (Theorem 1.2).
The interesting property of this initial case assures that every linear isome-
try permutes the subspaces having support in chains of the same cardinality
(Proposition 1.1).

In the second section, we present the description of the linear isometries
for an arbitrary partial order. The property of permuting chains of same
length, showed in the first section, corresponds, in the case of a general poset
P , to Theorem 2.1, which assures that every linear isometry T induces an
automorphism of the poset P . The key-point for these proof is Proposition 2.1,
which assures that 〈supp (T (u))〉 ⊆ 〈supp (T (v))〉 if 〈supp (u)〉 ⊆ 〈supp (v)〉,
u, v ∈ Fn

q . The characterization of linear isometries is given in Theorem 2.2:

there is an ordered base β of Fn
q relative to which every T ∈ GLP

(
Fn

q

)
, is

represented by the product A · U of matrices, where U is a monomial matrix
corresponding to an isomorphism of the poset P and A is an upper-triangular
matrix.

The third section is devoted to some examples, with a complete description
of GLP

(
Fn

q

)
where we give a detailed description of with some of the most com-

monly used poset-metrics: antichain-metric, weak-metric and crown-metric.
We will present only the concepts of the theory of partially ordered sets

that are strictly necessary for this work, referring the reader to [8] for more
details.

1 Initial Case: Disjoint Union of Chains

As said in the introduction, before we characterize the linear isometries of
GLP

(
Fn

q

)
for an arbitrary partial order P = {1, 2, . . . , n}, we describe the

linear isometries in the case P is a disjoint union of chains, since the arguments
used here are both simple and instructive for a formulation of the results in
the general case.

A totally ordered set (or linearly ordered set) is a poset P in which any two
elements are comparable. A subset C of a poset P is called a chain if C is a
totally ordered set when regarded as a subposet of P .

The following theorem characterizes GLP

(
Fn

q

)
when P is a totally ordered

set.

Theorem 1.1 Let P = {1, 2, . . . , n} be a totally ordered set. Then, there is
an ordered base β of Fn

q relative to which every linear isometry T ∈ GLP

(
Fn

q

)
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is represented by the n × n upper triangular matrix with xii 6= 0 for every
i ∈ {1, 2, . . . , n}.
Proof. Let i1 < i2 < . . . < in be the order in the poset P . Let β′ =
{e1, e2, . . . , en} be the canonical base of Fn

q . Consider the ordered base β =
{ei1 , ei2 , . . . , ein}. Given x =

∑n
j=1 xjeij , we have that

wP (x) = max
j∈{1,2,...,n}

{j : xj 6= 0} ,

that is, wP (x) is the order of the highest non-zero coordinate of x relative to
the base β.

Let T be a linear P -isometry. For each k ∈ {1, 2, . . . , n}, we express

T (eik) =
n∑

j=1

xjkeij .

Since T is an isometry, we must have

wP (T (eik)) = max
j∈{1,2,...,n}

{j : xjk 6= 0}
= wP (eik)

= k

and it follows that T (eik) =
∑k

j=1 xjkeij , with xkk 6= 0 and we find that the
matrix of T relative to the base β is given by




x11 x12 x13 · · · x1n

0 x22 x23 · · · x2n

0 0 x33 · · · x3n
...

...
...

. . .
...

0 0 0 · · · xnn




with xkk 6= 0 for every k ∈ {1, 2, . . . , n}. ¤

Two posets P and Q are isomorphic if there exists an order-preserving
bijection φ : P → Q, called of isomorphism, whose inverse is order preserving;
that is,

x ≤ y in P if and only if φ(x) ≤ φ(y) in Q.

An isomorphism φ : P → P is called automorphism.
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We also recall that given a poset P , we can say that a subset P ′ ⊆ P , with
the induced order, is connected if, for every x, y ∈ P ′, there is a sequence of
elements x = x0, x1, . . . , xk = y ∈ P ′ such that xi ≥ xi−1 or xi ≤ xi−1 for
every i ∈ {1, 2, . . . , k}. A connected component of P is a maximal connected
subposet. It is clear that every poset P can be described as a disjoint union

P = P1

◦∪ P2

◦∪ . . .
◦∪ Pr,

where each Pj is a connected component.
For each subset P ′ ⊆ P we denoted by [P ′] the subspace of Fn

q generated
by the base {ei}i∈P ′ , ei the canonical vector of Fn

q . So, if P =
⋃r

j=1Pj is a
disjoint union of connected components, we have that Fn

q is a direct sum

[P1]⊕ . . .⊕ [Pr] .

If βi is a base of [Pi], for i ∈ {1, 2, . . . , r}, we have that β = β1 ∪ β2 ∪ . . . ∪ βr

is a base of Fn
q = [P ]. Moreover, if β is the canonical base of Fn

q , then β ∩ [Pi]
is a base of [Pi], the canonical base of [Pi], for every i ∈ {1, 2, . . . , r}. In this
situation, if x ∈ Pi we have that wP (x) = wPi

(x), where wPi
is the induced

weight on Pi. Moreover, if x =
∑r

i=1 yi, with yi ∈ Pi for every i ∈ {1, 2, . . . , r},
we have that

wP (x) =
r∑

i=1

wP (yi) =
r∑

i=1

wPi
(yi) .

Let P = {1, 2, . . . , n} be a disjoint union of r chains P1, P2, . . . , Pr, and
let us write Pi =

{
iki−1+1 < . . . < iki

}
, for i ∈ {1, 2, . . . , r}. For the sake of

simplicity, we remove the indices and assume, without loss of generality, that
such poset P is given by Pi = {ki−1 + 1 < . . . < ki}, for i ∈ {1, 2, . . . , n}. Let

x =
∑ks+1

i=ks+1 xi and y =
∑kt+1

j=kt+1 yj be vectors spanned by the coordinates
corresponding to Pks and Pkt respectively. Since each of those are totally
ordered, we have that

wP (x) = max {i = ks + 1, . . . , ks+1 : xi 6= 0}

and
wP (y) = max {j = kt + 1, . . . , kt+1 : yj 6= 0} .

If s 6= t we have that wP (x+y) = wP (x)+wP (y) while s = t implies wP (x+y) ≤
max{wP (x), wP (y)}.

We consider on Fn
q the canonical base {e1, e2, . . . , en}. The vectors with P -

weight equal to 1 are exactly the multiples of the vectors ek0+1, ek1+1, ..., ekr−1+1,
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the vectors that have only one non-zero coordinate and such a coordinate is a
minimal vector in some chain. So, if T is a linear isometry, we must have that
T (eks+1) = αekt+1, for some 0 6= α ∈ Fn

q and some t ∈ {0, 1, . . . , r − 1}. If x ∈
Fn

q is a vector with wP (x) = 2, we must have that either x = α1ekr1+1+α2ekr2+1

for some 0 6= α1, α2 ∈ Fq and r1 6= r2 (it means, x has exactly two non
zero coordinates, both of them corresponding to minimal elements in different
chains) or x = αekt+1 + βekt+2, for some α, β ∈ Fq, with β 6= 0 and some r
such that kt + 2 < kt+1.

So, let ei be a vector in the base β with wP (ei) = 2. Then ei = eks+2 for
some s ∈ {0, 1, . . . , r−1}. If T (eks+2) = α1ekr1+1 +α2ekr2+1, with 0 6= α1, α2 ∈
Fq and r1 6= r2, we find that the vectors

y = eks+2 − α1T
−1

(
ekr1+1

)
and z = eks+2 − α2T

−1
(
ekr2+1

)

satisfy
wP (T (y)) = wP (T (z)) = 1.

But wP (y) , wP (z) ≥ 2, unless

eks+2 = α1T
−1

(
ekr1+1

)

or
eks+2 = α2T

−1 (ekr2+1) .

So, the only possibility left is to have T (eks+2) = αekt+1 + βekt+2, for some
α, β ∈ Fq, β 6= 0 and t is such that T (eks+1) = γekt+1, for some γ 6= 0.

So, we find that if wP (x) = 1, x ∈ [Pr] and T (x) ∈ [Pt], then, for every
y ∈ [Pr] with wP (y) = 2, we have that T (y) ∈ [Pt].

Proceeding in this manner we can show that for every k, given x ∈ [Pr]
such that wP (x) = k, if T (x) ∈ [Pt], it follows that, for every y ∈ [Pr]
such that wP (y) = k + 1, then also its image is in the same subspace, i.e.,
T (y) ∈ [Pt]. But this implies that T ([Pr]) ⊆ [Pt]. Since there are finitely
many such subspaces, we find that actually T ([Pr]) = [Pt]. We observe that,
in this case, we must have that supp([Pr]) and supp(T ([Pr])) are isomorphic
sub-posets of P , and we have proved the following:

Proposition 1.1 Let P = P1

◦∪ P2

◦∪ . . .
◦∪ Pr be a partial order on the

set {1, 2, . . . , n} consisting of disjoint chains. Let T be a linear isometry of
Fn

q , endowed with the metric dP (·, ·). Then, for every chain Pi ⊂ P, i ∈
{1, 2, . . . , r}, there is a chain Pj, with supp([Pi]) isomorphic to supp([Pj]),
such that T ([Pi]) = [Pj].
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In other words, a linear isometry permutes the subspaces having support
in chains of the same cardinality.

As in [9], a monomial matrix is a matrix with exactly one nonzero entry
in each row and column. Thus a monomial matrix over F2 is a permutation
matrix, and a monomial matrix over an arbitrary finite field is a permutation
matrix times an invertible diagonal matrix.

We now describe the main result of this section:

Theorem 1.2 Let P = P1

◦∪ P2

◦∪ . . .
◦∪ Ps be a poset consisting of a

disjoint union of r chains. Denoted by µi the cardinality of the i-th chain,
i ∈ {1, 2, . . . , s}. For every j ∈ {1, 2, . . . , n} let νj = |{Pi : |Pi| = j}|, where |·|
is the cardinality of the given set. Then, there is an ordered base β of Fn

q rela-

tive to which every linear isometry T ∈ GLP

(
Fn

q

)
is represented by the product

A · U of n × n matrices, where U is a monomial matrix that acts exchanging
coordinate subspaces with isomorphic supports and

A =




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · As




,

where each Ai is a µi × µi upper triangular matrix with non zero diagonal
entries.

Proof. Let P1

◦∪ P2

◦∪ . . .
◦∪ Ps be the order in the poset P with

Pj = {iµj−1+1 < . . . < iµj−1+µj
},

where µ0 := 0. Let β′ = {e1, e2, . . . , en} be the canonical base of Fn
q . Consider

the ordered base β = βµ1∪. . .∪βµs where βµj
=

{
eiµj−1+1 , eiµj−1+2 , . . . , eiµj−1+µj

}

is the canonical base of [Pj]. Let T be a linear P -isometry. For each j ∈
{1, 2, . . . , s} and each t ∈ {1, 2, . . . , µj}, we express

T
(
eiµj−1+t

)
=

n∑

l=1

xl,(µj−1+t)eil .

By Proposition 1.1, we know that for every j ∈ {1, 2, . . . , s} there is an j′ ∈
{1, 2, . . . , s} such that T ([Pj]) = [Pj′ ], where supp([Pj]) and supp([Pj′ ]) are
isomorphic posets. We let σ be the permutation of P = {1, 2, . . . , n} such that

σ(µj−1 + t) = µj′−1 + t, j ∈ {1, 2, . . . , s}, t ∈ {1, 2, . . . , µj}.
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Considering the base β and the canonical action of the symmetric group on
Fn

q (permutating the coordinates), we get that σ is represented by a monomial
matrix U . Let S be the linear transformation defined by U (relative to the base
β). This is clearly a linear P -isometry and we get that T ◦ S−1 is a linear P -
isometry under which every subspace Pj is invariant, for every j ∈ {1, 2, . . . , s}.
So, the matrix of T ◦ S−1 relative to the base β is given by

A :=




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · As




.

But supp([Pj]) is a chain for every j ∈ {1, 2, . . . , s}. So, if we assume that

iµj+1 < iµj+2 < · · · < iµj+µj+1

for every j ∈ {1, 2, . . . , s}, t ∈ {1, 2, . . . , µj+1}, Theorem 1.1 assures that
each Aj is an upper triangular matrix with non-zero diagonal entries. Since
T = (T ◦ S) ◦ S−1, we get that the matrix of T relative to the base β is given
by the product A · U . ¤

Corollary 1.1 With the hypotheses of the theorem above, the cardinality of
GLP

(
Fn

q

)
is given by

∣∣GLP

(
Fn

q

)∣∣ = (q − 1)n ·
(

n∏

k=1

νk!

)
·
(

s∏
j=1

q
µj(µj−1)

2

)
,

where νj is the number of maximal chains in P of order j.

Proof. Every block-matrix Aj obtained in the previous Theorem is a µj × µj

triangular matrix with non zero diagonal entries. Moreover, every choice of
such matrices defines a P -isometry. So, there are q−1 possible choices for each
of the µj diagonal entries of Aj and q possible choices for each of the µj(µj−1)/2
entries of Aj above the diagonal. It follows that, in the decomposition given
in the previous Theorem, there are exactly

s∏
j=1

(q − 1)µjq
µj(µj−1)

2 = (q − 1)Σs
j=1µj

s∏
j=1

q
µj(µj−1)

2 = (q − 1)n

s∏
j=1

q
µj(µj−1)

2

8



different possibilities for the matrix A. The monomial component U permutes
chains with the same cardinality, and consequently, if there are νk maximal
chains of cardinality k contained in P , there are νk! possibilities to permute
them, so that the monomial component found in Theorem 1.2 may be chosen
in exactly

∏n
k=1 νk! different ways and we find that

∣∣GLP

(
Fn

q

)∣∣ = (q − 1)n ·
(

n∏

k=1

νk!

)
·
(

s∏
j=1

q
µj(µj−1)

2

)
.

¤

2 Linear Isometries for a General Poset Struc-

tures

¿From here on, we denote by {e1, e2, . . . , en} the canonical base of Fn
q .

Given x, y ∈ P , we say that y covers x if x < y and if no element z ∈ P
satisfies x < z < y. A chain x1 < x2 < . . . < xk in a finite poset P is called
saturated if xi covers xi−1 for i ∈ {1, 2, . . . , k}.

Given an order automorphism φ : P → P , we define the canonical linear
P -isometry Tφ induced by φ as Tφ(

∑n
i=1 aiei) :=

∑n
i=1 aieφ(i).

We will show that a linear isometry T ∈ GLP

(
Fn

q

)
induces an automor-

phism of the poset P in the following way: given i ∈ {1, 2, . . . , n} we con-
sider any saturated chain i1 < i2 < . . . < ik containing i. Then there are
ej1 , ej2 , . . . , ejk

, with js+1 covering js for all s ∈ {1, 2, . . . , k − 1}, such that
〈supp (ejl

)〉 = 〈supp (T (eil))〉 for any l ∈ {1, 2, . . . , k}. So, if i = il, we can
define the order automorphism φ by φ (il) = jl.

The key to prove this is to show that 〈supp (T (u))〉 ⊆ 〈supp (T (v))〉 if
〈supp (u)〉 ⊆ 〈supp (v)〉, for every T ∈ GLP

(
Fn

q

)
.

We will start with some preliminary lemmas.

Lemma 2.1 Let P = {1, 2, . . . , n} be a poset, {e1, e2, . . . , en} the canonical
base of Fn

q and T ∈ GLP (Fn
q ). If 〈supp (ei)〉 ⊆ 〈supp (ej)〉, then

〈supp (T (ei))〉 ⊆ 〈supp (T (ej))〉 .

Proof. We observe that, for any vectors u, v ∈ Fn
q , if supp (u) ⊆ supp (v) then

wP (u) ≤ wP (v). Moreover, the inequality is strict if and only if 〈supp (u)〉 (
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〈supp (v)〉. We remember that T is a linear isometry, so that wP (v) =
wP (T (v)), for every vector v.

We prove the lemma by contradiction, assuming that 〈supp (T (ei))〉 *
〈supp (T (ej))〉.

Suppose 〈supp (T (ei))〉 ∩ 〈supp (T (ej))〉 = ∅. Since T is linear,

wP (T (ei + ej)) = wP (T (ei) + T (ej))

and since the ideals do not intersect, we have that

wP (T (ei) + T (ej)) = wP (T (ei)) + wP (T (ej)) .

Since T is an isometry, we find that

wP (T (ei)) + wP (T (ej)) = wP (ei) + wP (ej) > wP (ej)

wP (T (ei + ej)) = wP (ei + ej) .

However, we are assuming that 〈supp (ei)〉 ⊆ 〈supp (ej)〉, so that wP (ei + ej) =
wP (ej), a contradiction.

Now we can assume that 〈supp (T (ei))〉 ∩ 〈supp (T (ej))〉 6= ∅. If we put
supp (T (ei)) ∩ supp (T (ej)) = {k1, . . . , kr}, we have two cases to consider.

Case 1: {k1, . . . , kr} 6= ∅.
In this case, we can write

supp (T (ei)) = {k1, . . . , kr} ∪ {i1, . . . , is}
and

T (ei) = αk1ek1 + . . . + αkrekr + βi1ei1 + . . . + βiseis .

Let
y = ei − βi1T

−1 (ei1)− . . .− βisT
−1 (eis) .

Then
wP (y) ≥ wP (ei) ,

unless

ei = βi1T
−1 (ei1) + . . . + βisT

−1 (eis) = T−1 (βi1ei1 + ... + βiseis) ,

contradicting the hypothesis that {k1, . . . , kr} 6= ∅. But T (y) = αk1ek1 +
. . . + αkrekr , and since there is il ∈ {i1, . . . , is} ⊆ supp (T (ei)) such that
il /∈ supp (T (ej)), we find that wP (T (y)) < wP (T (ei)) = wP (ei). So

wP (T (y)) < wP (y) ,
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a contradiction.
Case 2: {k1, . . . , kr} = ∅.
This means that supp (T (ei)) ∩ supp (T (ej)) = ∅. Put T (ei) = αi1ei1 +

. . . + αiteit . Then there is an

l ∈ 〈supp (T (ei))〉 \supp (T (ei)) . (1)

Let
y = ei − αi1T

−1 (ei1)− . . .− αitT
−1 (eit) + T−1 (el) .

Then
wP (y) ≥ wP (ei) ,

unless ei = T−1 (el), and this contradicts (1). But, T (y) = el and hence

wP (T (y)) = wP (el) < wP (ei) ≤ wP (y) ,

again a contradiction. ¤

Lemma 2.2 Let P = {1, 2, . . . , n} be a poset, T ∈ GLP (Fn
q ) and {e1, e2, . . . , en}

the canonical base of Fn
q . Then,

s⋃
i=1

〈supp (T (eji
))〉 =

〈
supp

(
s∑

i=1

T (eji
)

)〉
,

for every s ∈ {1, 2, . . . , n} and j1, . . . , js ∈ {1, . . . , n}.

Proof. If j ∈ 〈supp (
∑s

i=1 T (eji
))〉, there is an i such that j ∈ 〈supp (T (eji

))〉,
so that 〈

supp

(
s∑

i=1

T (eji
)

)〉
⊆

s⋃
i=1

〈supp (T (eji
))〉 .

We will prove the other inclusion by induction on s. The case s = 1 is trivial
and we can assume, as the induction hypothesis that

〈
supp

(
s−1∑
i=1

T (eji
)

)〉
=

s−1⋃
i=1

〈supp (T (eji
))〉 ,

for every subset {j1, . . . , js−1} ⊆ {1, . . . , n}.
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Given J = {j1, . . . , js} ⊆ {1, . . . , n} and t ∈ {1, 2, . . . , s}, we can define

ΘJ,t = 〈supp (T (ejt))〉 \
(

s⋃

i=1,i6=t

〈supp (T (eji
))〉

)
.

But ΘJ,t = ∅ means that every j ∈ 〈supp (T (ejt))〉 we have

j ∈
s⋃

i=1,i6=t

〈supp (T (eji
))〉

so that
s⋃

i=1

〈supp (T (eji
))〉 =

s⋃

i=1,i 6=t

〈supp (T (eji
))〉

and by the induction hypothesis we have that

s⋃
i=1

〈supp (T (eji
))〉 =

〈
supp

(
s∑

i=1,i 6=t

T (eji
)

)〉
. (2)

Since 〈
supp

(
s∑

i=1

T (eji
)

)〉
⊆

s⋃
i=1

〈supp (T (eji
))〉

we have that
〈

supp

(
s∑

i=1

T (eji
)

)〉
⊆

〈
supp

(
s∑

i=1,i 6=t

T (eji
)

)〉
. (3)

Since T is a linear isometry, we have that

wP

(
s∑

i=1

T (eji
)

)
= wP

(
T

(
s∑

i=1

eji

))
= wP

(
s∑

i=1

eji

)
,

wP

(
s∑

i=1,i 6=t

T (eji
)

)
= wP

(
T

(
s∑

i=1,i6=t

eji

))
= wP

(
s∑

i=1,i6=t

eji

)
.

But

wP

(
s∑

i=1

eji

)
≥ wP

(
s∑

i=1,i 6=t

eji

)
(4)

12



and since by definition, we have that wP (v) = |〈supp (v)〉|, considering in-
equality (4) in (3) we find that

〈
supp

(
s∑

i=1

T (eji
)

)〉
=

〈
supp

(
s∑

i=1,i6=t

T (eji
)

)〉

and from (2) we get that

〈
supp

(
s∑

i=1

T (eji
)

)〉
=

s⋃
i=1

〈supp (T (eji
))〉 ,

so that the lemma holds if for every s ≥ 2, there is J = {j1, . . . , js} and
t ∈ {1, 2, . . . , s} such that ΘJ,t = ∅.

The case of an antichain P is trivial, so we can assume that the poset P
is not an antichain order, and hence there are l1, l2 ∈ {1, 2, . . . , n} such that
l2 covers l1. So, given s ≥ 2, for every J = {l1, l2, j3, . . . , js} we have that
ΘJ,l1 = ∅, since

〈supp (el1)〉 = 〈l1〉 ⊆ 〈l2〉 = 〈supp (el2)〉 .

¤

Now we can state and prove the proposition that extends Lemma 2.1 to
general vectors.

Proposition 2.1 Let P = {1, 2, . . . , n} be a poset, T ∈ GLP (Fn
q ). Then, for

every u, v ∈ Fn
q ,

〈supp (T (u))〉 ⊆ 〈supp (T (v))〉 ,
if 〈supp (u)〉 ⊆ 〈supp (v)〉.

Proof. Let {e1, e2, . . . , en} be the canonical base of Fn
q and express u and v as

a linear combination of this base:

u = α1eu1 + α2eu2 + . . . + αreur

v = β1ev1 + β2ev2 + . . . + βsevs

with supp (u) = {u1, . . . , ur} and supp (v) = {v1, . . . , vs}. Since 〈supp (u)〉 ⊆
〈supp (v)〉 we have that 〈supp (eui

)〉 ⊆ 〈supp (v)〉 for every i ∈ {1, 2, . . . , r}, so

13



there is an j ∈ {1, 2, . . . , s} such that 〈supp (eui
)〉 ⊆ 〈

supp
(
evj

)〉
. But Lemma

2.1 assures that 〈supp (T (eui
))〉 ⊆ 〈

supp
(
T

(
evj

))〉
. It follows that

〈supp (T (u))〉 =

〈
supp

(
r∑

i=1

T (eui
)

)〉

⊆
r⋃

i=1

〈supp (T (eui
))〉

⊆
s⋃

j=1

〈
supp

(
T

(
evj

))〉

and by Lemma 2.2 we have that

〈supp (T (v))〉 =

〈
supp

(
s∑

j=1

T
(
βjevj

)
)〉

=
s⋃

j=1

〈
supp

(
T

(
βjevj

))〉

=
s⋃

j=1

〈
supp

(
T

(
evj

))〉

and we find
〈supp (T (u))〉 ⊆ 〈supp (T (v))〉 .

¤

An ideal I of a poset P is said to be a prime ideal if it contains an unique
maximal element.

Lemma 2.3 Let P = {1, 2, ..., n} be a poset, β = {e1, e2, . . . , en} be the canon-
ical base of Fn

q and T ∈ GLP

(
Fn

q

)
. Then, for every r ∈ {1, 2, . . . , n}, we have

that 〈supp (T (er))〉 is a prime ideal.

Proof. We want to prove that the ideal 〈supp (T (er))〉 is generated by a
single greatest element (greater than every other element), or alternatively, it
has only one maximal element (no one greater than it). Let {j1, j2, . . . , jk} be

14



a set of maximal elements in 〈supp (T (er))〉. Then we have that

〈supp (T (er))〉 =
k⋃

i=1

〈ji〉

=
k⋃

i=1

〈supp (eji
)〉

=

〈
supp

(
r∑

i=1

eji

)〉
.

But Proposition 2.1 assures that we can apply T−1 to both sides of the equation
above preserving the equality, so that

〈supp (er)〉 =
〈
supp

(
T−1T (er)

)〉
=

〈
supp

(
T−1

(
r∑

i=1

eji

))〉
. (5)

Since T−1 is linear, we have that

〈
supp

(
T−1

(
r∑

i=1

eji

))〉
=

〈
supp

(
r∑

i=1

T−1 (eji
)

)〉

and by Lemma 2.2, we have that

〈
supp

(
r∑

i=1

T−1 (eji
)

)〉
=

k⋃
i=1

〈
supp

(
T−1 (eji

)
)〉

. (6)

But looking at equations (5) and (6) we find that
⋃k

i=1 〈supp (T−1 (eji
))〉 is the

prime ideal 〈supp (er)〉. Since we are expressing a prime ideal as the union of
ideals, one of them, let us say 〈supp (T−1 (ejs))〉 for some s ∈ {1, 2, . . . , r}, must
contain the maximal element r and hence 〈supp (T−1 (ejs))〉 = 〈supp (er)〉.
Using again Proposition 2.1, we find that

〈supp (ejs)〉 = 〈supp (T (er))〉

so that 〈suppT (er)〉 is a prime ideal and consequently {j1, j2, . . . , jk} = {js}. ¤

Now we can state and prove the proposition that extends Lemma 2.3 to
the general case.
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Proposition 2.2 Let P = {1, 2, . . . , n} be a poset and T ∈ GLP

(
Fn

q

)
. Then,

for every v ∈ Fn
q such that 〈supp (v)〉 is a prime ideal, 〈supp (T (v))〉 is also a

prime ideal.

Proof. Let {e1, e2, . . . , en} the canonical base of Fn
q and v ∈ Fn

q . Suppose that
v = α1ei1 + . . . + αseis . Then

〈supp (v)〉 = 〈supp (α1ei1 + . . . + αseis)〉
= 〈supp (ei1)〉 ∪ . . . ∪ 〈supp (eis)〉 ,

and since 〈supp (v)〉 is a prime ideal, it follows there is an k ∈ {1, 2, . . . , s}
such that

〈supp (ei1)〉 ∪ . . . ∪ 〈supp (eis)〉 = 〈supp (eik)〉
so that 〈supp (v)〉 = 〈supp (eik)〉. Lemma 2.1 assures that

〈supp (T (v))〉 = 〈supp (T (eik))〉 ,
and as 〈supp (T (eik))〉 is a prime ideal (by Lemma 2.3), and we conclude that
〈supp (T (v))〉 is a prime ideal. ¤

Lemma 2.4 If k covers i and J is an ideal such that 〈i〉 ⊆ J ⊆ 〈k〉, then
J = 〈i〉 or J = 〈k〉.
Proof. If 〈i〉 = J , there is nothing to be proved. So, we assume that
〈i〉  J ⊆ 〈k〉. Then, there is an j ∈ J such that j 	 i. Since J ⊆ 〈k〉
it follows that j ≤ k. So i � j ≤ k, and since k covers i, we have that j = k
and hence J = 〈k〉. ¤

Theorem 2.1 Let P = {1, 2, . . . , n} be a poset, {e1, e2, . . . , en} be the canon-
ical base of Fn

q and T ∈ GLP

(
Fn

q

)
linear isometry. Then, for every saturated

chain with a minimal element ii < i2 < . . . < ir there is an unique saturated
sequence of prime ideals

〈supp (ej1)〉 ⊂ 〈supp (ej2)〉 ⊂ . . . ⊂ 〈supp (ejr)〉 .
such that

〈supp (T (eik))〉 = 〈supp (ejk
)〉

for every k ∈ {1, 2, . . . , r} and

φ : P −→ P
ik 7−→ φ (ik) := jk

is a well defined poset automorphism.
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Proof. Proposition 2.2 assures us that 〈supp (T (eik))〉 is a prime for all k ∈
{1, 2, . . . , r}, since 〈supp (eik)〉 is a prime ideal. Then for each k ∈ {1, 2, . . . , r}
there is just one maximal element jk ∈ 〈supp (T (eik))〉. So 〈supp (T (eik))〉 =
〈supp (ejk

)〉 for all k ∈ {1, 2, . . . , r}. Since

〈supp (ei1)〉 ⊂ 〈supp (ei2)〉 ⊂ . . . ⊂ 〈supp (eir)〉 ,

it follows, from Proposition 2.1, that

〈supp (ej1)〉 ⊂ 〈supp (ej2)〉 ⊂ . . . ⊂ 〈supp (ejr)〉 .

We affirm now that the sequence above is saturated. Suppose that for some
k ∈ {1, 2, . . . , r} there is j′ such that

〈jk〉 & 〈j′〉 & 〈jk+1〉 .

Since
〈jk〉 = 〈supp (ejk

)〉 = 〈supp (T (eik))〉 ,
〈jk+1〉 =

〈
supp

(
ejk+1

)〉
=

〈
supp

(
T

(
eik+1

))〉
,

it follows, applying Proposition 2.1) to the linear P -isometry T−1, that

〈ik〉 =
〈
supp

(
T−1T (eik)

)〉

&
〈
supp

(
T−1 (ej′)

)〉

&
〈
supp

(
T−1T

(
eik+1

))〉
= 〈ik+1〉 ,

what contradicts, by Lemma 2.4, the hypothesis that i1 < . . . < ir is a satu-
rated chain.

Let us now define φ : P → P by φ (il) = jl. Since jl is uniquely defined
and does not depends on the choice of the saturated chain containing il (but
only on T (eil)), we have that φ is well defined. Moreover, let us suppose that
x < y in P , and let

i1 < . . . < ik−1 < x < ik+1 < . . . < il−1 < y < il+1 < . . . < ir

be a saturated chain containing x and y. Then there is only one saturated
chain

j1 < . . . < jk−1 < jk < jk+1 < . . . < jl−1 < jl < jl+1 < . . . < jr

such that φ (x) = jk and φ (y) = jl. Since jk < jl we get that φ (x) < φ (y).
Therefore φ is an application that preserve the order on P .
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Finally, we affirm that φ is one-to-one. In fact, suppose that φ (x) = φ (y).
As φ (x) = max 〈supp (T (ex))〉 and φ (y) = max 〈supp (T (ey))〉 then

〈supp (T (ex))〉 = 〈supp (T (ey))〉 ,

and from Proposition 2.1 follows that

〈supp (ex)〉 =
〈
supp

(
T−1T (ex)

)〉
=

〈
supp

(
T−1T (ey)

)〉
= 〈supp (ey)〉 .

As both ideals 〈supp (ex)〉 and 〈supp (ey)〉 are primes, we must have x = y.
Being φ one-to-one and P finite, we find that φ is a bijection that preserves
the order and we conclude that φ is an automorphism of order. ¤

The m-th level Γ(m) (P ) is the set of elements of P that generates a prime
ideal with cardinality m:

Γ(m) (P ) = {i ∈ P : |〈i〉| = m} = {i ∈ P : wP (ei) = m} .

We now describe the main result of this work:

Theorem 2.2 Let P = {1, 2, . . . , n} be a poset and {e1, e2, . . . , en} be the
canonical base of Fn

q . Then T ∈ GLP (Fn
q ) if and only if

T (ej) =
∑

i∈〈j〉
xijeφ(i)

where φ : P → P is an automorphism of order and xjj 6= 0, for any j ∈
{1, 2, . . . , n}. Moreover, there is a pair of ordered bases β and β′ of Fn

q relative

to which every linear isometry T ∈ GLP

(
Fn

q

)
is represented by an n×n upper

triangular matrix (aij)1≤i,j≤n with aii 6= 0 for every i ∈ {1, 2, . . . , n}.

Proof. Since 〈supp (ej)〉 is a prime ideal, it follows from Proposition 2.2
that 〈supp (T (ej))〉 is also a prime ideal, for every j ∈ {1, 2, . . . , n}. Given
j ∈ {1, 2, . . . , n}, let j′ = φ (j) be the unique maximal element of the ideal
〈supp (T (ej))〉, where φ : P → P is the automorphism of order induced by the
isometry T (see Theorem 2.1). Then

〈supp (T (ej))〉 = 〈supp (ej′)〉 =
〈
supp

(
eφ(j)

)〉
,

and since φ is a automorphism of order we have that

〈
supp

(
eφ(j)

)〉
= {φ (i) : i ∈ 〈j〉} .
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Therefore 〈supp (T (ej))〉 = {φ (i) |i ∈ 〈j〉}. Being φ (j) = max {φ (i) : i ∈ 〈j〉},
we conclude that

T (ej) =
∑

i∈〈j〉
xijeφ(i) (7)

with xjj 6= 0. It is straightforward to verify that every given an order auto-
morphism φ : P → P , then, any linear map defined as in (7) is a P -isometry.

Let βm =
{
ei : i ∈ Γ(m) (P )

}
and

β = β1 ∪ β2 ∪ . . . ∪ βk.

be a decomposition of the canonical base of Fn
q as a disjoint union, where

k = max {wP (ei) : i = 1, 2, . . . , n}. We order this base β = {ei1 , ei2 , . . . , ein}
in the following way (and denoted this total order by ≤β): if eir ∈ βjr and
eis ∈ βjs with r 6= s then, eir ≤β eis if and only jr ≤ js. In other words,
we begin enumerating the the vectors of β1 and after exhausting them, we
enumerate the vectors of β2 and so on.

We define another ordered base β′ as the base induced by the order auto-
morphism φ,

β′ :=
{
eφ(i1), eφ(i2), . . . , eφ(in)

}

and let A be the matrix of T relative to the basis β and β′:

[T ]β,β′ = A = (akl)1≤k,l≤n .

We find by the construction of the bases β and β′ that akl 6= 0 implies
il ∈ 〈φ (ik)〉. But il ∈ 〈φ (ik)〉 and 〈il〉 6= 〈φ (ik)〉 implies that l < k so that A
is upper triangular. Since A is invertible and upper triangular, we must have
det (A) =

∏n
i=1 aii 6= 0 so that aii 6= 0, for every i ∈ {1, 2, . . . , n}. ¤

The upper triangular matrix obtained in the previous theorem is called a
canonical form of T . We note that the ordered bases chosen in the theorem
is unique up to re-ordination within the linearly independent sets βi, i =
1, 2, . . . , k.

Corollary 2.1 Given T ∈ GLP

(
Fn

q

)
there is an ordering β = {ei1 , ei2 , . . . , ein}

of the canonical base such that [T ]β,β is given by the product A · U where A
is an invertible upper triangular matrix and U is a monomial matrix obtained
from the identity matrix by permutation of the columns, corresponding to the
automorphism of order induced by T .
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Proof. Let φ be the automorphism of order induced by T . Let Tφ−1 be the
linear isometry defined as Tφ−1(ej) = eφ−1(j), for j ∈ {1, 2, . . . , n}. As we saw
in Theorem 2.2,

T (ej) =
∑

i∈〈j〉
xijeφ(i).

So,

T ◦ Tφ−1 (ej) = T
(
eφ−1(j)

)

=
∑

i∈〈φ−1(j)〉
xiφ−1(j)eφ(i)

= xiφ−1(j)ej +
∑

i∈〈φ−1(j)〉,i6=φ−1(j)

xiφ−1(j)eφ(i).

It follows that the automorphism of order induced by T ◦ Tφ−1 is the identity,
so, when taking the base β′ as in the Theorem 2.2, we find that β′ = β and
the matrix of T ◦ Tφ−1 relative to this base is an upper triangular matrix A =
[T ◦ Tφ−1 ]

β
. But Tφ−1 acts on Fn

q as a permutation of the vectors in β, so that in

any ordered base containing those vectors, U−1 = [Tφ−1 ] is obtained from the

identity matrix by permutation of the columns. We note that Tφ = (Tφ−1)−1

and it follows that

[T ]β = [T ◦ Tφ−1 ◦ Tφ]β
= [T ◦ Tφ−1 ]

β
[Tφ]β

= A · U .

¤

Given a poset P = {1, 2, . . . , n}, we denote by Aut (P ) the group of the
order-automorphisms of P .

Corollary 2.2 Let P = {1, . . . , n} be a poset and k = max
{
m|Γ(m) (P ) 6= ∅}

.
Then

∣∣GLP

(
Fn

q

)∣∣ = (q − 1)n ·
(

k∏
i=1

q(i−1)|Γ(i)(P )|
)
· |Aut (P )| .

Proof. ¿From Corollary 2.1, if T ∈ GLP

(
Fn

q

)
there is an ordered base β =

{ei1 , ei2 , . . . , ein} of the canonical base of Fn
q such that |〈il〉| ≤ l for all l ∈

{1, 2, . . . , n} and [T ]β = A · U , being A = (akl)1≤k,l≤n an upper triangular
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matrix with akl = 0 if ik /∈ 〈il〉 and U = [Tφ]β the matrix representing the
automorphism φ induced by linear isometry T (see Theorem 2.2). Moreover,
such base β depends only on φ and for every φ ∈ Aut (P ), any matrix A as in
the previous Corollary defines a linear P -isometry.

Given l ∈ {1, 2, . . . , n}, there are (q − 1) possible different entries for all

(since all 6= 0). But A is upper triangular, given 1 ≤ i < j ≤ n we have that
aij 6= 0 only if i ∈ 〈j〉, so there are at most |〈j〉| − 1 possible nonzero indices
(i, j) with 1 ≤ i < j ≤ n, and for each of those there are q possible different
entries. Since there are exactly

∣∣Γ(|〈j〉|) (P )
∣∣ such indices, we find that, up to

considering the order automorphism induced by the isometry, there are

(q − 1)n ·
(

k∏
i=1

q(i−1)|Γ(i)(P )|
)

linear P -isometries and we conclude counting the elements of Aut(P ). ¤

3 Examples

We started this work with the particular case of totaly ordered posets or posets
that are disjoint union of chains. In this section, we illustrate the results of this
paper with three examples, the main classes of poset-metrics: the anti-chain
order (which induces the classical Hamming weight), the weak order and the
crown order.

Example 3.1 If A = {1, 2, . . . , n} is antichain, then we have that wA and dA

become the Hamming weight and Hamming metric of classical coding theory:
if x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in Fn

q , then

wA (x) = |{i : xi 6= 0}| ,
dA (x, y) = wA (x− y) = |{i : xi 6= yi}|.

Since A has no comparable elements, the group of order automorphism Aut (A)
is isomorphic to the symmetric group Sn. We also have that Γ(1) (A) = A and
Γ(m) (A) = ∅ if m > 1. It follows from Corollary 2.2 that

∣∣GLA

(
Fn

q

)∣∣ = (q − 1)n · n!,

and from Corollary 2.1 we conclude that GLA

(
Fn

q

)
is just the group of mono-

mial matrices. Both conclusions agree perfectly with the fact that GLA

(
Fn

q

)
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is isomorphic to the semi-direct product
(
F∗q

)noSn of the multiplicative group(
F∗q

)n
with the symmetric group Sn, as in [9]. The number (q − 1)n · n! can

also be obtained from Corollary 1.1 (in this case we have µ1 = . . . = µn = 1,
ν1 = n and νj = 0 if j > 1).

Example 3.2 Let n1, . . . , nt be positive integers with n1 + . . . + nt = n. Then
W = n11⊕ . . . ⊕ nt1 will denote the weak order given by the ordinal sum of
the antichains ni1 with ni elements (see [4]). Explicitly, W = n11⊕ . . .⊕ nt1
is the poset whose underlying set and order relation are given by

{1, 2, . . . , n} = n11∪n21∪ . . . ∪ nt1,

ni1 = {n1 + . . . + ni−1 + 1, n1 + . . . + ni−1 + 2, . . . , n1 + . . . + ni−1 + ni}
and

x < y if and only if x ∈ ni1, y ∈ nj1 for some i, j with i < j.

Notice that if n1 = . . . = nt = 1, then W = 11⊕ . . .⊕11 is totally ordered with
1 < 2 < . . . < t and if t = 1 then W = n1 is antichain.

1 2 3 4

5 6 7 8

9 10 11 12

Figure 1: Weak order W = 41⊕41⊕41.

For a weak order W = n11⊕ . . . ⊕ nt1 we have that Γ(m) (W ) = ns1 if
m = n1+n2 + . . . + ns−1 + 1, for any s ∈ {1, 2, . . . , t} and Γ(m) (W ) = ∅
otherwise. The group of the automorphism of order Aut (W ) is isomorphic to
the cartesian product Sn1 × Sn2 × . . . × Snt (Aut (W ) is just the group of the
applications φ that permutes only the elements of each m-th level). Corollary
2.2 assures us then that

∣∣GLW

(
Fn

q

)∣∣ = (q − 1)n ·
(

t∏
i=2

qni(n1+n2+...+ni−1+1)

)
· n1! · n2! · . . . · nt!.
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¿From Theorem 2.2 follows that there are bases β and β′ of Fn
q such that the

matrix [T ]β,β′ is equal



Dn1×n1 ∗ ∗ · · · ∗
0 Dn2×n2 ∗ · · · ∗
0 0 Dn3×n3 · · · ∗
...

...
...

. . .
...

0 0 0 · · · Dnt×nt




,

where

Dns×ns = diag
(
aΣns−1+1,Σns−1+1, aΣns−1+2,Σns−1+2, . . . , aΣns−1+ns,Σns−1+ns

)

is a diagonal matrix for each s = 1, 2, . . . , t, and Σnj−1 := n1 +n2 + . . .+nj−1.
Considering the particular weak order W = 41⊕41⊕41 (Hasse diagram

illustrated in Figure 1), the matrix of a linear P -isometry [T ]β,β′ of T ∈
GLW

(
F12

q

)
is an upper triangular matrix as bellow:




a1,1 0 0 0 a1,5 a1,6 a1,7 a1,8 a1,9 a1,10 a1,11 a1,12

0 a2,2 0 0 a2,5 a2,6 a2,7 a2,8 a2,9 a2,10 a2,11 a2,12

0 0 a3,3 0 a3,5 a3,6 a3,7 a3,8 a3,9 a3,10 a3,11 a3,12

0 0 0 a4,4 a4,5 a4,6 a4,7 a4,8 a4,9 a4,10 a4,11 a4,12

0 0 0 0 a5,5 0 0 0 a5,9 a5,10 a5,11 a5,12

0 0 0 0 0 a6,6 0 0 a6,9 a6,10 a6,11 a6,12

0 0 0 0 0 0 a7,7 0 a7,9 a7,10 a7,11 a7,12

0 0 0 0 0 0 0 a8,8 a8,9 a8,10 a8,11 a8,12

0 0 0 0 0 0 0 0 a9,9 0 0 0
0 0 0 0 0 0 0 0 0 a10,10 0 0
0 0 0 0 0 0 0 0 0 0 a11,11 0
0 0 0 0 0 0 0 0 0 0 0 a12,12




Example 3.3 The crown is a poset with elements C = {1, 2, . . . , 2n}, n > 1,
in which i < n + i, i + 1 < n + i for each i ∈ {1, 2, . . . , n− 1}, and 1 < 2n,
n < 2n and these are the only strict comparabilities ([1]). The Hasse diagram
of crown poset P with n = 4 is illustrated in Figure 2.

Given a crown C = {1, 2, . . . , 2n}, we have that Aut (C) is isomorphic
to the dihedral group Dn, consisting of the orthogonal transformations which
preserve a regular n-sided polygon centered at the origin of the euclidian plane.
Considering the usual inclusion ι : Dn → Sn, given g ∈ Dn, its action on C is
defined by

g (k) =

{
(ι(g)) (k) for k = 1, 2, . . . , n

(ι(g)) (k − n) for k = n + 1, . . . , 2n
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Figure 2: Crown poset P = {1, 2, 3, 4, 5, 6, 7, 8}.

We note that Γ(1)(C) = {1, 2, . . . , n}, Γ(3)(C) = {n + 1, . . . , 2n}, and
Γ(k)(C) = ∅, for k 6= 1, 3. So, it follows from Corollary 2.2 that

∣∣GLC

(
F2n

q

)∣∣ = (q − 1)2n · q2n · 2n.

Theorem 2.2 assures there is a pair of ordered bases β and β′ of Fn
q relative to

which every linear isometry T ∈ GLP

(
Fn

q

)
is represented by the [T ]β,β′ n× n

upper triangular matrix




a1,1 0 0 · · · 0 a1,n+1 0 · · · 0 a1,2n

0 a2,2 0 · · · 0 a2,n+1 a2,n+2 · · · 0 0
0 0 a3,3 · · · 0 0 a3,n+2 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · an,n 0 0 · · · an,2n−1 an,2n

0 0 0 · · · 0 an+1,n+1 0 · · · 0 0
0 0 0 · · · 0 0 an+2,n+2 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0 · · · a2n−1,2n−1 0
0 0 0 · · · 0 0 0 · · · 0 a2n,2n




.

In the particular case when W = {1, 2, 3, 4, 5, 6, 7, 8} (see Figure 2), the
canonical form of a linear P -isometry is




a1,1 0 0 0 a1,5 0 0 a1,8

0 a2,2 0 0 a2,5 a2,6 0 0
0 0 a3,3 0 0 a3,6 a3,7 0
0 0 0 a4,4 0 0 a4,7 a4,8

0 0 0 0 a5,5 0 0 0
0 0 0 0 0 a6,6 0 0
0 0 0 0 0 0 a7,7 0
0 0 0 0 0 0 0 a8,8




.
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The computations done in all the examples of this work is summarize in the
tables bellow. We recall we are denoting by A, W , C, D and T respectively
the antichain, weak, crown, disjoint union of chain and total orders. We recall
that νj is the number of the components in D with cardinality equal to j (see
Theorem 1.2).

Table 1: Aut (P ) and |Aut (P )|.

P�Aut(P ),|Aut(P )| Aut (P ) |Aut (P )|
T {id} 1
D Sν1 × Sν2 × . . .× Sνn ν1! · ν2! · . . . · νt!
A Sn n!
W Sn1 × Sn2 × . . .× Snt n1! · n2! · . . . · nt!
C Dn 2n

Table 2: Γ(m) (P ) 6= ∅ and
∣∣Γ(m) (P )

∣∣.

P�Γ(m)(P )6=∅,|Γ(m)(P )| Γ(m) (P ) 6= ∅
∣∣Γ(m) (P )

∣∣
T Γ(m) (T ) = {1, 2, . . . , m} m

D Γ(m) (D) =
{
im, iΣµ1+m, . . . , iΣµs−1+m

} ∣∣Γ(m) (D)
∣∣ ≤ s

A Γ(1) (A) = A n

W Γ(Σns−1+1) (W ) = ns1 ns

C
Γ(1) (C) = {1, 2, . . . , n}

Γ(3) (C) = {n + 1, n + 2, . . . , 2n} n

Table 3:
∣∣GLP

(
Fn

q

)∣∣.

P�|GLP (Fn
q )| ∣∣GLP

(
Fn

q

)∣∣
T (q − 1)n · (∏n

i=2 qi−1)

D (q − 1)n ·
(∏s

j=1 νj!
)
·
(∏s

k=1 q
µk(µk−1)

2

)

A (q − 1)n · n!

W (q − 1)n · (∏t
i=2 qni(Σni−1+1)

) ·
(∏t

j=1 nj!
)

C (q − 1)n · qn · n if n is even
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In the table bellow we compute
∣∣GLP

(
Fn

q

)∣∣ for T , A and C with q = 2 and
n = 2, 3, . . . , 10:

Table 4: Numbers of linear isometries of |GLP (Fn
2 )|.

n�|GLP (Fn
2 )| |GLT (Fn

2 )| |GLA (Fn
2 )| |GLC (Fn

2 )|
2 2 2 8
3 8 6 ∗
4 64 24 64
5 1024 120 ∗
6 32768 720 384
7 2097152 5040 ∗
8 268435456 40320 2048
9 6.871947674 · 1010 362880 ∗
10 3.518437209 · 1013 3628800 10240
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