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Abstract

We study the existence and the uniqueness of strong periodic solutions
for the Boussinesq equations in unbounded domains for the prescribed
external forces.

1 Introduction

Let a viscous incompressible fluid filling a domain Ω of Rn, n ≥ 2. The evo-
lution Boussinesq equations describe the evolution of the temperature and the
velocity field of viscous incompressible Newtonian fluid. Due to the Boussinesq
approximation (Chandrasekhar [7]), density variations are neglected except in
the gravitational term (bouyancy term), in which they are assumed to be pro-
portional to temperature variations. Then, in nondimensional form, the rela-
tionship among the velocity field u(x, t) ∈ Rn, the pressure p(x, t) ∈ R and the
temperature θ(x, t) ∈ R can be described by the following initial value problem

∂u

∂t
− ν∆u + (u.∇u) +

1
ρ
∇p = βθg + f1, x ∈ Ω, t ∈ R (1)

∇ · u = 0, x ∈ Ω, t ∈ R (2)
∂θ

∂t
− χ∆θ + (u · ∇θ) = f, x ∈ Ω, t ∈ R (3)

u = 0 on ∂Ω (4)
θ = 0 on ∂Ω, (5)

where g is the gravitational field at x, f is the reference temperature and f1 is an
external force. ρ, ν, β, χ are positive physical constants which represent respec-
tively, the density, the kinematic viscosity, the coefficient of volume expansion
and the thermal conductance. Without loss of generality, we have taken the
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constants ρ, ν, β, χ to be one. To avoid some technical complexly in the study
of (1)-(5) we assume f1 = 0 throughout paper. For general f1, our arguments
remain valid with a slight modification.

Considerable progress has been made in the mathematical analysis of sys-
tem (1)-(5); see, for instance, Cannon[6], Fife and Joseph [9], Foias, Manley and
Temam [10], Ôeda[27], Hishida [15], [16], [17], and papers cited there. Around
the L2−Theory, the paper [10] investigated strong solutions with initial data
in L2 (resp. W 1,2) for the case n = 2 (resp. n = 3) and discussed the ex-
istence of global attractors. In the framework of Lp−Theory, the paper [6]
constructed solutions of class Lp(0, T ; Lq(Rn)) with suitable exponents p and q
by using singular integral operators. The author of [15] using the semigroup ap-
proach, has studied the existence and uniqueness of strong solutions with values
in Lp(Ω)× Lq(Ω) (Ω bounded domain of Rn, n ≥ 2) when the initial data are
not necessarily smooth. Properties of exponential stability of these solutions
are analyzed by this same author in [16]. In the framework of weak-Lp Theory,
the author of [17] has studied the convection problem in an exterior domain of
R3 and a class of stable steady convection flow is given.

However, the study of periodic solutions to system (1)-(5) was not investi-
gated in unbounded domains. The purpose of the present paper is prove the ex-
istence and uniqueness of strong periodic solutions, in some class of unbounded
domains, for the problem (1)-(5) in the framework of semigroups Theory; more
explicitly, in the Theory of Weak − Lp spaces. The existence of strong peri-
odic solutions, to the Navier-Stokes equations in unbounded domains have been
investigated by Kozono and Nakao [21], Maremonti ( [25],[26]) and Taniuchi
[30]. In particular, Moremonti [25] proved the unique existence of time periodic
solution on the whole space R3 for small external force. The some problem,
in the half-space R3

+, was considered in [26]. Kozono and Nakao [21], making
use of Lp − Lr estimates for the semigroup generated by the Stokes operator,
constructed time-periodic solutions for small time-periodic forces and the sta-
bility of these solutions was considered in [30]. Yamasaki [31] analyzed the same
problem of [21] in Morrey spaces. More complete references, including results
for bounded domains, are found in [25], [26], [21].
This paper is organized as follows. Section §2, after some preliminaries, we
state the main results. Section §3 is devoted to the prove the existence and the
uniqueness of strong periodic solutions.

2 Preliminaries and Results

We first introduce some preliminaries about the lorentz spaces; the reader in-
terested in the Lorentz spaces L(p,q)(Ω) and their properties is referred, for
instance, to [18], [28], [2]. For each Lebesgue mensurable function f defined on
a domain Ω of Rn, we define the distribution function of f by

λf (s) = m({x ∈ Rn : |f(x)| > s}), s > 0,
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where m is the Lebesgue measure in Rn. With each function λf (s) we associate
the function

f∗(t) = inf{s > 0 : λf (s) ≤ t} , t > 0.

It easy to check that λf and f∗ are non-negative and non-increasing functions.
Moreover, if λf is continuous and strictly decreasing, f∗ is the inverse function
of λf . The Lorentz space L(p,q) = L(p,q)(Ω) is the collection of all f such that
‖f‖∗pq < ∞, where

‖f‖∗pq =





(
p
q

∫∞
0

[t
1
p f∗(t)]qdt/t

) 1
q

, 0 < p < ∞, 0 < q < ∞.

supt>0 t
1
p f∗(t), 0 < p ≤ ∞, q = ∞.

We observe that Lp(Ω) = L(p,p)(Ω). In case q = ∞, L(p,∞)(Ω) are called
the Marcinkiewicz spaces or weak-Lp spaces. Moreover, L(p,q1)(Ω) ⊂ Lp(Ω) ⊂
L(p,q2)(Ω) ⊂ L(p,∞)(Ω) for 0 < q1 ≤ p ≤ q2 ≤ ∞.

The quantity ‖f‖∗(p,q) gives a natural topology for L(p,q)(Ω) such that L(p,q)(Ω)
is a topological vector space. However, the triangle inequality is not true for
‖f‖∗(p,q). A natural way of metrizing the space L(p,q)(Ω) is to define

f∗∗(t) =
1
t

∫ t

0

f∗(s) ds, for t > 0.

which can be computed [18] as

f∗∗(t) = sup
m(E)≥t

{
1

m(E)

∫

E

|f(x)| dx

}
.

Hence, we define the norm ‖f‖(p,q) as

‖f‖(p,q) =





(
p
q

∫∞
0

[t
1
p f∗∗(t)]qdt/t

) 1
q

, if 1 < p < ∞, 1 ≤ q < ∞

supt>0 t
1
p f∗∗(t) , if 1 < p ≤ ∞, q = ∞

.

The spaces L(p,q) endowed with the norm ‖f‖(p,q) are Banach spaces and

‖f‖∗(p,q) ≤ ‖f‖(p,q) ≤
p

p− 1
‖f‖∗(p,q)

holds for 1 < p ≤ ∞ and 1 ≤ q ≤ ∞. We observe that in definition of ‖f‖(p,q),
the case p = 1 has been excluded; although both expressions make sense, they
do not define a norm. An alternative definition [1] of the norm ‖f‖(p,∞) is

‖f‖(p,∞) = sup
m(E)<∞

{
m(E)−1/p′

∫

E

|f(x)| dx

}
,

where 1
p + 1

p′ = 1.
Duals of Lorentz spaces [18] are natural extensions of the property of duality
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of Lp spaces. The conjugate space of L(p,1)(Ω) is L(p′,∞)(Ω) and the conjugate
space of L(p,q)(Ω) is L(p′,q′)(Ω), 1 < p < ∞, 1 < q < ∞, and hence, these
spaces are reflexive. For the same reasons that L1(Ω) is not the conjugate space
of L∞(Ω), L(p,1)(Ω) is not the conjugate space of L(p′,∞)(Ω) [18]. Note that
C∞0 (Ω), which consists of all smooth functions with compact supports, is not
dense in L(p,∞)(Ω).

Proposition 1 (Generalized Holder’s inequality). Let 1 < p1, p2, r < ∞. Let
f ∈ L(p1,q1)(Ω) and g ∈ L(p2,q2)(Ω) where 1

p1
+ 1

p2
< 1, then the product h = fg

belongs to L(r,s)(Ω) where 1
r = 1

p1
+ 1

p2
, and s ≥ 1 is any number such that

1
q1

+ 1
q2
≥ 1

s . Moreover,

‖h‖(r,s) ≤ C(r)‖f‖(p1,q1)‖g‖(p2,q2) . (6)

We next introduce the solenoidal function spaces. Let C∞0,σ(Ω) represent the
set of all solenoidal vector fields whose components are in C∞0 (Ω). By Lr

σ(Ω), 1 <
r < ∞, denote the closure of C∞0,σ with respect to norm Lr. If X represent
a Banach Space, we denote by BCm([t1, t2); X) the set of all function u ∈
Cm([t1, t2); X) such that supt1<t<t2 ‖dmu(t)/dtm‖X < ∞. Let us recall the
Helmholtz decomposition:

Lr(Ω) = Lr
σ(Ω)⊕Gr(Ω), 1 < r < ∞,

where Gr(Ω) = {∇p ∈ Lr(Ω) : p ∈ Lr
loc(Ω)} [11]. Pr denote the projection

operator from Lr onto Lr
σ. The Stokes operator Ar = −Pr∆ with domain

D(Ar) = {u ∈ H2,r(Ω) : u|∂Ω = 0} ∩ Lr
σ. The adjoint of Lr

σ and Ar are Lr′ and
Ar′ , respectively, where 1/r + 1/r′ = 1.
We denote by Bq the Laplace operator in Lq(Ω), 1 < q < ∞, with bound-
ary condition of Dirichlet type being null: Bq = −∆ with domain D(Bq) =
W 2,q(Ω)

⋂
W 1,q

0 (Ω). We know that −Ar generates a uniformly bounded holo-
morphic semigroup {e−tAr}t≥0 of class C0 in Lr

σ [12]. We recall that −Bq

generates a uniformly bounded holomorphic semigroup {e−tBq}t≥0 in Lq(Ω)
[29] of class C0. Borchers and Miyakawa [5] established the following Helmholtz
decomposition of the Lorentz spaces. We can extend Pr to a bounded oper-
ator on L(r,d)(Ω), which we denote by Pr,d. Set L

(r,d)
σ (Ω) = Range(Pr,d) and

G(r,d)(Ω) = Kernel(Pr,d). Then,

L(r,d)(Ω) = L(r,d)
σ (Ω)⊕G(r,d)(Ω), (7)

and

L(r,d)(Ω) = {u ∈ L(r,d)(Ω) : ∇ · u = 0, u · n|∂Ω=0}, (8)

G(r,d)(Ω) = {∇v ∈ L(r,d)(Ω) : v ∈ L
(r,d)
loc (Ω̄)}. (9)

For simplicity, we shall abbreviate the projection operator and the Stokes and
Laplace operators on Lorenz spaces by P, A, B, respectively. In view of [5],
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the operator A and B define, respectively, closed operators in L
(r,d)
σ (Ω) and

L(r,d)(Ω) with domains

Dr,d(A) = {u ∈ L(r,d)
σ (Ω) : ∇u,D2u ∈ L(r,d)(Ω), u |∂Ω= 0},

Dr,d(B) = {w ∈ L(r,d)(Ω) : ∇w,D2w ∈ L(r,d)(Ω), w |∂Ω= 0},

and −A,−B generate bounded analytic semigroups on L
(p,q)
σ (Ω) and L(p,q)(Ω),

respectively. However, notice that this semigroups are not strongly continuous
at t = 0 if q = ∞. Throughout this paper we impose the following assumption
on the domain.
Assumption 1.
(CASE 1). Ω is the whole space Rn or the half-space Rn

+, where n ≥ 3.
(CASE 2). Ω is an exterior domain in Rn with boundary of class C2+µ(µ > 0),
where n ≥ 4.

Applying the operator projection in the (1)-(2) equations we can treat the
problem (1)-(5) in suitable Lorentz spaces as the following Cauchy Problem for
a semi linear evolution system of parabolic type:

ut + Au + P (u.∇u) = P (θg), t ∈ R (10)
θt + Bθ + (u · ∇θ) = f, t ∈ R. (11)

The system (10),(11) have associated the following system of integral equa-
tions in L

(r,∞)
σ (Ω)× L(r̃,∞)(Ω)

u(t) = −
∫ t

−∞
e−(t−s)AP (u · ∇u)ds +

∫ t

−∞
e−(t−s)AP (θg)ds (12)

θ(t) = −
∫ t

−∞
e−(t−s)B(u · ∇θ)ds +

∫ t

−∞
e−(t−s)Bfds. (13)

Throughout this paper we impose the following assumption on the external
force f and the field g:
Assumption 2.
The exponents r, r̃ and q, q̃ in concordance with the assumption 1, satisfy:
(CASE 1). 2 < r, r̃ < n, n

2 < q, q̃ < n, 1
r − 1

r̃ < min{ 2
n − 1

q , 2
n − 1

q̃}.
(CASE 2.) 2n

(n−1) ≤ r, r̃ < n, n
2 < q, q̃ < n, 1

r − 1
r̃ < min{ 2

n − 1
q , 2

n − 1
q̃}.

For each r, r̃ and q, q̃ we assume that f is an element of

BC(R, L(p̃,∞)(Ω) ∩ L(l̃,∞)(Ω)), (14)

for 1 < p̃, l̃ < ∞ with 1/r̃ + 2/n < 1/p̃, 1/q̃ < 1/l̃ < 1/q̃ + 1/n provided
n ≥ 4 in both CASES (1,2). (Note that as n < 2q̃, r̃ < n, the inequality
1/q̃ < 1/l̃ < 1/q̃ + 1/n imply that 1/l̃ < 2/n + 1/r̃).
If n = 3, in the CASE 1, we assume that f satisfies

f ∈ BC(R, L(l̃,∞)(Ω))such that f(s) = Bδ
p̃,∞h(s) for some h ∈ BC(R, D(Bδ

p̃,∞)), (15)
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for 1 < p̃ < min{r̃, q̃}, and δ > 0 satisfying 3/2p̃ + δ > 1 + max{1 + 3/2r̃, 1/2 +
3/2q̃} and 1/q̃ < 1/l̃ < 1/q̃ + 1/3. With respect to the field g we make the
following assumptions: g ∈ L(a,∞)(Ω)n ∩ L(b,∞)(Ω)n where a and b are such
that 1/a > 2/n + 1/r − 1/r̃, 1/b < 1/n + 1/q − 1/r̃, (b > 1).

Remark 2 The condition (15) can be replaced by f(s) = ∇ · G(s), G(s) =
(G1, ..., Gn) ∈ BC(R; L(p̃,∞)(Ω))n with ∇G(t) ∈ BC(R; L(p̃,∞)(Ω))n×n for 1 <
p̃ < ∞ with 1/r̃ + 1/3 < 1/p̃. This implies that f(s) = ∆h(s) for some h ∈
BC(R; D(Bp̃,∞)).

Remark 3 In the CASE 2, we need assume n ≥ 4 when Ω is an exterior
domain because the restriction on gradient bounds for the semigroup generated
by the Stokes operator in L(p,∞). (See Lemma 7).

Our results are stated as follows:

Theorem 4 Let Ω satisfying the assumption 1 above and f being periodic func-
tion with period τ > 0, (i.e, for all t ∈ R, f(t) = f(t + τ)) satisfying the
assumption 2. Then there exists positive constants β1, β2 such that if

sup
s∈R

‖f(s)‖(p̃,∞) + sup
s∈R

‖f(s)‖(l̃,∞) ≤ β1, n ≥ 4, in the CASES 1 y 2,

sup
s∈R

‖h(s)‖(p̃,∞) + sup
s∈R

‖Pl̃f(s)‖(l,∞) ≤ β1, n = 3, in the CASE 1,

‖g‖(b,∞) + ‖g‖(a,∞) ≤ β2, in the CASES 1 y 2,

there exist a periodic solution (u, θ) of (12),(13), with the same period τ of
the external forces, such that u ∈ BC(R; L(r,∞)

σ )n, θ ∈ BC(R; L(r̃,∞)), with
∇u ∈ BC(R;L(q,∞))n×n, ∇θ ∈ BC(R; L(q̃,∞))n.
If sups∈R ‖u(s)‖(r,∞)+sups∈R ‖∇u(s)‖(q,∞), sups∈R ‖θ(s)‖(r̃,∞)+sups∈R ‖∇θ(s)‖(q̃,∞)

are sufficiently small, then the solution is unique at this class of function spaces.

Theorem 5 Under the assumptions of Theorem 4, if f is Holder continuous
function in R with values at L(n,∞)(Ω) and g ∈ L(n,∞)(Ω)n, then the periodic
solution given by the Theorem 4 satisfies

1. u ∈ BC(R;L(n,∞)
σ )n∩C1(R;L(n,∞)

σ )n, θ ∈ BC(R; L(n,∞))∩C1(R; L(n,∞)).

2. u(t) ∈ D(An,∞), θ(t) ∈ D(Bn,∞), Anu ∈ C(R; L(n,∞)
σ )n, Bnθ ∈ C(R; L(n,∞)),

for t ∈ R.

3. The equations (10),(11) are satisfied in (L(n,∞)
σ )n, L(n,∞), respectively, for

all t ∈ R.

Remark 6 Our results also hold when Ω is a bounded domain and we can relax
the assumption on the external force.
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3 Existence Uniqueness and Regularity of Peri-
odic Solutions

At this section we prove the Theorem 4 and Theorem 5. Throughout this
paper, we shall denote by c, C various constants. In particular, C = C(∗, ..., ∗)
will denote the constants which depend only on the quantities appearing in
parentheses. Let us first recall the following estimates L(r,∞) − L(p,∞) for the
semigroups {e−tA}t≥0, {e−tB}t≥0

Lemma 7 [5],[17] (1). Let Ω as the CASE 1 of assumption 1. Then

‖e−tAa‖(r,∞) ≤ ct−n/2(1/p−1/r)‖a‖(p,∞), 1 < p ≤ r < ∞,

‖∇e−tAa‖(r,∞) ≤ ct−n/2(1/p−1/r)−1/2‖a‖(p,∞), 1 < p ≤ r < ∞,

for all a ∈ L
(p,∞)
σ and all t > 0, where c = c(n, p, r).

(2). Let Ω as the CASE 2 of assumption 1. Then

‖e−tAa‖(r,∞) ≤ ct−n/2(1/p−1/r)‖a‖(p,∞), 1 < p ≤ r < ∞,

‖∇e−tAa‖(r,∞) ≤ ct−n/2(1/p−1/r)−1/2‖a‖(p,∞), 1 < p ≤ r ≤ n,

for all a ∈ L
(p,∞)
σ and all t > 0, where c = c(n, p, r).

Remark 8 The similar estimates hold true for the semigroup {e−tB}t≥0.

Remark 9 The estimates before hold in the particular case of Lp spaces. See,
for instance [20], [19], [14],[4], [3].

Lemma 10 [5],[17] Let Ω satisfying the assumption 1 and suppose that n ≥
2, 1 < q < n, 1 ≤ d ≤ ∞ and q∗ = nq/(n− q). If φ ∈ L(p,∞)(Ω) for some p < ∞
and ∇φ ∈ L(q,d)(Ω)n, then φ ∈ L(q∗,d)(Ω) and the estimate

‖φ‖(q∗,d) ≤ C‖∇φ‖(q,d)

holds with C > 0 independent of φ.

We denote by X the space of scalar functions {u ∈ BC(R; L(r̃,∞)) : ∇u ∈
BC(R; L(q̃,∞))n} with the norm ‖ · ‖X defined as

‖u‖X ≡ sup
s∈R

‖u(s)‖(r̃,∞) + sup
s∈R

‖∇u(s)‖(q̃,∞).

We also defined by Y the space of vector functions {u ∈ BC(R;L(r,∞)
σ )n : ∇u ∈

BC(R; L(q,∞)))n×n} with the norm ‖ · ‖Y defined as

‖u‖Y ≡ sup
s∈R

‖u(s)‖(r,∞) + sup
s∈R

‖∇u(s)‖(q,∞).
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These spaces are Banach spaces. We define the following operators F1 and G
on Y × Y and Y ×X, respectively, by

F1(u, v)(t) = −
∫ t

−∞
e−(t−s)AP (u · ∇v)(s)ds, (16)

G(u, θ)(t) = −
∫ t

−∞
e−(t−s)B(u · ∇θ)(s)ds. (17)

3.1 Proof of Theorem 4

We construct a periodic solution of integral problem (12),(13) according to the
following scheme:

um+1(t) = F (um, θm)(t), (18)
θm+1(t) = θ0(t) + G(um, θm)(t), (19)

where θ0(t) =
∫ t

−∞ e−(t−s)Bf(s)ds, u0(t) =
∫ t

−∞ e−(t−s)AP (θ0g)ds,

F (um, θm)(t) = −
∫ t

−∞
e−(t−s)AP (um · ∇um)(s)ds +

∫ t

−∞
e−(t−s)AP (gθm)(s)ds,

G(um, θm)(t) = −
∫ t

−∞
e−(t−s)B(um · ∇θm)(s)ds.

Remark 11 When f1 is not null, in the scheme above we consider u0(t) =∫ t

−∞ e−(t−s)AP (θf1)ds and um+1 = u0(t) + F (um, θm)(t).

Let us first encounter some estimates to approximations above; we shall need
the following Lemmas.

Lemma 12 Let r, r̃, q and q̃ as Theorem 4. Then we have that

sup
s∈R

‖F1(u, v)‖(r,∞) ≤ c1

(
sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖v(s)‖(r,∞) + sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇v(s)‖(q,∞)

)
(20)

sup
s∈R

‖∇F1(u, v)‖(q,∞) ≤ c1

(
sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇v(s)‖(q,∞) + sup
s∈R

‖∇u(s)‖(q,∞) sup
s∈R

‖∇v(s)‖(q,∞)

)
(21)

sup
s∈R

‖G(u, θ)‖(r̃,∞) ≤ c2

(
sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖θ(s)‖(r̃,∞) + sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞)

)
(22)

sup
s∈R

‖∇G(u, θ)‖(q̃,∞) ≤ c2

(
sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞) + sup
s∈R

‖∇u(s)‖(q,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞)

)
(23)

for all u, v ∈ Y, θ ∈ X where c1 = c1(n, r, q), c2 = c2(n, r̃, q̃).

Proof. The proof is an application of lemma 7. In fact,

G(u, θ)(t) = −
∫ t−1

−∞
e−(t−s)B(u · ∇θ)(s)ds−

∫ t

t−1

e−(t−s)B(u · ∇θ)(s)ds

= G1(t) + G2(t).
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Then for all ψ ∈ C∞0 and for all t ∈ R, we have

|(G1(t), ψ)| ≤
∫ t−1

−∞
‖∇e−(t−s)Bψ‖((rr̃/(r+r̃))′,1)‖θu‖(rr̃/(r+r̃),∞)ds

≤ c

∫ t−1

−∞
(t− s)−n/2r−1/2‖ψ‖(r̃′,1)‖θ(s)‖(r̃,∞)‖u(s)‖(r,∞)ds

≤ c sup
s∈R

‖θ(s)‖(r̃,∞) sup
s∈R

‖u(s)‖(r,∞)

∫ t−1

−∞
(t− s)−n/2r−1/2‖ψ‖(r̃′,1).

By duality, for all t ∈ R, ‖G1(t)‖(r̃,∞) ≤ c sups∈R ‖θ(s)‖(r̃,∞) sups∈R ‖u(s)‖(r,∞).

‖G2(t)‖(r̃,∞) ≤
∫ t

t−1

(t− s)−n/2(1/r+1/q̃−1/r̃)‖u(s)‖(r,∞)‖∇θ(s)‖(q̃,∞)ds

≤ c sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞).

Now, using the Lemma 7 and Lemma 10 (with d = ∞), we obtain

‖∇G(u, θ)‖(q̃,∞) ≤
∫ t−1

−∞
‖∇e−(t−s)B(u · ∇θ)(s)‖(q̃,∞)ds +

∫ t

t−1

‖e−(t−s)B(u · ∇θ)(s)‖(q̃,∞)ds

≤ c

∫ t−1

−∞
(t− s)−n/2r−1/2‖u(s)‖r,∞‖∇θ(s)‖(q̃,∞) +

+ c

∫ t

t−1

(t− s)−n/2q∗‖u(s)‖(q∗,∞)‖∇θ(s)‖(q̃,∞)

≤ c sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞)

∫ t−1

−∞
(t− s)−n/2r−1/2ds +

+ sup
s∈R

‖u(s)‖(q,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞)

∫ t

t−1

(t− s)−n/2q∗ds

≤ c(sup
s∈R

‖u(s)‖(r,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞) + sup
s∈R

‖∇u(s)‖(q,∞) sup
s∈R

‖∇θ(s)‖(q̃,∞)),

for all t ∈ R and c = c(n, r̃, q̃, r, q). This complete the estimates (22) and (23)
of Lemma. The estimates (20),(21) are encounter similarly.

Lemma 13 Let θ0 defined as in (19). Then θ0 ∈ X.

Proof. If f satisfies (14) then using the Lemma 7 we obtain

‖θ0(t)‖(r̃,∞) ≤
∫ t−1

−∞
‖e−(t−s)Bf(s)‖(r̃,∞)ds +

∫ t

t−1

‖e−(t−s)Bf(s)‖(r̃,∞)ds

≤ c sup
s∈R

‖f(s)‖(p̃,∞)

∫ t−1

−∞
(t− s)−n/2(1/p̃−1/r̃)ds

+ c sup
s∈R

‖f(s)‖(l̃,∞)

∫ t

t−1

(t− s)−n/2(1/l̃−1/r̃)ds.
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This is valid for all t ∈ R. The constant c = c(n, r̃, q̃, p̃, l̃). From the assump-
tions (14), i.e, 1/r̃ + 2/n < 1/p̃ and 1/l̃ < 2/n + 1/r̃, we concluded that each
integral above is finite and consequently, ‖θ0(t)‖(r̃,∞) ≤ c sups∈R ‖f(s)‖(p̃,∞) +
c sups∈R ‖f(s)‖(l̃,∞).
A similar analysis prove that

‖∇θ0(t)‖(q̃,∞) ≤ c sup
s∈R

‖f(s)‖(p̃,∞)

∫ t−1

−∞
(t− s)−n/2(1/p̃−1/q̃)−1/2ds

+ c sup
s∈R

‖f(s)‖(l̃,∞)

∫ t

t−1

(t− s)−n/2(1/l̃−1/q̃)−1/2ds,

for all t ∈ R and c = c(n, q, r, p, l). As 1/p̃ > 1/r̃ + 2/n > 1/n + 1/q̃ and
1/l̃ < 1/q̃ + 1/n, the two integrals above converge.
Now, if n = 3 the anterior analyze is wrong because will be necessary 3/2(1/p̃−
1/r̃) > 1, with p̃ > 1 and this its not happy. Consequently we assume a new
condition; in fact, if f satisfies (15), using the following estimate (which is a
consequence of the analytic properties of semigroup)

‖Bδe−tBa‖(p̃,∞) ≤ Ct−δ‖a‖(p̃,∞), ∀a ∈ L(p̃,∞), t > 0, c = c(p̃, δ), δ ≥ 0,

and the lemma 7, we obtain

‖θ0(t)‖(r̃,∞) ≤
∫ t−1

−∞
‖e−(t−s)BBδh(s)‖(r̃,∞)ds +

∫ t

t−1

‖e−(t−s)Bf(s)‖(r̃,∞)ds

≤ c

∫ t−1

−∞
(t− s)−3/2(1/p̃−1/r̃)‖Bδe−(t−s)B/2h(s)ds‖(p̃,∞)

+ c

∫ t

t−1

(t− s)−3/2(1/l̃−1/r̃)‖f(s)‖(l̃,∞)ds

≤ c

∫ t−1

−∞
(t− s)−3/2(1/p̃−1/r̃)−δ‖h(s)‖(p̃,∞)ds

+ c sup
s∈R

‖f(s)‖(l̃,∞)

∫ t

t−1

(t− s)−3/2(1/l̃−1/r̃)ds

≤ c
(

sup
s∈R

‖h(s)‖(p̃,∞) + sup
s∈R

‖f(s)‖(l̃,∞)

)
,

for all t ∈ R with c = c(n, r̃, p̃, q̃, l̃, δ). A similar estimate can be obtained to
‖∇θ0‖(q̃,∞), (n = 3). This prove the Lemma.

Now we will estimate the terms F (um, θm) and G(um, θm). We start with
the following Lemma.

Lemma 14 The terms ‖F (um, θm)‖Y , ‖G(um, θm)‖X give by (18),(19) satisfy
the following estimates

‖F (um, θm)‖Y ≤ 2c1‖um‖2Y + c3‖θm‖X , (24)
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‖G(um, θm)‖X ≤ 2c2‖um‖Y ‖θm‖X , (25)

where c1, c2 are as in the Lemma 12 and c3 depending on g but is independent
of m.

Proof. Note that
∥∥∥

∫ t

−∞
e−(t−s)AP (gθm)ds

∥∥∥
Y
≤ c3‖θm‖X . (26)

In fact,

∥∥∥
∫ t

−∞
e−(t−s)AP (gθm)

∥∥∥
(r,∞)

≤
∫ t−1

−∞
‖e−(t−s)AP (gθm)‖(r,∞) +

∫ t

t−1

‖e−(t−s)AP (gθm)‖(r,∞).

∫ t−1

−∞
‖e−(t−s)AP (gθm)‖(r,∞) ≤ c

∫ t−1

−∞
(t− s)γ‖g‖(a,∞)‖θm(s)‖(r̃,∞)

≤ c‖g‖(a,∞) sup
s∈R

‖θm(s)‖(r̃,∞)

∫ t−1

−∞
(t− s)γds,

where γ = −n/2(1/a + 1/r̃ − 1/r). As 1/a > 2/n− 1/r̃ + 1/r, the less integral
converges.
Now,

∫ t

t−1

‖e−(t−s)AP (gθm)‖(r,∞) ≤ c

∫ t

t−1

(t− s)ξ‖g‖(b,∞)‖θm(s)‖(r̃,∞)

≤ c‖g‖(b,∞) sup
s∈R

‖θm(s)‖(r̃,∞)

∫ t

t−1

(t− s)ξds,

where ξ = −n/2(1/b + 1/r̃ − 1/r). By the assumption 2, g ∈ L(b,∞)(Ω)n with
b > 1 and 1/b < 1/n+1/q−1/r̃. By the condition 2, as r < n, n/2 < q, we have
that 1/r + 1/n > 2/n > 1/q; then 1/b < 1/n + 1/q − 1/r̃ < 1/n + 1/n = 2/n
implying that 1/b < 2/n+1/r−1/r̃ and therefore the integral above converges.

∥∥∥∇
∫ t

−∞
e−(t−s)AP (gθm)

∥∥∥
(q,∞)

≤
∫ t−1

−∞
‖∇e−(t−s)AP (gθm)‖(q,∞) +

+
∫ t

t−1

‖∇e−(t−s)AP (gθm)‖(q,∞).

∫ t−1

−∞
‖∇e−(t−s)AP (gθm)‖(q,∞) ≤ c

∫ t−1

∞
(t− s)−n/2(1/a+1/r̃−1/q)−1/2‖g‖(a,∞)‖θm(s)‖(r̃,∞)

≤ c‖g‖(a,∞) sup
s∈R

‖θm(s)‖(r̃,∞) ×

×
∫ t−1

∞
(t− s)−n/2(1/a+1/r̃−1/q)−1/2.

11



As n < q and 1/r̃ − 1/r > 2/n − 1/a, we conclude that 1/a + 1/r̃ − 1/q >
2/n + 1/r − 1/q > 1/n + 1/r > 1/n. and hence the less integral converges.
Analogously we can show that

∫ t

t−1

‖∇e−(t−s)AP (gθm)‖(q,∞) ≤ c‖g‖(b,∞) sup
s∈R

‖θm(s)‖(r̃,∞).

Hence we prove the inequality (26) with

c3 = c
(
‖g‖(b,∞) + ‖g‖(a,∞)

)
(27)

and c independent of m. Therefore, of lemma 12 and (26) we obtain (24). The
inequality (25) is obtained applying directly the inequalities (22)-(23) of Lemma
12.

Consequently, of the Lemmas 13 y 14 we obtain

‖um+1‖Y ≤ 2c1‖um‖2Y + c3‖θm‖X , (28)
‖θm+1‖X ≤ ‖θ0‖X + 2c2‖um‖Y ‖θm‖X . (29)

Let
am = Max{‖um‖Y , ‖θm‖X}, m = 1, 2, ... a0 = ‖θ0‖X .

Therefore, it follows from (28) and (29) that

am+1 ≤ a0 + c̃a2
m + c3am, c̃ = max(2c1, 2c2).

Hence, if

c3 < 1, 4a0c̃ < (1− c3)2, (30)

then the sequence {am}∞m=0 is bounded with

am ≤ (1− c3)−
√

(1− c3)2 − 4c̃a0

2c̃
≡ k, ∀m = 0, 1, 2, ... ⇒ am ≤ k < 1/2c̃. (31)

We assume (30) ( Note that this condition implies a small condition of f).
Making wm = um − um−1 (u−1 ≡ 0), Θm = θm − θm−1, (θ−1 ≡ 0), we have

wm+1(t) = −
∫ t

−∞
e−(t−s)AP (wm · ∇um)(s)ds−

∫ t

−∞
e−(t−s)AP (um−1 · ∇wm)(s)ds

+
∫ t

−∞
e−(t−s)AP (gΘm)(s)ds,

Θm+1(t) = −
∫ t

−∞
e−(t−s)BP (wm · ∇θm)(s)ds−

∫ t

−∞
e−(t−s)B(um−1 · ∇Θm)(s)ds.

This equality imply that

‖wm+1‖Y ≤ 2c1(‖wm‖Y ‖um‖Y + ‖um−1‖Y ‖wm‖Y ) + c3‖Θm‖X

≤ 2c1k‖wm‖Y + c3‖Θm‖X

≤ c̃k(‖wm‖Y + ‖Θm‖X), (32)
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provided c3 ≤ c̃k, ( This condition and (30) implies a small condition of field g
in the norms ‖ · ‖(a,∞) and ‖ · ‖(b,∞)). Moreover,

‖Θm+1‖X ≤ 2c2‖wm‖Y ‖θm‖X + 2c2‖um−1‖Y ‖Θm‖X

≤ 2c2k(‖wm‖Y + ‖Θm‖X). (33)

From (32), (33), we obtain

Max{‖wm+1‖Y , ‖Θm+1‖X} ≤ c̃kMax{‖wm‖Y , ‖θ‖X} ≤ . . . (34)
≤ (c̃k)m+1a0, ∀m = 0, 1, . . .

Note that um(t) =
∑m

j=0 wj(t), θ(t) =
∑m

j=0 Θj(t); since c̃k < 1 (by (31)),
from (34) we conclude that there exists functions u ∈ Y, θ ∈ X such that when
m −→∞,

um −→ u in Y, θm −→ θ in X.

Note that
∥∥∥−

∫ t

−∞
e−(t−s)AP (um · ∇um)(s)ds +

∫ t

−∞
e−(t−s)AP (u · ∇u)(s)ds

∥∥∥
Y
≤

≤
∥∥∥

∫ t

−∞
e−(t−s)AP ((um − u) · ∇um)(s)ds

∥∥∥
Y

+
∥∥∥

∫ t

−∞
e−(t−s)AP (u · ∇(um − u))(s)ds

∥∥∥
Y

≤ 2c1‖um − u‖Y ‖um‖Y + 2c1‖u‖Y ‖um − u‖Y

< ‖um − u‖Y , ∀m.

Then in Y

−
∫ t

−∞
e−(t−s)AP (um · ∇um)(s)ds −→

∫ t

−∞
e−(t−s)AP (u · ∇u)(s)ds. (35)

Analogously,
∥∥∥−

∫ t

−∞
e−(t−s)B(um · ∇θm)(s)ds +

∫ t

−∞
e−(t−s)B(u · ∇θ)(s)ds

∥∥∥
X

≤
∥∥∥

∫ t

−∞
e−(t−s)B((um − u) · ∇θm)

∥∥∥
X

+
∥∥∥

∫ t

−∞
e−(t−s)B(u · ∇(θm − θ))

∥∥∥
X

≤ 2c2‖um − u‖Y ‖θm‖X + 2c2‖u‖Y ‖θm − θ‖X

< ‖um − u‖Y + ‖θm − θ‖X , ∀m.

Then in X

−
∫ t

−∞
e−(t−s)B(um · ∇um)(s)ds −→

∫ t

−∞
e−(t−s)B(u · ∇u)(s)ds. (36)
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Finally, when m −→∞,

∥∥∥−
∫ t

−∞
e−(t−s)AP (g(θm − θ))

∥∥∥
Y
≤ c3‖θm − θ‖X −→ 0. (37)

From (35), (36) and (37) we conclude that (u, θ) is a solution of system of
integral equations (12), (13).
Periodicity.
Being f a periodic function with period τ > 0, the functions um and θm are
also periodic with the same period τ. Consequently, the limit (u, θ) is periodic
with period τ.
Uniqueness.
Supposed that (u1, θ1) is another solution of (12)-(13), such that ‖u1‖Y ≤
k, ‖θ1‖X ≤ k, being k the constant of (31). Working as before, we encounter
that

‖θ − θ1‖X ≤ 2c2k‖u− u1‖Y + 2c2k‖θ − θ1‖X ,

‖u− u1‖Y ≤ c3‖θ − θ1‖X + 2c1k‖u− u1‖Y .

Hence, if M ≡ Max{‖u− u1‖Y , ‖θ − θ1‖X} we have

M ≤ c̃kM,

because c3 ≤ c̃k, implying that θ = θ1, u = u1.

3.2 Strong Solution. Proof of Theorem 2.

In this subsection we shall that the periodic solution (u, θ) constructed in the
Theorem 4, is actually a solution of the differential system (1)-(5), assuming in
addition that f and g satisfy adequate regularity conditions. To demonstrate the
theorem 5, we need the following result of local existence of strong solutions to
the initial boundary value problem for (1)-(5). This result follows the arguments
of Kato [20] and Giga [13]. Let us first give the definition of Strong solution of
the initial value problem (1)-(5).

Definition 15 Let a ∈ L
(n,∞)
σ , b ∈ L(n,∞). A duple (v, w) defined on (t0, t1)×Ω

is called a strong solution of (1)-(5) with initial value (a, b) if

1. v ∈ BCw([t0, t1); L
(n,∞)
σ )n∩C1((t0, t1); L

(n,∞)
σ )n, w ∈ BCw([t0, t1); L(n,∞))∩

C1((t0, t1); L(n,∞)),

2. Au ∈ C((t0, t1); L
(n,∞)
σ )n, Bw ∈ C((t0, t1); L(n,∞)), t0 < t < t1,

3. vt + Au + P (v.∇v) = P (wg), in L
(n,∞)
σ , x ∈ Ω, t0 < t < t1,

4. wt + Bw + (u · ∇w) = f in L(n,∞), x ∈ Ω, t0 < t < t1,
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where BCw denotes the class of bounded and weakly-∗ continuous functions,
together with

lim
t→t0

(v(t), φ) = (a, φ), lim
t→t0

(v(t), ϕ) = (b, ϕ),

for all φ ∈ L
(n/(n−1),1)
σ (Ω)n, ϕ ∈ L

(n/(n−1),1)
σ (Ω).

Our result on the local existence of strong solutions now reads:

Theorem 16 Let n/2 < q < n and 1 < l < ∞ such that 1/q < 1/l < 1/q +
1/n. Supposed that a ∈ (L(n,∞)

σ )n ∩ (L(q∗,∞)
σ )n, b ∈ L(n,∞) ∩ L(q∗,∞), where

q∗ = nq/(n − q), f ∈ BC(R;L(l,∞)) being Holder continuous with value in
L(n,∞), g ∈ L(b,∞) ∩ L(n,∞) with b > n/2. Then there exist T ∈ (0, 1] such
that for all t0 ∈ R exist an unique strong solution of the problem (1)-(5) at
(t0, t0+T ) with initial value v(t0) = a,w(t0) = b. Moreover, the solution satisfies
v ∈ BC((t0, t0 + T ); L(q∗,∞)

σ )n, w ∈ BC((t0, t0 + T ); L(q∗,∞)), with

sup
t0<t<t0+T

‖v(t)‖(q∗,∞) ≤ C1, sup
t0<t<t0+T

‖w(t)‖(q∗,∞) ≤ C2, (38)

where C1, C2 are independents of t0. Here T is estimated as

T ≡
[ k̃

c1Max{‖a‖(n/α,∞), ‖b‖(n/α,∞) + ‖f‖BC(R;L(l,∞))}
]α−1

2
(39)

with C3

Proposition 17 Let n/2 < q < n and 1 < l < ∞ such that 1/q < 1/l <

1/q + 1/n. Supposed that a ∈ (L(n,∞)
σ )n ∩ (L(q∗,∞)

σ )n, b ∈ L(n,∞) ∩ L(q∗,∞),
where q∗ = nq/(n − q), f ∈ BC(R; L(l,∞)) with value in L(n,∞), g ∈ L(b,∞) ∩
L(n,∞) with b > n/2. Then there exist T ∈ (0, 1] and functions v, w in the
class v ∈ BCw([t0, t0 + T ); L(n,∞)

σ )n, w ∈ BCw([t0, t0 + T ); L(n,∞)) with v ∈
BC((t0, t0 + T ); L(q∗,∞))n, w ∈ BC((t0, t0 + T ); L(q∗,∞)) and (t − t0)1/2∇v ∈
BCw((t0, t0 + T ); L(n,∞)

σ )n×n, (t− t0)1/2∇w ∈ BCw((t0, t0 + T ); L(n,∞)
σ )n, such

that for all t0 ∈ R,

v(t) = e−(t−t0)Aa +
∫ t

t0

e−(t−s)AP (wg)ds−
∫ t

t0

e−(t−s)AP (v · ∇v)ds,(40)

w(t) = e−(t−t0)Bb +
∫ t

t0

e−(t−s)Bfds−
∫ t

t0

e−(t−s)B(v · ∇w)ds. (41)

Moreover, the functions v, w satisfy that t1/4v ∈ BC((t0, t0 +T ); L2n
σ )n, t1/4w ∈

BC((t0, t0 + T ); L2n). Here T is estimated as

T ≡
[ k̃

c1Max{‖a‖(n/α,∞), ‖b‖(n/α,∞) + ‖f‖BC(R;L(l,∞))}
]α−1

2
(42)
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Proof.
Let us construct the solutions of integral equations (40)-(41) according to

the following scheme:

vm+1(t) = v0(t) +
∫ t

t0

e−(t−s)AP (wmg)ds−
∫ t

t0

e−(t−s)AP (vm · ∇vm)ds,(43)

wm+1(t) = w0(t) +
∫ t

t0

e−(t−s)Bfds−
∫ t

t0

e−(t−s)B(vm · ∇wm)ds, (44)

where v0(t) = e−(t−t0)Aa, w0(t) = e−(t−t0)Bb.
Since this Lemma deals with only local existence of solutions, we may assume
that 0 < T ≤ 1. Let α = n/q∗, q∗ = nq/(n− q). Then 0 < α < 1. We shall need
the following lemmas

Lemma 18 The sequences (43), (44) satisfy the following estimates

sup
t0<t<t0+T

(t− t0)(1−α)/2‖vm(t)‖(n/α,∞) ≤ Km,1, (45)

sup
t0<t<t0+T

(t− t0)(1−α)/2‖wm(t)‖(n/α,∞) ≤ Km,2, m = 0, 1, ... (46)

for some positive constants Km,1,Km,2 which are independents of t0. Moreover,
there exist (v, w) with

(t− t0)(1−α)/2v(.) ∈ BC((t0, t0 + T ); L(n/α,∞)
σ )n,

(t− t0)(1−α)/2w(.) ∈ BC((t0, t0 + T ); L(n/α,∞)),

such that

lim
m→∞

sup
t0<t<t0+T

(t− t0)(1−α)/2‖vm(t)− v(t)‖(n/α,∞) = 0,

lim
m→∞

sup
t0<t<t0+T

(t− t0)(1−α)/2‖wm(t)− w(t)‖(n/α,∞) = 0.

Proof. The proof is done by induction, in fact,

‖v0‖(n/α,∞) ≤ c‖a‖(n/α,∞), ‖w0‖(n/α,∞) ≤ c‖b‖(n/α,∞),

to t0 < t < t0 + T, where c is independent of t0. Consequently,

sup
t0<t<t0+T

(t− t0)(1−α)/2‖v0(t)‖(n/α,∞) ≤ cT (1−α)/2‖a‖(n/α,∞) ≡ K0,1 (47)

sup
t0<t<t0+T

(t− t0)(1−α)/2‖w0(t)‖(n/α,∞) ≤ cT (1−α)/2‖b‖(n/α,∞) ≡ K0,2. (48)

Assume true (45),(46). We will prove (45),(46) for the case m + 1. Note that
for all φ ∈ C∞0,σ and all t0 < t < t0 + T, the lemma 7 implies

∣∣∣
(
−

∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds, φ
)∣∣∣ =

∣∣∣
∫ t

t0

(vm ⊗ vm(s),∇e−(t−s)Aφ)ds
∣∣∣
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≤
∫ t

t0

‖vm(s)‖2(n/α,∞)‖∇e−(t−s)Aφ‖(n/(n−2α),1)ds

≤ c

∫ t

t0

(t− s)−α/2−1/2‖vm(s)‖2(n/α,∞)ds · ‖φ‖(n/(n−α),1)

≤ cB((1− α)/2, α)K2
m,1(t− t0)−(1−α)/2‖φ‖(n/(n−α),1)

where B(., .) denote the function beta and c = c(n, q) is independent of t0. By
duality we have

∥∥∥
∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds
∥∥∥

(n/α,∞)
≤ C1,1K

2
m,1(t− t0)−(1−α)/2, t0 < t < t0 + T.

with C1,1 = C1,1(n, q). Now,

∥∥∥
∫ t

t0

e−(t−s)AP (gwm)(s)ds
∥∥∥

(n/α,∞)
≤ c

∫ t

t0

(t− s)−n/2b‖g‖(b,∞)‖wm(s)‖(n/α,∞)ds

≤ c‖g‖(b,∞)(t− t0)(1−α)/2(t− t0)−(1−α)/2

×
∫ t

t0

‖wm(s)‖(n/α,∞)(t− s)−n/2b

≤ c(t− t0)−(1−α)/2Km,2‖g‖(b,∞)

≤ (t− t0)−(1−α)/2C2,1Km,2.

Hence,

sup
t0<t<t0+T

(t− t0)(1−α)/2‖vm+1‖(n/α,∞) ≤ K0,1 + C1,1K
2
m,1 + C2,1Km,2. (49)

Now, for all φ ∈ C∞0 and all t0 < t < t0 + T,

∣∣∣
(
−

∫ t

t0

e−(t−s)B(vm · ∇wm)(s)ds, φ
)∣∣∣ =

∣∣∣
∫ t

t0

(vm ⊗ vm(s),∇e−(t−s)Bφ)ds
∣∣∣

≤
∫ t

t0

‖vm(s)‖(n/α,∞)‖wm(s)‖(n/α,∞)‖∇e−(t−s)Bφ‖(n/(n−2α),1)ds

≤ c

∫ t

t0

(t− s)−α/2−1/2‖vm(s)‖(n/α,∞)‖wm(s)‖(n/α,∞) · ‖φ‖(n/(n−α),1)ds

≤ cB((1− α)/2, α)Km,1Km,2(t− t0)−(1−α)/2‖φ‖(n/(n−α),1).

By duality,

∥∥∥
∫ t

t0

e−(t−s)B(vm · ∇wm)(s)ds
∥∥∥

(n/α,∞)
≤ C1,2Km,2Km,1(t− t0)−(1−α)/2, t0 < t < t0 + T.
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Now, using the Lemma 10 we have
∫ t

t0

‖e−(t−s)Bf(s)‖(n/α,∞) ≤ c

∫ t

t0

‖∇e−(t−s)Bf(s)‖(q,∞)

≤ c

∫ t

t0

(t− s)−n/2(1/l−1/q)−1/2‖f(s)‖(l,∞)ds

≤ c‖f‖BC(R;L(l,∞))(t− t0)−(1−α)/2+3/2−n/2l,

for all t0 < t < t0 + T with c = c(n, q, l). Since 1/l < 1/q + 1/n, we have
(1− α)/2 < 3/2− n/2l hence the above estimate yields

(t− t0)(1−α)/2
∥∥∥

∫ t

t0

e−(t−s)Bf(s)
∥∥∥

(n/α,∞)
≤ c‖f‖BC(R,L(b,∞))T

(1−α)/2. (50)

Consequently,

sup
t0<t<t0+T

(t− t0)(1−α)/2‖wm+1(t)‖(n/α,∞) ≤ K0,2 + c‖f‖BC(R;L(l,∞))T
(1−α)/2 + C1,2Km,1Km,2. (51)

Then, we can take Km+1,1,Km+1,2 being respectively, K0,1+C1,1K
2
m,1+C2,1Km,2, K0,2+

c‖f‖BC(R;L(l,∞))T
(1−α)/2 + C1,2Km,1Km,2.

Letting Km = Max(Km,1, Km,2), m = 1, 2, ..., from (51) and (??) we have

Km+1 ≤ K0 + C̃K2
m + C1,1Km, (52)

where K0 = c1T
(1−α)/2Max{‖a‖(n/α,∞), ‖b‖(n/α,∞) + ‖f‖BC(R;L(l,∞))} and C̃ =

Max{C1,1, C1,2}.
If we consider

C2,1 < 1, K0 <
(1− C2,1)2

4C̃
(53)

we have that

Km <
(1− C2,1)−

√
(1− C2,1)2 − 4C̃K0

2C̃
≡ k <

1

2C̃
, ∀m = 0, 1, 2, ... (54)

Assuming (53) and working as section 2, we can conclude, due the uniform
estimate, with respect to m, (54) the existence of a duple (v, w) such that

(t− t0)(1−α)/2v(.) ∈ BC((t0, t0 + T ); L(n/α,∞)
σ )n, (55)

(t− t0)(1−α)/2w(.) ∈ BC((t0, t0 + T ); L(n/α,∞)), (56)

satisfying

lim
m→∞

sup
t0<t<t0+T

(t− t0)(1−α)/2‖vm(t)− v(t)‖(n/α,∞) = 0, (57)

lim
m→∞

sup
t0<t<t0+T

(t− t0)(1−α)/2‖wm(t)− w(t)‖(n/α,∞) = 0. (58)
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Lemma 19 If K0 defined by (53) is small sufficiently, then the limit (v, w)
given by Lemma 18 satisfies the following estimate

(t− t0)1/2∇v(.) ∈ BC((t0, t0 + T ); L(n,∞)
σ )n×n, (59)

(t− t0)1/2∇w(.) ∈ BC((t0, t0 + T ); L(n,∞))n, (60)

with

lim
m→∞

sup
t0<t<t0+T

(t− t0)1/2‖∇vm(t)−∇v(t)‖(n,∞) = 0, (61)

lim
m→∞

sup
t0<t<t0+T

(t− t0)1/2‖∇wm(t)−∇w(t)‖(n,∞) = 0. (62)

Proof. The proof is done by induction, in fact, we will prove that

sup
t0<t<t0+T

(t− t0)1/2‖∇vm(t)‖(n,∞) ≤ Jm,1, (63)

sup
t0<t<t0+T

(t− t0)1/2‖∇wm(t)‖(n,∞) ≤ Jm,2, (64)

for some constants Jm,1, Jm,2 which are independents of t0, m = 0, 1, ...
Note that by lemma 7

‖∇v0‖(n,∞) ≤ C(t− t0)−1/2‖a‖(n,∞),

‖∇w0‖(n,∞) ≤ C(t− t0)−1/2‖b‖(n,∞),

where C = C(n) is independent of t0. Hence we can take J0,1 and J0,2 being
respectively, C‖a‖(n,∞), C‖b‖(n,∞).
Supposed true the inequalities (63),(64). Then

∥∥∥∇
∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)
∥∥∥

(n,∞)
≤

∫ t

t0

(t− s)−n/2(α/n)−1/2‖vm(s)‖(n/α,∞)‖∇vm(s)‖(n,∞)

≤ cKm,1Jm,1

∫ t

t0

(t− s)−α/2−1/2(s− t0)α/2−1ds

≤ C3,1kJm,1(t− t0)−1/2,

for all t0 < t < t0 + T, where C3,1 = C3,1(n, q) is independent of t0.
Now
∥∥∥∇

∫ t

t0

e−(t−s)AP (gwm)(s)ds
∥∥∥

(n,∞)
≤

∫ t

t0

(t− s)−n/2(α/n)−1/2‖g‖(n,∞)‖wm(s)‖(n/α,∞)ds

≤ c‖g‖(n,∞) sup
t0<t<t0+T

‖wm(t)‖(n/α,∞)

∫ t

t0

(t− s)−(α+1)/2ds

≤ cB((1− α)/2, (1 + α)/2)k‖g‖(n,∞).

Therefore,

sup
t0<t<t0+T

(t− t0)1/2‖∇vm+1‖(n,∞) ≤ J0,1 + C3,1kJm,1 + C4,1k‖g‖(n,∞). (65)
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Now, for all t0 < t < t0 + T,

∥∥∥∇
∫ t

t0

e−(t−s)B(vm · ∇wm)(s)
∥∥∥

(n,∞)
≤

∫ t

t0

(t− s)−n/2(α/n)−1/2‖vm(s)‖(n/α,∞)‖∇wm(s)‖(n,∞)

≤ cKm,1Jm,2

∫ t

t0

(t− s)−α/2−1/2(s− t0)α/2−1ds

≤ C2,2kJm,2(t− t0)−1/2,

where C2,2 is independent of t0. As
∥∥∥∇

∫ t

t0

e−(t−s)Bf(s)ds
∥∥∥

(n,∞)
≤ c(t− t0)−1/2‖f‖BC(R;L(n,∞)),

we conclude that

sup
t0<t<t0+T

(t− t0)1/2‖wm+1(t)‖(n,∞) ≤ J0,2 + C2,2kJm,2 + c‖f‖BC(R;L(n,∞)). (66)

Then we can to take Jm+1,1 and Jm+1,2 being respectively,

J0,1 + C3,1kJm,1 + C4,1k‖g‖(n,∞), J0,2 + C2,2kJm,2 + c‖f‖BC(R;L(n,∞)).

Let Jm = Max{Jm,1, Jm,2}, m = 1, 2, ... and J0 = Max{J0,1+C4,1k‖g‖(n,∞), J0,2+
c‖f‖BC(R;L(n,∞))}. Then

Jm+1 ≤ J0 + kC̃Jm, (67)

where C̃ = Max{C3,1, C2,2}.
Consequently, if

k < 1/C̃ (68)

we have a uniform estimate for the sequence {Jm} give by

Jm ≤ J0

1− C̃k
≡ J, m = 0, 1, ...

Assuming (68) for a moment, we can see that the limits v, w satisfy (59)-(60)
and the proof of lemma is finished.

Lemma 20 The limit (v, w) given by Lemma 18, Lemma ?? satisfies the fol-
lowing estimate

(t− t0)1/4v(.) ∈ BC((t0, t0 + T ); L2n
σ )n, (69)

(t− t0)1/4w(.) ∈ BC((t0, t0 + T ); L2n), (70)

with

lim
m→∞

sup
t0<t<t0+T

(t− t0)1/4‖vm(t)− v(t)‖2n = 0, (71)

lim
m→∞

sup
t0<t<t0+T

(t− t0)1/4‖wm(t)− w(t)‖2n = 0. (72)
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Proof.As the Lemmas before, the proof is done by induction. In fact, we will
prove that there exist constants Nm,1, Nm,2, which are independents of t0, such
that

‖vm(t)‖2n ≤ Nm,1(t− t0)−1/4 (73)

‖wm(t)‖2n ≤ Nm,2(t− t0)−1/4. (74)

Since L(p0,∞) ∩ L(p1,∞) ⊂ Lp and ‖f‖p ≤ C(po, p1, λ)‖f‖1−λ
(p0,∞)‖f‖λ

(p1,∞) pro-
vided that p0 6= p1, 0 < λ < 1 and 1/p = (1− λ)/p0 + λ/p1, we have

‖v0(t)‖2n ≤ C(t− t0)−1/4‖a‖(n,∞),

‖w0(t)‖2n ≤ C(t− t0)−1/4‖b‖(n,∞),

where C = C(n) is independent of t0. Hence, we define N0,1 and N0,2 as
C‖a‖(n,∞) and C‖b‖(n,∞), respectively.
Assuming true (73)-(74), we can prove that (73)-(74) hold for the case m + 1.
In fact, note that for all φ ∈ C∞0,σ, ϕ ∈ C∞0 , we have

∣∣∣
(
−

∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds, φ
)∣∣∣ ≤

∫ t

t0

‖vm ⊗ vm‖n‖∇e−(t−s)Aφ‖n′

≤ C

∫ t

t0

‖vm‖22n(t− s)−3/4‖φ‖(2n)′ ,

∣∣∣
(
−

∫ t

t0

e−(t−s)B(vm · ∇wm)(s)ds, ϕ
)∣∣∣ ≤

∫ t

t0

‖wm · vm‖n‖∇e−(t−s)Bϕ‖n′

≤ C

∫ t

t0

‖vm‖2n‖wm‖2n(t− s)−3/4‖ϕ‖(2n)′ .

Hence by duality

∥∥∥
∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds
∥∥∥

2n
≤ C1,1N

2
m,1,

∥∥∥
∫ t

t0

e−(t−s)B(vm · ∇wm)(s)ds
∥∥∥

2n
≤ C1,2Nm,1Nm,2.

We also note that
∥∥∥

∫ t

t0

e−(t−s)AP (gwm)
∥∥∥

2n
≤

∫ t

t0

‖e−(t−s)AP (gwm)‖2n ≤
∫ t

t0

(t− s)−1/2‖g‖(n,∞)‖wm‖(2n)

≤ c‖g‖(n,∞)Nm,2.

and
∥∥∥

∫ t

t0

e−(t−s)Bf(s)ds
∥∥∥

2n
≤

∫ t

t0

‖e−(t−s)Bf(s)‖2n ≤
∫ t

t0

(t− s)−1/4‖f(s)‖(n,∞)ds

≤ c‖f‖BC(R;L(n,∞)).
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The inequalities above imply that

sup
t0<t<t0+T

(t− t0)1/4‖vm‖2n ≤ N0,1 + C1,1N
2
m,1 + C2,1Nm,2

sup
t0<t<t0+T

(t− t0)1/4‖wm‖2n ≤ N0,2 + C1,2Nm,1Nm,2 + c‖f‖BC(R;L(n,∞)),

with C2,1 = c‖g‖(n,∞). As before, letting Nm = Max(Nm,1, Nm,2), m = 1, 2, ...
and N0 = Max(N0,2 + c‖f‖BC(R;L(n,∞)), N0,1), we obtain

Nm+1 ≤ N0 + C̃N2
m + C2,1Nm, ,

where C̃ = Max(C1,1, C1,2). If we consider

C2,1 < 1, N0 <
(1− C2,1)2

4C̃
, (75)

we have that the sequence {Nm}m=∞
m=0 is bounded with

Nm ≤
(1− C2,1)−

√
(1− C2,1)2 − 4N0C̃

2C̃
, m = 0, 1, ...

Assuming (75) and working as the lemmas 18, 19, we conclude the proof of
Lemma.
Using the Lemma 18 and Lemma 19, we will prove that v ∈ BC((t0, t0 +
T ); L(n,∞)

σ ∩ L
(q∗,∞)
σ )n and w ∈ BC((t0, t0 + T ); L(n,∞) ∩ L(q∗,∞)); for this, we

need prove that

sup
t0<t<t0+T

‖vm(t)‖(n/s,∞) ≤ M1,s,m, s = α, s = 1, (76)

sup
t0<t<t0+T

‖wm(t)‖(n/s,∞) ≤ M2,s,m, s = α, s = 1, (77)

with M1,s,m,M2,s,m independent of t0. Calculations similar to Lemma 18, Lemma
19, yields

M1,α,0 = C‖a‖(n/α,∞), M1,1,0 = C‖a‖(n,∞),

M2,α,0 = C‖b‖(n/α,∞), M2,1,0 = C‖b‖(n,∞),

where C = C(n, s) is independent of t0. Suppose by induction that (76), (77)
are true.
Note that

∣∣∣
(
−

∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds, φ
)∣∣∣ ≤
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≤
∣∣∣
∫ t

t0

(vm ⊗ vm(s),∇e−(t−s)Aφ)ds
∣∣∣

≤
∫ t

t0

‖vm‖(n/α,∞)‖vm‖(n/s,∞)‖∇e−(t−s)Aφ‖(n/(n−α−s),1)ds

≤ CKm,1M1,s,m

∫ t

t0

(t− s)−α/2−1/2(s− t0)−(1−α)/2 · ‖φ‖(n/(n−s),1)ds

≤ CkM1,s,mB((1− α)/2, (1 + α)/2)‖φ‖(n/(n−s),∞),

for all φ ∈ C∞0,σ and all t0 < t < t0 + T,C = C(n, q, s) is independent of t0; By
duality we have consequently,

sup
t0<t<t0+T

∥∥∥
∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds
∥∥∥

(n/s,∞)
≤ C5,1kM1,s,m, s = 1, α, (78)

where C5,1 independent of t0.
Note that
∥∥∥

∫ t

t0

e−(t−s)AP (gwm)
∥∥∥

(n/s,∞)
≤ c‖g‖(b,∞)

∫ t

t0

(t− s)−n/2b‖wm(s)‖(n/s,∞)ds ≤ C6,1M2,s,m, (79)

with C6,1 = c‖g‖(n,∞) and

‖
∫ t

0

e−(t−s)Bf(s)ds‖(n/α,∞) ≤ c‖f‖BC(R;L(l,∞))

‖
∫ t

0

e−(t−s)Bf(s)ds‖(n,∞) ≤ cT.

Now, for all φ ∈ C∞0 and all t0 < t < t0 + T,

∣∣∣
(
−

∫ t

t0

e−(t−s)B(vm · ∇wm)(s)ds, φ
)∣∣∣ ≤

≤
∣∣∣
∫ t

t0

(wm · vm(s),∇e−(t−s)B)φ)ds
∣∣∣

≤
∫ t

t0

‖vm‖(n/α,∞)‖wm‖(n/s,∞)‖∇e−(t−s)Bφ‖(n/(n−α−s),1)ds

≤ CKm,1M2,s,m

∫ t

t0

(t− s)−α/2−1/2(s− t0)−(1−α)/2ds · ‖φ‖(n/(n−s),1)

≤ CkM2,s,mB((1− α)/2, (1 + α)/2)‖φ‖(n/(n−s),1).

Consequently,

sup
t0<t<t0+T

∥∥∥
∫ t

t0

e−(t−s)B(vm · ∇wm)(s)ds
∥∥∥

(n/s,∞)
≤ C4,2kM2,s,m, s = 1, α, (80)
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where C4,2 is independent of t0.
Hence, from (78)-(80) we can take

M1,s,m+1 = M1,s,0 + C5,1kM1,s,m + C6,1M2,s,m, (81)
M2,s,m+1 = M2,s,0 + c‖f‖BC(R;L(l,∞)) + C4,2kM2,s,m. (82)

Letting

Ms,m = Max{M1,s,m,M2,s,m}
Ms,0 = Max{M1,s,0,M2,s,0 + c‖f‖BC(R;L(l,∞))}

C̃ = Max{C5,1, C4,2},

from (81),(82) we obtain

Ms,m+1 ≤ Ms,0 + kC̃Ms,m + C6,1Ms,m, m = 0, 1, ... s = 1, α.

Then, if

C6,1 < 1, kC̃ < 1, (83)

we have that

Ms,m ≤ Ms,0

1− kC̃ − C6,1

, m = 0, 1, ..., s = 1, α,

which yields v ∈ BC((t0, t0 + T ); L(n,∞)
σ ∩ L

(q∗,∞)
σ )n and w ∈ BC((t0, t0 +

T ); L(n,∞) ∩ L(q∗,∞)), with

lim
m→∞

sup
t0<t<t0+T

‖vm(t)− v(t)‖(n/s,∞) = 0, s = 1, α,

lim
m→∞

sup
t0<t<t0+T

‖wm(t)− w(t)‖(n/s,∞) = 0, s = 1, α.

Now we see that under the conditions (53),(68), (83), the limit (v, w) belongs
to the class required in the Proposition. Moreover, there holds
∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds −→
∫ t

0

e−(t−s)AP (v · ∇v)(s)ds, in L(n,∞)
σ , (84)

∫ t

t0

e−(t−s)AP (wmg)(s)ds −→
∫ t

t0

e−(t−s)AP (wg)(s)ds, in L(n,∞)
σ , (85)

∫ t

0

e−(t−s)BP (vm · ∇wm)(s)ds −→
∫ t

0

e−(t−s)AP (v · ∇w)(s)ds, in L(n,∞), (86)
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uniformly in t ∈ (t0, t0 + t) as m →∞. In fact, note that by Lemma 7, Lemma
18 and Lemma 19, we have

∥∥∥
∫ t

t0

e−(t−s)AP (vm · ∇vm)(s)ds−
∫ t

t0

e−(t−s)AP (v · ∇w)(s)ds
∥∥∥

n,∞
≤

∫ t

t0

‖e−(t−s)AP ((vm − v) · ∇wm)(s)‖(n,∞)ds +

∫ t

t0

‖e−(t−s)AP (v · ∇(vm − v))(s)‖(n,∞)ds +

∫ t

t0

(t− s)−α/2‖vm(s)− v(s)‖(n/α,∞)‖∇vm(s)‖(n,∞)ds +

∫ t

t0

(t− s)−α/2‖v(s)‖(n/α,∞)‖∇(vm(s)− v(s))‖(n,∞)ds ×

cB(1− α/2, α/2)(J sup
t0<s<t0+T

(s− t0)(1−α)/2‖vm(s)− v(s)‖(n/α,∞)) +

k sup
t0<s<t0+T

(s− t0)1/2‖∇vm(s)−∇v(s)‖(n,∞)) −→ 0.

By other hand,

∥∥∥
∫ t

t0

e−(t−s)AP (wmg)(s)ds−
∫ t

t0

e−(t−s)AP (wg)(s)ds
∥∥∥

(n,∞)
≤

∫ t

t0

‖e−(t−s)AP ((wm − w)g)(s)‖(n,∞)ds

≤
∫ t

t0

(t− s)−n/2b‖g‖(b,∞)‖wm(s)− w(s)‖(n/α,∞) ≤ c(s− t0)(1−α)/2‖wm(s)− w(s)‖(n/α,∞) −→ 0. (87)

Analogously, we obtain (86).
Now we will prove the weak continuity on the initial dada. We first noting that
for any ϕ ∈ L

(n′,1)
σ and φ ∈ L(n′,1) we have

|(e−(t−to)Aa− a, ϕ)| = |(a, e−(t−t0)Aϕ− ϕ)|
≤ ‖a‖(n,∞)‖e−(t−t0)Aϕ− ϕ‖(n′ ,1) → 0, t → t+0 .

|(e−(t−to)Bb− b, φ)| = |(b, e−(t−t0)Aϕ− ϕ)|
≤ ‖b‖(n,∞)‖e−(t−t0)Bφ− φ‖(n′ ,1) → 0, t → t+0 .

As ‖v‖(q∗,∞), ‖w‖(q∗,∞) ≤ c and t1/4‖v‖2n, t1/4‖w‖2n ≤ c, we can obtain

lim
t→t0

( ∫ t

t0

e−(t−s)AP (wg)−
∫ t

t0

e−(t−s)AP (v · ∇v), φ
)

= 0,

lim
t→t0

( ∫ t

t0

e−(t−s)Bf −
∫ t

t0

e−(t−s)B(v · ∇w), ϕ
)

= 0.

Letting m →∞ in (43)-(44), we see by estimates above that (v, w) is a solution
of (40)-(41).
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The proof for uniqueness is standard, so we ma omit it.
It remains to estimate the time-interval T of existence in terms of the prescribed
data. As k is determined by (54), there exists a constant k̃ independent of t0
such that if K0 ≤ k̃, then the conditions (53),(68), (83) are satisfied. Now, from
(52) we see that T may be chosen as

T ≡
[ k̃

c1Max{‖a‖(n/α,∞), ‖b‖(n/α,∞) + ‖f‖BC(R;L(l,∞))}
]α−1

2
(88)

This complete the proof of Proposition.

Remark 21 The solution (v, w) of integral equations (37)-(40) satisfies that

v ∈ BC(t0, t0 + T, Lp
σ)n, w ∈ BC(t0, t0 + T, Lp),

for all p ∈ (n, q∗), with

‖v‖p ≤ C‖v‖1−λ
(n,∞)‖u‖λ

(q∗,∞), ‖w‖p ≤ C‖w‖1−λ
(n,∞)‖w‖λ

(q∗,∞), (89)

where λ is such that 1/p = (1− λ)/n + λ/q∗.

Proof of Theorem 16. Being (v, w) the integral solution of (40)-(41), we can
prove the time Holder continuity of

F (v, w) ≡ −P (v · ∇v) + P (wg), G(v, w) ≡ −(v · ∇w) + f,

in the L(n,∞) space. Indeed, we follow the ideas of [22], and use the Theorem
3.3.4 of [29].
Proof of Theorem 5. Let (u, θ) the periodic solution of the integral equations
(12),(13) given by Theorem 4. As u ∈ Y, θ ∈ X, we have by the Lemma (10)
that u ∈ BC(R; L(n,∞)

σ ∩Lq(∗,∞)
)n, θ ∈ BC(R;L(n,∞) ∩L(q∗,∞)). Let T defined

by (39). By Theorem 16, for every t0 ∈ R, there exists a unique strong solution
(v, w) of (1)-(5) on (t0, t0 + T ) with the initial data (u(t0), θ(t0)). From (31),
(38) we have

sup
t0<t<t0+T

‖v(t)‖(q∗,∞) + sup
t0<t<t0+T

‖∇u(t)‖(q,∞) ≤ C7,1 (90)

sup
t0<t<t0+T

‖w(t)‖(q∗,∞) + sup
t0<t<t0+T

‖∇θ(t)‖(q,∞) ≤ C7,2 (91)

where C7,1, C7,2 are independents of t0. Replacing (a, b) by (u(t0), θ(t0)) in
(40),(41), by (12), (13), we can see

u(t)− v(t) = −
∫ t

t0

e−(t−s)AP (u · ∇u)(s) +
∫ t

t0

e−(t−s)AP (v · ∇v)

+
∫ t

t0

e−(t−s)AP (θf)−
∫ t

t0

e−(t−s)AP (wg)

= −
∫ t

t0

e−(t−s)AP ((u− v) · ∇u)−
∫ t

t0

e−(t−s)AP (v · ∇(u− v))

+
∫ t

t0

e−(t−s)AP ((θ − w)g)

≡ I1(t) + I2(t) + I3(t), t0 < t < t0 + T, (92)
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θ(t)− w(t) = −
∫ t

t0

e−(t−s)B(u · ∇θ)(s) +
∫ t

t0

e−(t−s)B(v · ∇w)(s)

= −
∫ t

t0

e−(t−s)B((u− v) · ∇θ)−
∫ t

t0

e−(t−s)B(v · ∇(θ − w))(s)

≡ I4(t) + I5(t), t0 < t < t0 + T, (93)

Note que

‖I1(t)‖(n,∞) ≤ C

∫ t

t0

(t− s)−n/2(1/q)‖(u− v)(s)‖(n,∞)‖∇u(s)‖(q,∞)ds

≤ C sup
s∈R

‖∇u(s)‖(q,∞) sup
t0<s<t0+t

‖(u− v)(s)‖(n,∞)(t− t0)(1−n/2q),(94)

for all t0 < t < t0 + T, where C = C(n, q) is independent of t0.

|(I2(t), φ)| =
∣∣∣
∫ t

t0

(v ⊗ (u− v)(s)∇e−(t−s)Aφ)ds
∣∣∣

≤ C

∫ t

t0

‖v(s)‖(q∗,∞)‖∇e−(t−s)Aφ‖(q′,1)‖u(s)− v(s)‖(n,∞)

≤ C sup
t0<s<t0+t

‖v(s)‖(q∗,∞) sup
t0<s<t0+t

‖u(s)− v(s)‖(n,∞)(t− t0)1−n/2q‖φ‖(n′,1),

for all φ ∈ C∞0,σ and for all t0 < t < t0 + T, where C is independent of t0. By
duality, we have that

‖I2(t)‖(n,∞) ≤ C sup
t0<s<t0+t

‖v(s)‖(q∗,∞) sup
t0<s<t0+t

‖u(s)− v(s)‖(n,∞)(t− t0)1−n/2q, (95)

for all t0 < t < t0 + T.

‖I3(t)‖(n,∞) ≤ C

∫ t

t0

(t− s)−n/2(1/b)‖θ(s)− w(s)‖(n,∞)‖g‖(b,∞)

≤ C sup
t0<s<t0+t

‖θ(s)− w(s)‖(n,∞)(t− t0)1−n/2b, (96)

for all t0 < t < t0 + T, with C independent of t0.
An similar analysis to I1, I2 implies

‖I4(t)‖(n,∞) ≤ C sup
t0<s<t0+t

‖∇θ(s)‖(q̃,∞) sup
t0<s<t0+t

‖(u− v)(s)‖(n,∞)(t− t0)(1−n/2q̃),(97)

‖I5(t)‖(n,∞) ≤ C sup
t0<s<t0+t

‖v(s)‖(q∗,∞) sup
t0<s<t0+t

‖θ(s)− w(s)‖(n,∞)(t− t0)1−n/2q,(98)

for all t0 < t < t0 + T, with C independent of t0.
From (90)-(98) follow that for all t0 < t < t0 + T,

‖u(t)− v(t)‖(n,∞) ≤ C1

(
sup

t0<s<t0+t
‖u(s)− v(s)‖(n,∞)(t− t0)1−n/2q̃ +

+ sup
t0<s<t0+t

‖θ(s)− w(s)‖(n,∞))(t− t0)1−n/2b
)

(99)

‖θ(t)− w(t)‖(n,∞) ≤ C2 sup
t0<s<t0+t

‖θ(s)− w(s)‖(n,∞)(t− t0)1−n/2q, (100)
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where C1, C2 are independents of t0.
For all t0 < t < t0 + T let E(t) = Max{‖u(t)− v(t)‖(n,∞), ‖θ(t)− w(t)‖(n,∞)}.
Hence, from (99)-(72) follow that for all t0 < t < t0 + T

E(t) ≤ C3 sup
t0<s<t0+t

E(s)(t− t0)1−n/2p,

where p = Max(b, q). Therefore, E(t) ≤ C3 supt0<s<t0+t E(s)T 1−n/2p. Taking
ς ≡ min{(1/2C3)2p/(2p−n), T} we conclude that

E(t) ≤ 1/2 sup
t0<t<t0+t

E(s), (101)

for all t0 < t < t0 + T, and hence we encounter

E(t) ≡ 0 on [t0, t0 + ς).

Since ς can be taken independently of t0, we have E(t) ≡ 0 on [t0, t0 + T ). This
imply that u = v on [t0, t0 + T ), θ = w on [t0, t0 + T ).Finally, as t0 is arbitrary
by Theorem 16, we conclude that (u, θ) is the required solution in Theorem 5.
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