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Abstract

In this paper we establish the existence of multiple sign changing
solutions for the semilinear elliptic problem

—Au=g(u) in
u=20 on 09,

where Q2 ¢ B" is a bounded domain with smooth boundary 89, g :
R — R is a function of class C! such that g(0) = 0 and which is

superlinear or asymptotically linear at infinity.

1 Introduction

Let us consider the problem

—Au=g(u) in Q g
u=0 on 89, (1)

where 2 ¢ R¥ is an open bounded domain with smooth boundary 69 and
g : R — R is a function that satisfies

(gl) g(O) =0, g'(O) <A and g€ CI(R!R)'
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(g2) There exist constants R > 0 and > 2 such that
0 < 8G(t) < tg(t) forall |t| > R,

where G(t) = _]'0' g(s)ds.

Supposing that g has a subcritical growth. Ambrosetti and Rabinowitz
in (1] proved that (1) has two nontrivial solutions, one positive and another
negative. In [10]. Wang have proved that (1) has three nontrivial solu-
tions. More recently, Bartsch, Chang and Wang in (3] have showed that the
third solution changes sign and they also proved some additional informa-
tion about it Morse index. See also Castro. Cossio and Neuberger in [5, 6]

and Bartsch and Wang in [2].
We denote by 0 < A} < A2 < -+- < A, < ... the eigenvalues of (—A, H}).

where each A; occurs in the sequence as often as its multiplicity.
In order to state our results we need some additional conditions that was

used by Bartsch and Wang in [2].
(g3) There exist constants ¢ > 0 and 2 < p < 2N/(N — 2) such that

lg'(t) < c(1+[t]P7%), VteR.

(g4) There exists A € K such that ¢’(¢) > A for all t € R.

Theorem 1.1 Suppose that (g1)-(g4) hold, then problem (1) has at least two
sign changing solutions.

In our next theorems we study the asymptotically linear case. We assume
that
(gs5) ¢'(t) — w € R as |t| — 0o, and there exists k such that Ay < w < Agyy.

We note that (gs) implies (g3) and (g4).

Theorem 1.2 Suppose that (g1), (g2) and (gs) hold. If k > 2 then problem
(1) has two sign changing solutions.

Since, in the previous theorems, we have a positive and a negative solu-
tion we can conclude the following corollary.

Corollary 1.1 Problem (1) has at least four nontrivial solutions, in any of

the above situations.
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Theorem 1.3 Suppose that (g1), (g2) and (gs) holds. If g'(t) < Ak41 and
k > 3, then problem (1) has three sign changing solutions.

Corollary 1.2 Problem (1) has at least five nontrivial solutions, in the
above situation.

Theorem 1.4 Suppose that (g)), (g2) and (gs) hold. Ifg'(t) > g(t)/t, k =4
and g'(t) < Xs, then problem (1) has at least siz nontrivial solutions.

Now, to study the coercive case, assume that

(1) 9(0) =0 and g € C'(R,R).

—

(g5) limsupy.oo 9—(;— < A1
Theorem 1.5 Suppose that (g}) and (g5) holds. If g'(0) > A3 then (1) has
at least two sign changing solutions.

Bartsch and Wang in [2] have proved that problem (1) has one sign
changing solution. Assuming that g’(t) > g(t)/t, Bartsch, Chang and Wang
in [2] have proved that problem (1) has two sign changing solution, in the
asymptotically linear case.

2 Critical point theory on ordered Hilbert spaces

In this section we proof an abstract theorem that improves the Theorem 3.6
in (3].
[L]et H be a Hilbet space and Py C H a'closed cone (ie., Pg = Pg,
R*Pg C Pg and Pe N (—Pg) = {0}). Let X C E be a Banach space which
is densely embedded into E. We set P := PgN X and assume that P has
nonempty interior int(P) in X. The elements of int(P) are called positive,
those of — P negative and those of X \ P U(—P) sign changing. We assume
that there exists an element e € int(P) with (u,e)y > 0 for all u € P\ {0}.
Let ® : E — R be a functional satisfying the hypotheses

(®,) ® € C?, &(0) = 0 and @ satisfies the Palais-Smale condition. Any
critical point of @ lies in X.

(®2) The gradient of @ is of the form V& = Jd— K with K: H — H a
compact operator. In addition, K(X) C X K restricted to X is of
class C! and strong order preserving (i.e., u—v € P = K(u)—K(v) €
int(P)).



(®3) For a critical point up of ® any eigenvalue of the derivative DK (uo)
lies in X, the largest eigenvalue of DK (up) is simple and its eigenspace
is spanned by a positive eigenvector.

(®4) One of the following holds:
(i) ® is bounded below.

(ii) For every u € E'\ {0} we have ®(tu) — —co as t — oco. There
exists a < 0 such that ®(u) < a implies ¢'(u)u < 0.

(ili) There exists a compact self-adjoint linear operator Ay, defined
in H, such that V®(u) = u — Agu + o(||u||x) as ||u||ly — co. All
eigenvectors of Ay lies in X, the largest eigenvalue is simple and its
eigenspace is spanned by a positive eigenvector vy, € int(P) such that
(4, ve0) > 0 for every u € P\{0}. Moreover, the restriction A := Ag|x
is a bounded linear operator in X. And dimker(/d — Ag) = 0 (i.e.,
the infinity is nondegenerated).

Setting D := PU (—P)\ {0} and $* = {u € X ; ®(u) < a}. Asin
[2, 3] we restrict the negative gradient flow of ® on H to X and obtain a
continuous flow ¢* on X. We have, by [2, Lemma 3.1], that

¥t(v) € int(D) = int(P)Uint(—P), Yve D, t > 0.

This is the main property of ¢! that we need.
If U is a neighborhood of an isolated critical point ug with ®(ug) = ¢,

then by the excision we have for the critical groups of ug
The next lemma follows as in the proof of the Theorem 3.4 in [3].

Lemma 2.1 If ¢ is a critical value and ®~'(c)N D = {ui}l_,, then, for
€ > 0 small enough,

r
H;(3°**U D, U D) = P Cj(®, w).
i=1

Now we state our abstract critical point theorems. Let m(0) the Morse
index of 0 and n(0) = dimker ®”(0). We define the Morse index m(oc)
of infinity depending on which case in (®4) holds. In the case (i) we set
m(oo) = 0, in the case (ii) m(co) = 00, and in the case (iii) we set m(oo) is
the number of negative eigenvalues of Id — Ay.



Under the above hypotheses, assuming that m(oco) > 2 and m(0) < 1,
the Theorem 3.6 in (3] says that ® has a critical point which changes sign.
The next theorem improves this result and implies the Theorems 1.1 and 1.2.
The idea of the proof is standard, similar ideas can be found in Corollary
1.1 in [4] and Theorem 2.1 in [9]. Our approach is similar to the proof of
Theorem 3.8 in [3].

Theorem 2.1 Suppose m(o0) > 3, m(0) = 0 = n(0) and that all sign
changing critical point are isolated. Then ® has two critical point which
changes sign.

Proof: By the proof of Theorem 3.6 in (3] we have a sign changing critical
point u such that ®(u) = ¢ > 0 and C2(®, u) # 0. Indeed, we have that

Hy(®t*u D, d <y D) #£0, (2)
where € > 0 is small enough. Moreover, for a > 0 large enough,
Hp(X, o7 U D) = Hp(X,97°) =8,m..G, YpeN, (3)

(cf. [2] and [7]).
Now consider the following diagram

H3(X,8°*“UD) — Hy(®°**UD,#°UD) — Hy(X,d=UD)
l
Ha(®°+<U D, ¢ U D)
!
Hi(®~¢UD,®-°U D)

Since the vertical maps are part of the exact sequence of (Pte U D, P U
D, ®~*UD) it follows from (2) that Ho(®°+¢UD,®~*UD) # 0 or Hy(®c U
D, ®7?UD) # 0. In the first case we deduce that H3(X, ®°*¢UD) # 0 by (3)
and because the top row is part of exact sequence of (X, ®¢+<u D, uD).
Case 1: H3(X,®“t* U D) # 0.

As in [3] we can show that there exists a critical value d > ¢ with H3($4-€U
D, $%¢U D) # 0. By the Lemma 2.1 we have a critical point w in X \ D
with C3(®,w) # 0 and ®(w) = d. Since d > ¢ > 0 we have that w # u and

w is nontrivial.
Case 2: H ($"¢U D, 9~ UD) #0. .
Again we can show that there exists a critical value d < ¢ with H)(®4¢uU

D,®%"¢U D) # 0. By the Lemma 2.1 we have a critical point w in X \ D
with C1(®,w) # 0 and ®(w) = d. Since d < c we have that w # u. As 0
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is a nondegenerated local minimum we get C,(®,0) = d0G, and thus w is
nontrivial. o

The next theorem implies the Theorem 1.5 and improves the e:dstt::'nce
result in the Theorem 3.4 in [3]. The proof is similar the proof of the previous
theorem.

Theorem 2.2 Suppose m(o0) = 0, m(0) > 3 and that all sign Ch“"Qing
critical point are isolated. Then ® has two critical point which changes sign.

Proof: By the proof of Theorem 3.4 in [3] we have a sign changing critical
point u such that ®(u) = ¢ < 0, Cy(®, u) # 0. Thus

Hy(®t* U D, d““u D) # 0, (4)
where € > 0 is small enough. We have that, for a > 0 large enough,
Hp(X, 972U D) = Hp(X,d7°) = Hp(X) =6,0G, YpeN. (5)
Now consider the following diagram

Hy(X,2UD) — H($4UD,®=°UD) — Hy(X,d-°U D)
l
Hy($°+< U D, &<y D)
l
Hy(®°~<UD,d-* U D)

Again, we can conclude that Ho(®7*UD, ®~°UD) # O or Hy(X, ®°*euD)
0. It follows that there exists a critical point w € X \ D that satisfies w F#u
and either Co(®,w) # 0 or C2(®,w) # 0. Since m(0) > 3 the Shifting
Theorem (see [7, Corollary 5.1, Chapter 1]) implies that Cp(®,0) = 0 for
p=0,1,2. Thus w is nontrivial,

O

3 Proof of main Theorems
The natural variational setting is to consider
1 2
— = 1
2() = 1 fn [Vul2dz /n G(u)dz, ue H)(@Q). (6)

To apply the Theorem 2.1 and the theory from (2, 3], we need to modify the
functional,



Let be H the Hilbert space Hj(f2) equipped with the inner product

(u,v) :=/Vqud::+Afuvda:,
o Q

where A is given by (gq). Setting f(t) = g(t) + At and F(t) = fot f(s)ds we
can write ¢ as

B() = %Ilullidr—/ﬂ[-‘(u)d:, weH,

where
Il = [ (19l + xut)ea.
9]

The partial ordering on H is given by the closed cone Py = {u€ H; u >
0 almost everywhere}. Let X the Banach space C}(Q2) with the L% norm.
We know that X is dense in H and that P = X N Pg has nonempty interior
int(P). The normalized eigenfunction ¢), associated to A, satisfies ) €

int(P) and (u, ;) > 0 for all u € P\ {0}.

Proof of Theorem 1.1 and 1.2

We just check the hypotheses of Theorem 2.1. By (g1) we have that m(0) =
0 = n(0). As in [3] we can show that ® satisfy (®1) — (®3) and (P4)(22),
(®4) (i) in the superlinear and asymptotically linear cases, respectively.
We observe that the nonresonance assumptions (®4)(iti) follows from w ¢
o(—A). We have that m(co) = oo in the superlinear case, and m(c0) > 3

in the asymptotically linear case, since w > Az.
(]

Proof of Theorem 1.3

By (3) we can conclude that there exists a sign changing critical point 2

such that
Cr(®,2) #0, (7

see the Theorem 2.3 in [3]. The theorem follows from k£ > 3, the next Claim
and the previous theorem.

Claim: Cp(®, z) = 0pkG.



Indeed, let ; the eigenfunction associated to Aj. For j = k + 1 we have
¥ o) = [ Vel - [ 42145

A f ?_f /(2)02
k+1 n‘PlJ ng( )¥;
[Oes =g >0

v

Thus we can conclude that m(z) 4+ dimker ®”(z) < k, where m(z) denotes
the Morse index of z. By (7) and a corollary of the Shifting Theorem (see (7,
Corollary 5.1, Chapter 1]) we can conclude that m(z) + dimker d"(z) =k
and Cp(F, z) = 6pkG.

O

Proof of Theorem 1.4

First we observe that g'(t) > g(t)/t implies that the sign changing critical
points have Morse index at least 2. Then, by Shifting Theorem, we can
conclude that uz and w are such that

Cp(®,u) = 652G, and Cp(®,w) =0 for p=1, 2.

As in the previous theorem we have that m(w) + dim ker ®"(w) < 4. Then
dim ker & (w) = k < 2, since m(w) > 2. It follows from [7, Corollary 5.1,

Chapter 1] that
Cp(®,w) =0 for all p#3.

Let uT be the negative and positive critical points of ®. We know that
Cp(®,u%) = 6p1G.

Suppose that ® has not another critical points than 0, u*, u, w, z. Then
the Morse inequality read as

(—=1)% = (=1)* + rankCs (@, w)(=1)* + (=1)° + (=1)' + (=1)" + (=1)".

This is a contradiction, since C3(®,w) # 0.
a



Proof of Theorem 1.5

We can suppose that |¢'(t)] < A for all t € R and some A > 0 (see [8,
Theorem 8] and [3, Theorem 2.1]). Thus (g4) is satisfied. In this case @
satisfy (®1) — (®3). And (®4)(i) follows from (gi). Since g'(0) > A3, we

have that m(0) > 3. Applying the Theorem 2.2 we obtain the Theorem 2.1.
a
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