
A bootstrap test for the expectation of fuzzy

random variables
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Abstract

We consider the problem of testing a single hypothesis about the expectation of a
fuzzy random variable. For this purpose we take as test statistic a distance between
the sample mean and the mean in the null hypothesis. We show that the test
rejecting the null hypothesis for large values of the test statistic is consistent. We
also prove that the bootstrap can be employed to consistently approximate the null
distribution of the test statistic. Finally, we study the finite sample performance of
the proposed approximation and compare it with others by means of a simulation
study.
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1 Introduction

The concept of fuzzy random variable (frv) was introduced by Puri and Ralescu
(1986) as a way to handle the uncertainty due to both: the randomness in the
outcomes of a random experiment and the imprecision of these outcomes (to
be rigorous, we must say that several concepts of frv were previously given,
as the ones in Kwakernaak (1978) and Hirota(1981), but the concept by Puri
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and Ralescu (1986) has been the more successful approach). Since then, many
researchers have tried to give the fuzzy analogue of results on traditional (or
classical) random variables (we refer this way to random variables taking va-
lues in Rd, for some fixed d ∈ N) as the strong law of large numbers and the
central limit theorem (CLT). This is very important because these results are
the base of many inferential procedures for classical random variables, which
could be extended to frv.

Nevertheless, neither all results on classical random variables can be extended
to the fuzzy context, nor when it is possible the extension is unique. For exam-
ple, while the normal distribution plays a central role in the theory of classical
random variables, the concept of normal frv, introduced by Puri and Ralescu
(1985), is of very limited application, since in practice the assumption of nor-
mality of a frv (either exact or approximate) is unrealistic in many situations
because any two variable values are forced to differ by a translation. An ex-
ample of the nonuniqueness of extensions of classical results is the different
versions of the CLT that there exists in the literature on frv, each depending
on the considered distance in the space of fuzzy numbers (see for example,
Klement, Puri and Ralescu (1986), Shoumei, Ogura, Proske and Puri (2003),
Körner (2000)).

The importance of the CLT in the classical context is that it provides a way
to easily estimate the distribution of sample means, and hence it gives a base
to make approximate inferences on the expectation of a population, where
by approximate we mean that they would be exact if the sample size were
”infinity”. In the fuzzy context, in addition to the existence of several versions
of the CLT, there is another practical disadvantage: the limit law is, in most
cases, difficult to handle. Therefore, the CLT for frv does not seem to be a
very useful tool to make inferences on the expected value of frv.

Nevertheless, in the classic context there are other ways to consistently ap-
proximate the distribution of a statistic that could be extended to the fuzzy
context. An example is the bootstrap. Since it was introduced by Efron (1979),
there have been a huge literature on the topic (for classical random variables),
whose main aim is to show that the bootstrap works in many situations, in
the sense that it provides consistent estimates of the distribution of many
statistics (see for example the book by Shao and Tu (1995)). The objective
of this paper is to show that the bootstrap can be employed to consistently
estimate the distribution of a distance between the sample mean of a sample
of frv and the expectation of the population generating the sample. This will
allow us to give a useful test for testing hypothesis on the expectation of frv.

The paper is organized as follows. Section 2 contains some preliminary results
and establishes the notation that will be used along the paper. In Section 3 we
study the nonnull asymptotic behaviour of the test proposed by Körner (2000)
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and discuss some problems related to the asymptotic approximation to the null
distribution of the test statistic. In Section 4 we show that the bootstrap can
be employed to consistently estimate the null distribution of the test statistic.
To study and compare the finite sample performance of both approximations,
we have carried out a simulation study. The obtained results are displayed in
Section 5. Finally, Section 6 concludes and indicates some possible extensions
of the results in this paper.

2 Preliminaries

A fuzzy set of Rd is a function u : Rd → [0, 1]. The study in this paper is
restricted to Fc(Rd) the class of normal compact fuzzy sets of Rd, that is, the
class of fuzzy sets u : Rd → [0, 1] satisfying

(i) u is normal, i.e., there exists x0 ∈ Rd such that u(x0) = 1,
(ii) for each 0 ≤ ε ≤ 1, the ε-level set of u,

[u]ε =




{x ∈ Rd / u(x) ≥ ε}, ε ∈ (0, 1],

{x ∈ Rd / u(x) > 0}, ε = 0,

is convex and compact.

A linear structure in Fc(Rd) is defined via the following operations

(u + v)(x) = sup
y∈Rd

min{u(y), v(x− y)}, (λu)(x) =





u(xλ−1) if λ 6= 0,

χ{0}(x) if λ = 0,

where u, v ∈ Fc(Rd), λ ∈ R and χA denotes the characteristic function of
A ⊆ Rd. Note that [u + v]ε = [u]ε + [v]ε and [λu]ε = λ[u]ε, ∀ u, v ∈ Fc(Rd),
∀ ε ∈ [0, 1], ∀ λ ∈ R.

For any u ∈ Fc(Rd), the support function of u, su(·, ·) : Sd−1 × [0, 1] → R, is
defined by

su(y, ε) = sup{〈y, a〉, a ∈ [u]ε, y ∈ Sd−1},

where 〈·, ·〉 denotes the usual inner product in Rd, Sd−1 = {y ∈ Rd / ‖y‖ = 1}
and ‖.‖ is the Euclidean norm. The mapping u 7→ su is an isomorphism of
Fc(Rd) onto the cone of continuous functions C(Sd−1 × [0, 1]), satisfying

sλu+µv = λsu + µsv, u, v ∈ Fc(Rd), λ, µ ≥ 0.
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We can endow Fc(Rd) with several metrics. In this work we consider the
following

D2(u, v) =





d

1∫

0

∫

Sd−1

|su(y, ε)− sv(y, ε)|2 ν(dy)dε





1/2

,

∀u, v ∈ Fc(Rd), where ν is the normalized Lebesgue measure on Sd−1, ν(Sd−1) =
1. The corresponding norm is ‖u‖2 = D2(u, χ{0}).

Let (Ω,A, P ) be a probability space. Following Puri and Ralescu (1986), a
frv X is a Borel measurable function, X : Ω → (Fc(Rd), D∞), where for
u, v ∈ Fc(Rd)

D∞(u, v) = sup
ε>0

sup
y∈Sd−1

|su(y, ε)− sv(y, ε)| .

The expectation of X is the fuzzy set EX ∈ Fc(Rd) whose level sets satisfy

[EX]ε = EXε

where Xε : Ω → Kc(Rd) = {compact convex subsets of Rd} defined by
Xε(w) = [X(w)]ε, is a random compact set and EXε is the Aumann expecta-
tion (Aumann (1965)),

EXε = {EZ / Z ∈ L1(Ω,A, P ) and Z(w) ∈ Xε(w) a.s.},

where EZ is the expectation of the random vector Z. Each random vector Z
in the definition of EXε is called a selection of Xε.

Klement, Puri and Ralescu (1986) gave the first CLT for frv. Their result
has been extended by several authors. An example is the paper by Shoumei,
Ogura, Proske and Puri (2003). The limit in these papers is with respect to
the metric D∞. Here we consider the CLT in Körner (2000) that uses the
metric D2. An advantage of this result is that the limit distribution can be
characterized by the eigenvalues of an operator.

Theorem 2.1 Let X1, X2, ..., Xn be independent and identically distributed
frv with E‖X1‖2

2 < ∞. Then

nD2(X̄n,EX1)
2 −→

∞∑

k=1

λkχ
2
1k,
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weakly, where X̄n = 1
n

∑n
i=1 Xi,χ

2
11, χ

2
12, ... are independent chi-square variates

with one degree of freedom and the set {λk} are the eigenvalues of the covari-
ance operator CX of X1 defined as

fCXg = Ef(sX − EsX)g(sX − EsX), f, g ∈ L∗2(S
d−1 × [0, 1]).

3 A test for the expectation of a frv

Let X1, X2, ..., Xn be independent and identically distributed (iid) frv with
E‖X1‖2

2 < ∞ and let µ0 ∈ Fc(Rd). Theorem 2.1 characterizes the limit dis-
tribution of nD2(X̄n,EX1)

2 and hence it allows us to give an asymptotically
α-level test, for some fixed 0 < α < 1, for testing the null hypothesis

H0 : EX1 = µ0.

Specifically, the test rejects H0 if

Tn = nD2(X̄n, µ0)
2 > t1−α, (1)

where t1−α is the (1 − α)-quantile of the distribution of the random variable
Y =

∑∞
k=1 λkχ

2
1k, with {λk} and {χ2

1k} as defined in Theorem 2.1.

Test (1) was proposed by Körner (2000). Next we study its asymptotic nonnull
behaviour.

Theorem 3.1 Let X1, X2, ..., Xn be iid frv with E‖X1‖2
2 < ∞ and mean

EX1 = µ ∈ Fc(Rd). Then

D2(X̄n, µ0) −→ D2(µ, µ0) a.s. as n →∞.

PROOF. Since sX̄n
(y, ε) = 1

n

∑n
i=1 sXi

(y, ε), we have that

D2(X̄n, µ0)
2 =

d

n2

n∑

i,j=1

h(Xi, Xj)

with

h(u, v) =

1∫

0

∫

Sd−1

g(u; y, ε)g(v; y, ε)ν(dy)dε,

g(u; y, ε) = su(y, ε)− sµ0(y, ε).
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Hence

D2(X̄n, µ0)
2 =

d

n2

∑

i6=j

h(Xi, Xj) +
d

n2

n∑

i=1

h(Xi, Xi).

Now, since Eh(X1, X2) = D2(µ, µ0)
2 and Eh(X1, X1) = E‖X1‖2

2 < ∞, the
result follows from the last equality, Theorem 5.4.A in Serfling (1980) and the
SLLN. 2

As an immediate consequence of Theorem 3.1 we have the following.

Corollary 3.2 Let X1, X2, ..., Xn be iid frv with E‖X1‖2
2 < ∞ and mean

EX1 = µ 6= µ0. Then

Tn −→∞ a.s. as n →∞.

From Corollary 3.2 it follows that any test rejecting H0 for large values of
Tn is strongly consistent against any fixed alternative. In particular, P (Tn >
t1−α) → 1 when H0 is not true.

A problem with test (1) is the computation of the critical point t1−α, or equiv-
alently, the calculus of the asymptotic p-value pasym = P (Y ≥ tobs), where
tobs is the observed value of the test statistic Tn. Any of these tasks requires:
first, to obtain the set of eigenvalues {λk} of the covariance operator CX ; and
then to approximate the distribution of Y =

∑∞
k=1 λkχ

2
1k, since the distribu-

tion of Y is only known for special cases, that is, for especial sequences of
eigenvalues. Some authors have proposed several procedures to approximate
the distribution of Y (see for example Rao and Scott (1981)).

The big problem with test (1) is the computation of the set of eigenvalues
{λk}. This is very difficult for two main reasons: one, because to obtain the
eigenvalues of an operator is not an easy question; the other reason is that, in
most cases, the operator CX is unknown, since it depends on some population
parameters and the only information that we usually have on the population is
the random sample X1, X2, ..., Xn. To appreciate these facts, we next consider
frv taking values in a commonly used subset of Fc(R): the class of LR-fuzzy
numbers, that will be denoted by FLR(R).

Fuzzy sets in FLR(R), that we denote u = {m, l, r}LR, have the form

{m, l, r}LR = m− luL + ruR,

where uL and uR are fuzzy numbers with ε-level sets [uL]ε = [0, L−1(ε)] and
[uR]ε = [0, R−1(ε)], ε ∈ (0, 1], L,R : [0,∞) → [0, 1] being fixed left continuous
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and non-increasing functions with L(0) = R(0) = 1. The functions L and R
are called the left and right shape functions, m the modal point and l, r ≥ 0 are
the left and right spreads, respectively, of the LR-fuzzy number. The ε-level
sets of an LR-fuzzy number u are

[u]ε = [m− lL−1(ε), m + rR−1(ε)], ε ∈ (0, 1].

Its support function is

su(u, ε) =




−m + lL−1(ε) if u = −1,

m + rR−1(ε) if u = 1.

The D2 distance between two LR-fuzzy numbers ua = {ma, la, ra}LR and
ub = {mb, lb, rb}LR is

D2(ua, ub)
2 = (ma −mb)

2 + R2(ra − rb)
2 + L2(la − lb)

2

+2(ma −mb) [R1(ra − rb)− L1(la − lb)] ,

where

L1 =
1

2

1∫

0

L−1(x)dx, L2 =
1

2

1∫

0

L−1(x)2dx

and R1, R2 are similarly defined.

Let m, l, r be three random variables with P (l ≥ 0) = P (r ≥ 0) = 1, a random
LR-fuzzy number is defined by X = {m, l, r}LR. To ensure that E‖X‖2

2 < ∞,
the random variables m, l, r must have finite second order moment, that is,
Em2, El2, Er2 < ∞, and L2, R2 < ∞. Next Theorem, due to Körner (2000),
gives a way to calculate the eigenvalues of the covariance operator of a random
LR-fuzzy number.

Theorem 3.3 Let X = {m, l, r}LR be a random LR-fuzzy number with E‖X‖2
2 <

∞. Then the eigenvalues of the covariance operator CX are equal to the eigen-
values of the matrix

KX =




Cmm − L1Clm + R1Crm L2Clm − L1Cmm R1Cmm + R2Crm

Clm − L1Cll + R1Crl L2Cll − L1Clm R1Clm + R2Crl

Crm − L1Crl + R1Crr L2Crl − L1Crm R1Crm + R2Crr




,
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where for z, y ∈ {m, l, r} : Czy = E(z − Ez)(y − Ey).

From Theorems 2.1 and 3.3, to apply test (1) to testing H0 for random LR-
fuzzy numbers we have to know the variances and covariances of the random
variables m, l, r, which is not very usual in most practical situations. To calcu-
late the critical point t1−α or the asymptotic p-value pasym = P (Y ≥ tobs) we
may proceed as follows: first, estimate KX from the data; second, approximate
the distribution of Y by that of Ŷ =

∑3
k=1 λ̂kχ

2
1k, where λ̂1, λ̂2, λ̂3 are the eigen-

values of K̂X , the estimator of KX ; and third, approximate the distribution
of Ŷ by some method as (Rao and Scott (1981)):

(a) λ̂χ2
r, where r = rank{K̂X} and λ̂ =

∑3
k=1 λ̂k/r.

(b) λ̂(1)χ
2
r, where r is as before and λ̂(1) ≥ λ̂(2) ≥ λ̂(3).

(c) λ̂(1 + θ2)χ2
ν where r, λ̂ are as before, ν = r/(1 + θ2) and θ2 =

∑r
i=1(λ̂(i) −

λ̂)2/rλ̂.

4 A bootstrap test for the expectation of a frv

In Section 3 we have shown that any test rejecting H0 for large values of Tn

has nice properties. To decide when rejecting H0, we need to know the null
distribution of Tn which, in general, is quite difficult and so, in most cases,
one have to approximate it. A way to do this is by considering its limiting null
distribution, but we have seen that this is not operational.

When H0 is true, Tn has as weak limit a linear combination of independent chi-
square variates (Theorem 2.1), usually called a ω2-distribution. In the classical
context, that is, for random variables, the bootstrap has become a very useful
tool for estimating the distribution of statistics converging in law to a ω2-
distribution (see for example Babu (1984), Arcones and Giné (1992), Jiménez-
Gamero, Muñoz-Garćıa and Pino-Mej́ıas (2003)). In this section we show that
the bootstrap also works in the context considered in this paper, that is, it
can be employed to consistently approximate the null distribution of Tn.

Let X1, X2, ..., Xn be iid frv. Given X1, X2, ..., Xn, let X∗ = (X∗
1 , X

∗
2 , ..., X

∗
n)

be a bootstrap sample, that is, X∗
1 , X

∗
2 , ..., X

∗
n are iid frv such that

P∗(X∗
1 = Xj) =

1

n
, j = 1, 2, ..., n,

where P∗ denotes the bootstrap probability law, that is, the conditional prob-
ability, given the original sample X1, X2, ..., Xn. Let T ∗

n = nD2(X̄
∗
n, X̄n)2, with

X̄∗
n = 1

n

∑n
i=1 X∗

i . We call the conditional distribution of T ∗
n , given X1, X2, ...,

Xn, the null bootstrap distribution of Tn. Next theorem shows that the null
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bootstrap distribution of Tn, P∗(T ∗
n ≤ x), consistently estimates the null dis-

tribution of Tn, PH0(Tn ≤ x), where PH0(.) denotes the probability when H0

is true.

Theorem 4.1 Let X1, X2, ..., Xn be iid frv with E‖X1‖4
2 < ∞. Then

sup
x∈R

|P∗(T ∗
n ≤ x)− PH0(Tn ≤ x)| = o(1).

PROOF. From the proof of Theorem 3.1,

D2(X̄n, µ0)
2 =

d

n2

n∑

i,j=1

h(Xi, Xj).

For fixed u ∈ Fc(Rd), we have that

EH0h(X1, u) = EH0h(X1, X2) = 0,

where EH0 denotes the expectation when H0 is true. Therefore, D2(X̄n, µ0)
2

is a degenerate degree 2 V-statistic. The hypothesis E‖X1‖4
2 < ∞ implies

that Eh(X1, X1)
2 < ∞ and Eh(X1, X2)

2 < ∞. Hence, the result follows from
Theorem 3.5 in Arcones and Giné (1992) 2.

Remark 4.2 The asymptotic approximation in Theorem 2.1 to the null distri-
bution on Tn assumes that E‖X1‖2

2 < ∞, while Theorem 4.1 requires E‖X1‖4
2 <

∞ for the consistency of the null bootstrap distribution of Tn. This second
stronger assumption cannot be dropped, since if we only assume that E‖X1‖2

2 <
∞ the bootstrap can fail. Bickel and Freedman (1981) have given a counter-
example showing this fact.

Remark 4.3 It is important to note that Theorem 4.1 holds whether or nor
H0 is true. If H0 is indeed true, Theorem 4.1 implies that the null bootstrap
distribution of Tn converges to its null distribution almost surely. If H0 is not
true, then Theorem 4.1 says that the null bootstrap distribution of Tn converges
to the distribution of nD2(X̄n,EX1)

2.

Remark 4.4 Note that T ∗
n is not an ”exact bootstrap copy” of Tn, as it is

T̃ ∗
n = nD2(X̄

∗
n, µ0)

2. The reason to take T ∗
n instead of T̃ ∗

n is that the bootstrap
distribution of T̃ ∗

n does not consistently estimate the null distribution of Tn,
since T̃ ∗

n is not a is a degenerate degree 2 V-statistic as it is Tn when the null
hypothesis is true.

For testing H0 we consider the following test: reject H0 if

Tn > t∗1−α, (2)
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where t∗1−α is the (1− α)-quantile of the null bootstrap distribution of Tn, or
equivalently, if the bootstrap p-value, pboot = P∗(T ∗

n ≥ tobs), is less or equal
than α. From Theorem 4.1, the test (2) has asymptotically level α. Also, as
a consequence of Corollary 3.2, the test (2) is consistent against any fixed
alternative.

In general, the values t∗1−α and pboot are not known, but they can be approx-
imated by simulation: first, generate B bootstrap samples, X∗1,X∗2, ...,X∗B,
and then approximate the null bootstrap distribution of Tn by the empirical
distribution function of T ∗1

n , T ∗2
n , ..., T ∗B

n , where T ∗b
n = nD2(X̄

∗b
n , X̄n)2 and X̄∗b

n

is the sample mean of X∗b, 1 ≤ b ≤ B.

5 Simulations

The results in Theorems 2.1 and 4.1 give two ways to approximate the null
distribution of Tn for testing H0: the asymptotic null distribution and the boot-
strap null distribution, respectively. Both approximations are consistent, that
is, they work when the sample size is large. To compare the finite sample per-
formance of these approximations we have carried out a simulation experiment.
In this experiment we have considered random LR-fuzzy numbers because, as
we saw in Section 3, in this particular case it is possible to estimate the eigen-
values of the covariance operator. We have taken L(x) = R(x) = max{0, 1−x},
m, l, r independent such that m ∼ N(0, 1) and r and l are uniformly dis-
tributed on the interval (0, 1), r, l ∼ U(0, 1). We have generated 10000 random
samples of size n = 10. For each sample we have calculated the observed value
of the test statistic Tn for testing the null hypothesis

H01 : E{m, l, r}LR = {0, 1/2, 1/2}LR.

To approximate the p-value of the observed test statistic we have first esti-
mated KX (see Theorem 3.3) by estimating the variances and covariances of
m, l, r by its sample variances and covariances, respectively; next we have ob-
tained the eigenvalues of the resulting estimator of KX , λ̂1, λ̂2, λ̂3; and finally,
to approximate the p-value of the observed test statistic we have used the three
approximations to the distribution of Ŷ =

∑3
k=1 λ̂kχ

2
1k at the end of Section

3. This way we have obtained three estimates of the asymptotic p-value. We
refer to them as asymp (a), asymp (b) and asymp (c), respectively. To see
the goodness of these approximations we have calculated the ”exact” asymp-
totic p-value. We refer to it as asymp. To do this, we have first calculated the
eigenvalues of KX , λ1, λ2, λ3; next, we have generated 10000 values of three in-
dependent χ2

1 distributions: χ2
11(h), χ2

12(h), χ2
13(h); and finally, we have taken

the asymptotic p-value as the relative frequency of ω(h) =
∑3

k=1 λkχ
2
1k(h),
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1 ≤ h ≤ 10000, greater or equal than the observed value of the test statistic.
We have also estimated the p-value by means of the bootstrap. We refer to
it as boot. To approximate the ideal bootstrap estimator we have generated
B = 1000 bootstrap samples.

α = 0.01 α = 0.05 α = 0.10 mean var KS

n=10 asymp 0.0112 0.0480 0.0945 0.502 0.083 0.009

asymp (a) 0.0801 0.1395 0.1832 0.578 0.137 0.224

asymp (b) 0.0086 0.0223 0.0365 0.786 0.072 0.448

asymp (c) 0.0587 0.1143 0.1626 0.535 0.113 0.115

boot 0.0410 0.0959 0.1550 0.464 0.091 0.063

n=20 asymp 0.0093 0.0496 0.0960 0.497 0.082 0.014

asymp (a) 0.0678 0.1231 0.1672 0.590 0.130 0.224

asymp (b) 0.0035 0.0106 0.0231 0.800 0.064 0.468

asymp (c) 0.0453 0.0970 0.1438 0.545 0.108 0.119

boot 0.0246 0.0756 0.1279 0.478 0.086 0.032

n=30 asymp 0.0108 0.0462 0.0894 0.502 0.082 0.014

asymp (a) 0.0571 0.1136 0.1557 0.599 0.129 0.232

asymp (b) 0.0023 0.0096 0.0190 0.808 0.060 0.474

asymp (c) 0.0362 0.0861 0.1330 0.555 0.107 0.125

boot 0.0181 0.0630 0.1175 0.489 0.085 0.018

n=40 asymp 0.0099 0.0484 0.0965 0.509 0.083 0.024

asymp (a) 0.0568 0.1112 0.1530 0.609 0.129 0.250

asymp (b) 0.0014 0.0071 0.0161 0.813 0.059 0.486

asymp (c) 0.0337 0.0839 0.1300 0.564 0.107 0.145

boot 0.0154 0.0605 0.1112 0.499 0.086 0.014

Table 1: Simulated size, mean, variance and KS statistic for testing H01.

We have considered three nominal sizes: 0.01, 0.05 and 0.10. For each approxi-
mation, we have calculated the relative number of p-values less or equal than
the nominal size, that is, the simulated size. We have also obtained the mean
and the variance of the p-values. Since H01 is true, if the considered approxi-
mations were exact, then the calculated p-values would be a random sample
from a uniform distribution on the interval (0,1). So, as a global measure of
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the performance of the approximations we have calculated the Kolmogorov-
Smirnov test statistic of uniformity (KS) for each set of 10000 p-values ob-
tained in each approximation. We have repeated the above experiment for
n = 20, 30, 40, 50, 100, 200. The obtained results are displayed in Table 1.

α = 0.01 α = 0.05 α = 0.10 mean var KS

n=50 asymp 0.0112 0.0504 0.0912 0.504 0.081 0.013

asymp (a) 0.0543 0.1094 0.1489 0.604 0.127 0.237

asymp (b) 0.0014 0.0075 0.0167 0.813 0.058 0.481

asymp (c) 0.0336 0.0845 0.1265 0.559 0.105 0.130

boot 0.0156 0.0581 0.1089 0.494 0.083 0.012

n=100 asymp 0.0104 0.0464 0.0901 0.507 0.083 0.015

asymp (a) 0.0489 0.1022 0.1445 0.609 0.126 0.242

asymp (b) 0.0014 0.0063 0.0133 0.818 0.055 0.485

asymp (c) 0.0273 0.0746 0.1209 0.565 0.105 0.139

boot 0.0125 0.0507 0.1006 0.502 0.084 0.006

n=200 asymp 0.0111 0.0498 0.0943 0.501 0.083 0.008

asymp (a) 0.0545 0.1055 0.1493 0.602 0.127 0.233

asymp (b) 0.0010 0.0065 0.0149 0.813 0.057 0.479

asymp (c) 0.0306 0.0788 0.1234 0.559 0.106 0.130

boot 0.0133 0.0557 0.1037 0.497 0.084 0.008

Table 1. (continuation).

Looking at Table 1 we see that the bootstrap approximation behaves much
better than approximations asymp (a), asymp (b) and asymp (c). The size
of the asymptotic approximation (a) is always (for all the considered sam-
ple sizes) much larger than the nominal level; for the size of the asymptotic
approximation (b) it happens the opposite: it is always much smaller than
the nominal level; the mean and the variance of these approximations does
not match the theoretical values of a uniform distribution on (0,1), 0.5 and
1/12=0.083, respectively; the KS statistics for testing uniformity of these ap-
proximations are quite large, specially for the asymptotic approximation (b).
From among the considered asymptotic approximations, the asymptotic ap-
proximation (c) is the one having sizes, mean and variance closest to the ideal
values. Nevertheless, its behaviour is poorer than the bootstrap, which works
very well even for small sample sizes. What it is really happening is that the
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considered approximations to the true asymptotic estimator are rather little
accurate. Looking at Table 1 we see that the true asymptotic approximation
fits quite satisfactorily the actual null distribution of the test statistic, even
for n = 10. For n ≥ 30 the true asymptotic (which, in most practical cases,
can never be calculated) and the bootstrap (which can be always easily cal-
culated) estimates has an almost identical performance. The above assertions
can better seen by looking at Figure 1, which displays the histograms of the
p-values for testing H01 with sample size n = 50.
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Figure 1: histograms of the p-values for testing H01 with n = 50.

We have repeated the above experiment with R, L and m, as before and l, r
iid with common distribution χ2

1, χ2
3 and χ2

6, for testing the null hypotheses
H02 : E{m, l, r}LR = {0, 1, 1}LR, H03 : E{m, l, r}LR = {0, 3, 3}LR and H04 :
E{m, l, r}LR = {0, 6, 6}LR, respectively. The obtained results are quite similar
for these three hypotheses, so we only display those for testing H04, which
are exhibited in Table 2. Figure 2 displays the histograms of the p-values for
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testing H04 with sample size n = 50.

α = 0.01 α = 0.05 α = 0.10 mean var KS

n=10 asymp 0.0115 0.0502 0.0964 0.505 0.083 0.015

asymp (a) 0.0418 0.1015 0.1490 0.512 0.104 0.064

asymp (b) 0.0037 0.0157 0.0291 0.708 0.069 0.312

asymp (c) 0.0191 0.0612 0.1134 0.432 0.065 0.118

boot 0.0267 0.0891 0.1516 0.446 0.087 0.079

n=20 asymp 0.0124 0.0503 0.0959 0.504 0.082 0.012

asymp (a) 0.0339 0.0891 0.1389 0.521 0.101 0.068

asymp (b) 0.0028 0.0133 0.0304 0.699 0.069 0.298

asymp (c) 0.0140 0.0525 0.1030 0.452 0.067 0.086

boot 0.0206 0.0715 0.1292 0.471 0.085 0.045

n=30 asymp 0.0101 0.0507 0.0958 0.503 0.083 0.012

asymp (a) 0.0301 0.0825 0.1328 0.523 0.100 0.069

asymp (b) 0.0022 0.0119 0.0269 0.694 0.069 0.285

asymp (c) 0.0111 0.0495 0.0976 0.461 0.069 0.078

boot 0.0155 0.0655 0.1213 0.480 0.086 0.032

n=40 asymp 0.0102 0.0497 0.0958 0.500 0.082 0.010

asymp (a) 0.0290 0.0773 0.1279 0.523 0.098 0.065

asymp (b) 0.0015 0.0116 0.0266 0.691 0.068 0.281

asymp (c) 0.0104 0.0466 0.0911 0.463 0.068 0.077

boot 0.0147 0.0589 0.1130 0.482 0.084 0.027

n=50 asymp 0.0114 0.0567 0.1002 0.497 0.083 0.010

asymp (a) 0.0294 0.0801 0.1329 0.521 0.100 0.067

asymp (b) 0.0021 0.0129 0.0282 0.684 0.070 0.266

asymp (c) 0.0104 0.0459 0.0975 0.463 0.070 0.075

boot 0.0148 0.0616 0.1181 0.482 0.085 0.032

Table 2: Simulated size, mean, variance and KS statistic for testing H04.
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α = 0.01 α = 0.05 α = 0.10 mean var KS

n=100 asymp 0.0109 0.0498 0.0977 0.503 0.083 0.010

asymp (a) 0.0248 0.0759 0.1238 0.528 0.099 0.070

asymp (b) 0.0012 0.0110 0.0266 0.683 0.070 0.267

asymp (c) 0.0078 0.0451 0.0921 0.473 0.071 0.060

boot 0.0130 0.0579 0.1071 0.493 0.085 0.014

n=200 asymp 0.0101 0.0507 0.0965 0.501 0.082 0.0121

asymp (a) 0.0230 0.0720 0.1228 0.528 0.097 0.068

asymp (b) 0.0015 0.0119 0.0260 0.679 0.070 0.261

asymp (c) 0.0079 0.0417 0.0912 0.474 0.070 0.063

boot 0.0120 0.0527 0.1037 0.495 0.083 0.009

Table 2: (continuation).

Looking at Table 2 we see that in this case the asymptotic approximations
(a), (b) and (c) work better than before. Nevertheless, we again conclude that
these approximations are far from the true asymptotic approximation and that
the bootstrap behaves much better than the asymptotic approximations (a),
(b) and (c).

6 Concluding remarks

In Section 3 we have shown that the test rejecting the null hypothesis for
large values of the D2 distance between the sample mean and mean in the null
hypothesis is consistent against any fixed alternative. To obtain the critical
region of the test me must approximate the null distribution of the considered
test statistic. We have identified some operational problems associated with
the asymptotic approximation in Theorem 2.1. In Section 4 we have proved
that the bootstrap can be used to consistently estimate the null distribution of
the test statistic. In contrast to the asymptotic approximation, the bootstrap
approximation can be easily implemented. Moreover, the finite sample results
displayed in Section 5, show that the behaviour of the considered estimates
of the asymptotic approximation is poorer than that of the bootstrap, which
works quite well even for small sample sizes.

Although there is a large number of published papers on the application of
the bootstrap methodology for classical random variables, the literature on
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the application of the bootstrap in the fuzzy context is rather scarce. A work
related with ours is that by Montenegro, Colubi, Casals and Gil (2004).
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Figure 2: histograms of the p-values for testing H04 with n = 50.

In the classical context, the bootstrap has become a very powerful tool for
estimating the sampling distribution of a statistic and its characteristics. We
think that the development of an adequate bootstrap theory in the fuzzy
context would be very profitable because, as we noted before, in this context
the asymptotic approximations are, in most cases, difficult to handle and hence
they are useless to make inferences.

In particular and in relation to the work in this article (a single null hypothesis
on the mean of a population), possible extensions are the study of a composite
null hypothesis on the mean of a population and the comparison of the mean
of two populations. Also, the distance considered in this article and the one
in Montenegro, Colubi, Casals and Gil (2004) are particular cases on a more
general distance, as it was observed by Näther (2001). It would be very inter-
esting to study if the results in this paper are valid for the general distance in
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Näther (2001).
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