A RELATION BETWEEN THE DOMAIN TOPOLOGY AND THE NUMBER OF
MINIMAL NODAL SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM

MARCELO F. FURTADO

ABSTRACT. We consider the quasilinear probleadiv(|Vu|[P~2Vu) + |u[P~2u = |u|?"2u in Q,

u = 0 on9Q whereQ ¢ RY is a bounded smooth domaih,< p < N andp < ¢ < p* =
pN/(N — p). We show that if is invariant by a nontrivial orthogonal involution then, fprclose

to p*, the equivariant topology of? is related with the number of solutions which change sign
exactly once. The results complement that of [8] since we consider subcritical nonlinearities and
the quasilinear case. Without any assumption of symmetry we also extend Theorem B in [2] for the
quasilinear case and prove that the topolog{ @ffects the number of positive solutions.

1. INTRODUCTION

Consider the problem

(Fy)

—Apu+ [uPu = |u|tu, inQ,
u =0, onofY,

whereQ) c R" is a bounded smooth domaif,u = div(|Vu|P~2Vu) is thep-Laplacian operator,

1 <p< Nandp < g < p* = pN/(N — p). Itis well known that it possesses infinitely many
solutions. However, when we require some properties of the nodal regions of the solutions, the
problem seems to be more complicated. In the paper [2], Benci & Cerami showed that the domain
topology is related with the number of positive solutiong Bf). More specifically, they showed

that if p = 2 andgq is close to2*, then(P,) has at least cé2) positive solutions , where ddt)
denotes the Ljusternik-Schnirelmann categor2o8ince the work [2], multiplicity results diP,)

with p = 2 have been intensively studied (see [4, 6, 3] for subcritical, and [15, 11, 19] for critical
nonlinearites). To the best of our knowledge, the only work that deal with the quasilinear problem
is [1], where the authors studied the critical case.

In the aforementioned works, the authors considered positive solutions. Here, motivated by
Clapp & Castro [8], we are interested in solutions which change sign exactly once. This means
that the solution: is such thaf2 \ «~*(0) has exactly two connected componentss positive in
one of them and negative in the other. We deal with the problem
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—Apu+ [uP2u = |ul|iu, inQ,
(P7) u=0, on 02,
u(rz) = —u(x), forall x € €,

wherer : RY — RY is fixed,7 € O(N) \ {ld}, 72 = Id, andQ2 C R" is a bounded smooth
domain such that = €. Itis clear that any nontrivial solution ¢#;) changes sign. We call a
nodal solution minimal if it changes sign exactly once. Our existence result can be stated as

Theorem 1.1.For anyq € (p,p*) problem(F]) has at least one pair of solutions which change
sign exactly once.

The proof of Theorem 1.1 relies in a minimization argument. As we will see, there is a deep
relation between the number of nodal regions of a solution and its energy. This relation will able
us to prove that the solutions have the desired property.

The above result complements Theorem 1 in [8] where the authors considered the semilinear
problem

—Au = M+ |u* 2u, u € HY(Q), u(rr) = —u(zx)in Q,
and obtain the same result for> 0 small enough. By taking advantage of the symmetry they also
studied the relation between the domain topology and the number of minimal nodal solutions. We
also are able to have precise statements about this relation if we suppagesthafficiently close
to p*. More specifically, we prove

Theorem 1.2. There existg, € (p,p*) such that, for ally € [go,p*), problem(P7) has at least
T-cak (2 \ ©27) pairs of solutions which change sign exactly once.

Here, Q™ = {x € Q : 7o = z} andr-cat is theG.-equivariant Ljusternik-Schnirelmann
category for the group’, = {Id, 7}. There are several situations where the equivariant category
turns out to be larger than the nonequivariant one. The classical example is the unitéphere
RY with 7 = —Id. In this case c46"¥~!) = 2 whereas-cafSV~!) = N. As an easy consequence
of Theorem 1.2 we have

Corollary 1.3. Let(2 be symmetric with respect to the origin and such that2. Assume further
that there is an odd map : SV~ — Q. Then there existg € (p, p*) such that, for ally € [qo, p*),
problem(F7) has at leastV pairs of odd solutions which change sign exactly once.

It is worthwhile to mention that the above results may seen to be new even#or2. We
also note that the nonlinearity of theLaplacian, wich make the calculations more difficult, is
compensated here by the homogeneity of the problem.

Finally, without any assumption of symmetry, we can look for multiple positive solutions of
(P,) and to extend Theorem B in [2] for the quasilinear case. Since we have no symmetry in
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this context, we relate the number of positive solutions with the usual Ljusternik-Schnirelmann
category and prove

Theorem 1.4. There existg, € (p,p*) such that, for ally € [go, p*), problem(P,) has at least
caf(2) positive solutions.

The paper is organized as follows. Section 2 is devoted to establish the notation as well as to
present some technical results. In Section 3, after recalling some basic facts about equivariant
Ljusternik-Schnirelmann theory, we prove the results concerning nodal solutions. In Section 4 we
present the proof of Theorem 1.4.

2. NOTATIONS AND SOME TECHNICAL RESULTS

We start by considering the spaldé*(Q2) endowed with the norm

1/p
Hw=<lywm+mmm) . 2.1)

The involutionr of © induces an involution of¥/,”(9), which we also denote by, in the
following way: for eachu e W, (Q2) we defineru € W, ”(Q) by

(tu)(z) = —u(rx). (2.2)
Thus, we can also consider the closed linear subspaﬁ%lﬁm) given by
WyP(Q) = {u e Wy (Q) : Tu = u}.
Let E, : W,”(Q) — R be given by

1 1
Eu) = [ (Vulr + fupyds = [ Juvds,
pJa qJa
and its associated Nehari manifold
Ny = {ueWy"( @)\ {0} : (Ej(u),u) =0}
= {ue W ( )\ {0} : [lull” = [uli},
where|u|, denote the *(€2)-norm fors > 1.

In order to obtainr-invariant solutions we will look for critical points of the restriction Bf to
ther-invariant Nehari manifold

N, ={ueN,:Tu=u} = N, N WyP(Q)".
We define the numbers

my = uienj\f}q E,(u) and m; = UIEI.IAZT E,(u).

For any bounded domaiP c R" we defineE, p, N;p, N, mqp andm] ,, in the same way
by taking the above integrals ovér instead(). For simplicity of notation we use onbly,, and
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my,, to denotem, p, (o) andmy 5 ), respectively. Also for simplicity we writg, v to indicate
Jp u(x)dz. Fors > 1, we denote byul, p the L*(D)-norm of a functior.

Lemma 2.1. For any bounded domai®» c R" we have2m, p < mg p-

Proof. Givenu € N, we can use (2.2) to conclude that, v~ € N, p, whereu™ = max{+u, 0}.
Thus

Eyp(u) = Eq,D(qu) + Eyp(u™) > 2myp,
and the result follows. n

As usual, we denote h§ the best constant of the embedding” (Q) — L?*(Q) given by

S = inf M.
uew P @\ {0} [ty

It is well known thatS is independent of? and is never achieved in any proper subsek f

Let V be a Banach spac#/ be aC*'-manifold of VV andI : V' — R a C*-functional. We recall
that /|,, satisfies de Palais-Smale condition at lev¢(PS).) if any sequencéu,) C M such
that7(u,,) — cand|/'(u,)||+ — 0 contains a convergent subsequence. Here we are denoting by
|7 (u)]|. the norm of the derivative of the restriction bfto M [19, Section 5.3]. The following
technical result will be useful in the future.

Lemma 2.2. Let (v,) € W,*(Q) be such thatv,|,- = 1 and ||u,|? — S. Then there exists
v € WyP(Q) such that, up to a subsequeneog,— v weakly inW,”(Q) and Vu,,(z) — Vo(z)
fora.e.x € (.

Proof. Sincel|v,||[? — S we have thafv,,) is bounded. Thus, going to a subsequence if necessary,
v, — vweakly inTV, * () for somev € W, *(Q). DenotingM = {u € W, *(Q) : [, [ul”" =1},
by the Ekeland Variational Principle [10, 19, Theorem 8.5], we may supposé&uithas a (PSy
sequence fop : M — R given byy(u) = ||ul/?, i.e., there exit$6,,) C R such that
— Ay A+ |0n P20, = Op|ual? 20, — 0, in (WP(Q)),
where(W,?(Q))’ is the dual space d¥,” (). The above expression imply thatv,,) — 6, — 0
andd, — S. Definings,, = H,QN_"”’)WU”, an easy calculation shows that
- 1 -
Ep(0n) — NSN/p and || E,. (@)l wre )y = O-

Thusy, is a (PS) sequence &,.. This fact,d,, — S and standard calculations [20, 16, Corollary
3.7] show that
Vi (z) — SN2/ gy(z), aexe.

The result follows from the definition af,. |

We present below some useful relations betwegh, m; , andS.
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Lemma 2.3. For any bounded domai®® ¢ R we have

) i = My p = —SN/P,
0] qLI?* MgD = My D g

H : T _ T _ N
(i) qlirg* My p = My p = NS /P,

Proof. The first equalities in (i) and (i) follows from [7, Proposition 5]. Denote|ly» the norm
of u € W,?(D) and let¥p be the unit sphere dfiy”(D). Sincey : u — u|u|;f,v7§p defines a
dipheomorphism between, andN,. p, we have

p
Mo = Il = nf P

» N/p
_ inf [[ull — gN/p
wewg ooy \ [l p

and thereforen,. p = +S"/7. In [8, Proposition 5] is proved that]. , = 2S"/?. We observe
that in [7, 8] the authors consider only the semilinear gase 2. However, taking advantage of
the homogeneity, it is not difficult to see that the arguments hold forp < N. ]

In what follows we denote by\(R”) the Banach space of finite Radon measures @&/er
equipped with the norm

] = sup ()]
$ECH(RN),|ploo <1

A sequence,) C M(RY) is said to converge weakly to € M(R") provided,,(¢) — ()
for all ¢ € Cy(RY). By the Banach-Alaoglu theorem, every bounded sequémngec M (RY)
contains a weakly convergent subsequence.

The next result is a version of the Second Concentration-Compactness Lemma of P.L.Lions [12,
Lemma I.1]. The proof can be found in [19, Lemma 1.40] and [17, Lemma 2.1 and Remark 2.2].

Lemma 2.4. Let (u,) C D'*(RY) be a sequence such that
Up — U weakly inDP(RY),
IV (up, —u)|P — p weakly inM(RY),
|y, — ulP” — v weakly inM(RY), (2.3)
un () — u(z) a.e.x € RY,
Vu,(z) — Vu(z) a.e.xeRY,

and define

foo = lim limsup/ |V, |, Voo = lim limsup/ lunl? .
R lz|>R R lz|>R

—0  n—oo —0  n—oo
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Then
[ |77 < S ul, (2.9)
lin sup [V, | g = [Vauly gov + 1421 + oo, (2.5)
and
lim sup Iun\,’ii,RN = IUI,ﬁ:,RN +V]| + Voo (2.6)

n—oo

Moreover, ifu = 0 and|v|?/?" = S~'|u|, theny and v are concentrated at single points.

Remark 2.5. In [19, Lemma 1.40fhe author proves the above lemma for= 2 without the
assumption of pointwise convergence for the gradient. The proof for the general case follows the
same lines of casg = 2 except for the equation (2.5). As noted 17, Example 2.3]it can fall

for p # 2 if we do not impose tha&u, (z) — Vu(z) for a.e.z € RY. However, when this last
assumption is assumed, equation (2.5) can be verified [d§ji,emma 2.1 and Remark 2.2]

For anyr > 0 we define the set
QF = {z ¢ RY . dist(z,Q) < r}. (2.7)
We also define the barycenter map W, 7(Q) \ {0} — R" by setting
_ Jrn ul”" x dx

fRN ulP” dx
The following result is a version of [2, Lemma 4.2].

B (u)

Lemma 2.6. For anyr > 0 there existyy, = ¢o(r) € (p, p*) such that, for ally € [0, p*), we have

(i) myg, <2mg,

(i) ifu e NJ and E,(u) < m] ., theng(u™) € Q.
Proof. We suppose, by contradiction, that (i) is false. Then there exits a seqgehge such that
m? . > 2m] . Taking the limit and using Lemma 2.3(ii) we conclude t§at? > 25"/», which
does not make sense.

Arguing by contradiction once more, we suppose that (i) is not true. Then there;gxist*,

(un) € N7 with By (u,) <m] . andB(u}) ¢ QF. We can use (2.2) to verify that ¢ NV, and
2F,, (u}) = E,, (u,). Thus,

1 1
my, < E, (u)) —— — ) |t |P <27 m”
dn qn n p q n qn,T

Taking the limit, using the definition o%/;] and Lemma 2.3, we conclude that

lim |u, | = lim ||u, |7 = SN/p, (2.8)

n—oo
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By Holder’s inequality we have

n/P*
/(ujl_)qn S E(Q)(p*_Qn)/p* (/ (u:,;>p*> ’
. Q

whereL denotes the Lebesgue measurBih The above expression and (2.8) imply that inf \uj{lgi >

SN/ On other hand, recalling that, 2. < S~ [|u;f||”, we getlimsup |u;} [2. < S™/7. Hence,

n—oo

lim |u,) |2, = SN2, (2.9)

n—oo

This and (2.8) imply that,, := ‘uﬁ - satisfies the hypotheses of Lemma 2.2 and therefore, up
to subsequence, we have ’

Vu!(z) — Vu(r) ae. x e,
whereu is the weak limit ofw;" in W, ?(Q). By going if necessary to a subsequence, we may

assume that (2.3) holds with,,) replaced by(«;"). We may also assume thaf — w in LP(Q2).
The Lemma 2.4, and the equations (2.8) and (2.9) provide

SN = |Jull” + 11, SN = July: + v

and
PP < STl u

po< 5 ulp

Note that, sincé) is bounded, the terms,, andv,, do not appear in the above expressions.
The inequality(a + b)" < a' + b* for a,b > 0 and0 < ¢ < 1, and the above expressions imply
that| | and|u]§: are equal either to 0 &¥/7. In fact, if this is not the case, we get

*

«\ P/P «
SWN=p)/p  — s—l(HquHm)z(wy;) +v| PP
. p/p*
> (lu +wn) = s,

which is absurd. Suppo$e|§1 = SN/P. Sinceu; — u weakly in1W,?(Q), we have thafju||? <
lim inf ||« ||? = S™/?. Hence

[[ull” s
uf?, = S&np T

and we conclude thaf is attained by € T, ”(Q2), which does not make sense. This shows that
u = 0 and therefor¢y| = SV/? andv is concentrated at a single poipt Q. Hence,

B Jan (U @ dx
N Jan (ui)P* da

which contradictsi(u.”) ¢ Q;F. The lemma is proved. ]

B(uy)

—>S_N/p/:vdyzy€§,
Q
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3. MINIMAL NODAL SOLUTIONS

We start this section by noting that,«ifis a solution of(P,), then it is of class”!. We say it
changes sign times if the sefx € Q : u(x) # 0} hasn + 1 connected components. Obviously,
if u is a nontrivial solution of probleniP’;), then it changes sign an odd number of times. The
relation between the nodal regions of a solution and its energy is given by the result below (see [8]
forp = 2).

Proposition 3.1. If u is a solution of probleniP;) which changes sig2k — 1 times, thent, (u) >

T
q

km
Proof. The set{x € Q : u(z) > 0} hask connected components,, . .., Ax. Letu,;(z) = u(z) if
r € A; UTA; andy;(x) = 0, otherwise. Since is a critical point ofE,,

0= <E;(u),uz> = /(\Vu\pZVuVui 4 ulP2uu; — w7 Puug) = ||wlf — |ui|g.
Q

Thus,u; € NJ foralli=1,...,k, and
Ey(u) = Ey(ur) + - - + Eq(ug) > km]

q’

as desired. ]

Proof of Theorem 1.1The compactness of the embeddifg” () — L4(Q2) and standard calcu-
lations give the Palais-Smale condition By restricted toV,. Let (u,) C N, be a minimizing
sequence fom]. We may suppose thét,) is a (PS) sequence at level, and therefore, by the
(PS) condition, the infimum is achieved by some= V. The definition ofWOLP(Q)T and the
Proposition 3.1 show that changes sign exactly once. To finish the proof we note that, by the
Lagrange multiplier rule, there exigsc R such that

(Bq(u) = 0J3(u),6) =0,V ¢ € WoP(Q)7,
where.J,(u) = [Ju|” — |u|. Sinceu € N, we have
0= (Eq(u),u) — 0(J(u),u) = 0(q — p) [[ul”.
This impliesé = 0 and therefore
(Ej(u),¢) =0, ¥ ¢ € WyP(Q)".

Hence the principle of symmetric criticality [14, 13, Proposition 1] imply th&nd also—u) is a
solution of(F;) which changes sign exactly once. The theorem is proved. n

We recall some facts about equivariant theory. An involution on a topological spasea
continuous functiormry : X — X such that% is the identity map of{. A subsetA of X is called
Tx-invariant if 7y (A) = A. If X andY are topological spaces equipped with involutiersand
Ty respectively, then an equivariant map is a continuous fungtiodX — Y such thatf o 7x =
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Ty o f. Two equivariant mapg,, f1 : X — Y are equivariantly homotopic if there is a homotopy
©: X x[0,1] — Y such tha©(z,0) = fo(x), O(z,1) = fi(z) andO(rx(z),t) = 7v(O(x,1)),
forallz € X,t € [0,1].

Definition 3.2. The equivariant category of an equivariant mAp X — Y, denoted byrx, 7v)-
caf f), is the smallest numbér of open invariant subset¥’, ..., X of X which coverX and
which have the property that, for each= 1, ..., k, there is a point; € Y and a homotopy; :
X; x [0,1] — Y such that®;(z,0) = z, ©;(z, 1) € {y;, 7v(v;)} andO©;(7x(x),t) = 7v(O;(z, 1))
for everyz € X;, t € [0,1]. If no such covering exists we defifig;, v )-cat f) = co.

If Aisary-invariant subset ok and. : A — X is the inclusion map we write
Tx-Caty (A) = (7x, 7x)-calt) andrx-caf X ) = 7x-caty (X).

In the literaturerx-cat X ) is usually calledZ,-cat X'). Here it is more convenient to specify the
involution in the notation.
The following properties can be verified.

Lemma3.3.() If f: X — Y andh:Y — Z are equivariant maps then
(1x,77)-catho f) < ry-calY)
(i) If fo, f1 : X — Y are equivariantly homotopic, thehry, 7y )-cat( fo) = (7x, 7v)-cat f1).

We denote by, : V' — V the antipodal involution,(z) = —u on the vector spac¥. A 7,-
invariant subset of/ is usually called a symmetric subset. Equivariant Ljusternik-Schnirelmann
category provides a lower bound for the number of péirs—u} of critical points of an even
functional. We end the section with the following well known result (see [9, Theorem 1.1], [18,
Theorem 5.7]).

Theorem 3.4.Let! : M — R be an ever@!-functional on a complete symmet¢ic-'-submanifold
M of some Banach spadé. Assume thaf is bounded below and satisfi@BS). for all ¢ < d.
Then, denotind? = {u € M : I(u) < d}, I has at leastr,-cat /¢) antipodal pairs{u, —u} of
critical points with 7 (+u) < d.

Coming back to our problem we set, for any giver 0,
Q. ={xr e Q:dist(z,00UQ7) > r}.

Throughout the rest of this sectien> 0 sufficiently small is fixed in such way that the inclusion
maps), — Q\ Q7 and2 — Qf are equivariant homotopy equivalences &jdis as defined in
(2.7). Without loss of generality we suppose tiat0) C €.
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Lemma 3.5. Let gy = ¢o(r) be given by Lemma 2.6. Then, for apn¥ [qo, p*), there exists two
maps

Q24 NN Ey 2 Qf
such thata, (1) = —a,(z), v,(—u) = 7v,(u), and~y, o «, is equivariantly homotopic to the
inclusion mapg; — Q.

Proof. We fix ¢ € [go, p*), take a nonnegative radial functiop e N, g, () such thatt, g o) (v,) =
my,- and definey, : Q7 — N7 N E4""" by setting

() = vy(- — ) — vy(- — 7). (3.1)

It is clear from the definition that,(7z) = —«,(z). Furthermore, since, is radial andr is an
isometry, we have that,(z) € W,”(92)". Note that, for every: € Q., we have thatz — 72| > 2r
(if this is not true, the® = (z+71)
of ). Thus, we can check th#t, (o, (z)) = 2m,, < m] . (by Lemma2.1) and

lag(@)I1” = 2l vpll, (0) = 2|valg,p,0) = la(@)]5-

All the above considerations show thatis well defined.

By Lemma 2.6(ii) it follows thaty, : /\/JOEZ]LZ“" — QF given by, (u) = B(u') is well defined.
A simple calculation shows that,(—u) = 7v,(u). Moreover, using (3.1) and the fact thatis
radial, we get

vo(ag(z)) = fBT(x) [vg(y — x)‘p*?/ dy fB ‘Uq y + ) dy .
o fBT(;E) |Uq(y - 37)|p* dy fBr 0) |Uq( )|p dy 7
foranyx € Q. This concludes the proof of the lemma. |

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2Ne will show that the theorem holds fog = ¢o(r) given by Lemma (2.6).
Forq € [q0, p*) fixed, the Palais-Smale condition fé}, restricted toV; follows as in the proof of
Theorem 1.1. Sincé&), is even we can apply Theorem 3.4 to obtajrcat(/\ff N Emgr) pairstu;
of critical points with £, (+u;) < m] . < 2m] (by Lemma 2.6(i)). The definition o, * ()7,
Proposition 3.1 and the same argument employed in the proof of Theorem 1.1 shaw ithat
solution of(F;) which changes sign exactly once.

To conclude the proof we need only to verify that

Ta-CANT N Ey™7) > 7-cab(Q\ Q7). (3.2)

With this aim we recall that was chosen so that the inclusion maps — Q \ Q™ andQ) — Qf
are equivariant homotopy equivalences. Thus, (3.2) follows from Lemma 3.5 and the properties
given by Lemma 3.3. The theorem is proved. |
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Proof of Corollary 1.3.Let 7 : RY — R be given byr(z) = —z. Itis proved in [8, Corollary 3]
that our assumptions imply-cat2) > N. Since0 ¢ 2, Q7 = (). It suffices now to apply Theorem
1.2. |

Remark 3.6. For any A > 0 we know that

VulP + A|ulP
So= e oIVl
wEW L (@)\{0} -

its equal toS, independent af? and is never achieved in any proper subseRdf Thus, a simple
inspection of our proofs show that Theorems 1.1 and 1.2, and Corollary 1.3 also hold for the
problem

—Apu+ AulP~2u = [ult~2u, inQ,
(P75) u =0, onox,
u(rzr) = —u(x), forall z € Q.
4. POSITIVE SOLUTIONS

In this section we will obtain multiple positive solutions for the problefy)). Since Theorem
1.4 does not require symmetry for the dom&inwe will consider the functionak, restricted to
the usual Nehari manifold/,. We fixr > 0 such that the set3;" and

Q= {z e Q:distlz,d0Q) > r}
are homotopically equivalent € and B, (0) C 2. We start with a version of Lemma 2.6.

Lemma 4.1. There exisy, € (p, p*) such that, for ally € [qo, p*), we have

(1) mg, < 2my,
(ii) if w e Ny andE,(u) < my,, theng(u) € Q.

Proof. Since the proof is analogous to that presented in Lemma 2.6 we only sketch the main steps
of (ii). Suppose, by contradiction, that there exist! p*, (u,) € N, with E, (u,) < m,, , and
B(uy,) & . Then we have that

lim Ju, || = lm |u,[2 = SNV,
n—oo n—oo

andVu, (z) — Vu(z) a.e.z € Q, whereu is the weak limit of(u,,) in W, ”(22). Using Lemma
2.4 and arguing as in the proof of Lemma 2.6 we concludeithat) and the measurein (2.3) is
concentrated at a single poipt . Thus,

fRN [u, [P" 2 dx _
n) = Q,

which contradictsi(u,,) & Q. ]
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Following Benci & Cerami [2] one can easily show that
Lemma 4.2. If v is a solution of( P,) with E,(u) < 2m,, thenu does not change sign.

Proof. Sinceu is a critical point ofE, we have

/ IVulP2VuVe + |ulf2u¢p = / |ul9"%ug, ¥ ¢ € WiP(Q).
Q Q

In particular for¢ = w*. So, if bothu™ andw~ are nonzero, themn®* € A, and E,(u) =
E,(u") + E,(u~) > 2m,. This is a contradiction. ]

We are now able to prove Theorem 1.4.

Proof of Theorem 1.4Let ¢, be given by Lemma 4.1. Fare€ [qo, p*) fixed, standard calculations
show that the restriction of the function&), to V/, satisfies the Palais-Smale condition.

Take a nonnegative radial functiep € N, 5, o) such that&, g () (v,) = m,, and consider the
diagram

Q- 2% N, N Bl 2% O,

whereo,(z) = v,(- — x) and~,(u) = G(u). Arguing as in the proof of Lemma 3.5 and using
Lemma 4.1 we can verify that the diagram is well defined. Furthermore, sifiag(x)) = = for
everyz € ), we can proceed as in the proof of Theorem 1.2 and obtajp €a1) = catQ2)
pairstw; of critical points of £, such thatt,(+u;) < m,, < 2m,. By Lemma 4.2 none of these
critical points changes sign. Thus we may suppase 0 and the theorem is proved. u
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