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Abstract. In this paper we describe the bifurcation diagram of a bound-
ary cusp of codimension three, i.e, a Bogdanov-Takens singular point in
the boundary of the semi plane {(x, y) ∈ R

2 : x ≥ 0}. This study
is applied to the analysis of the behavior of singularity of the germ of
vector field X0(x, y) = (y, 2x(x4 + x2y)) in the class of reversible vec-
tor fields. We classify the generic three parameter families of reversible
vector fields Xa,b,c with (a, b, c) ∈ (R3, 0) and Xa,b,c = X0.

1. Introduction

In qualitative theory of differential equations it is usual to classify phase
portraits up to orbital C0−equivalence, [AL], [ P], [ PM]; in the theory of
singularities of vector fields one studies the classification problem by list-
ing the codimension k (for some finite k) singularities and presenting their
normal forms and versal unfolding, [Ar], [CLW].

In this paper we follow such approach to first study a codimension three
boundary singularity of a vector field defined in the semi plane M = {(x, y) ∈
R

2 : x ≥ 0} and we obtain the bifurcation diagram. Next, as a straightfor-
ward application (see [T3]), we are able to pull back this bifurcation diagram
into the context of a special kind of dynamical systems which form our main
interest: the class of reversible systems.

We recall that generic bifurcations occurring in one and two parameter
families of vector fields in surfaces with or without boundary have been
extensively studied, see for example, [Ar], [ S3] and [T3] and references there
in.

Our starting point is to consider germs of vector fields at 0 ∈ ∂M =
{(x, y) ∈ R

2 : x = 0} with nilpotent 1 − jet y∂/∂x and 2 − jet C∞

conjugated to:

X0(x, y) = y
∂

∂x
+ (x2 + αxy)

∂

∂y
, α = ±1 (1)

The following 3-parameter family of vector fields defined in M
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y
∂

∂x
+ (x2 + ax + c + αy(x + b))

∂

∂y
, α = ±1 (2)

generically unfolds X0; it will be called a quadratic typical family.
For a given vector field X defined on R

2 one distinguishes two types of
symmetry properties. A diffeomorphism ϕ on R

2 is a symmetry if ϕ∗ ◦
X = X ◦ ϕ and a reversing symmetry if ϕ∗ ◦ X = −X ◦ ϕ. The classical
equivariant theory comes from the first definition. In the last case when ϕ
is an involution, X is called ϕ − reversible.

Let ϕ be a germ of an involution in (R2, 0) ϕ2 = id, with DetDϕ(0) = −1.
We say that a (germ of a) vector field (in R

2, 0) is ϕ − reversible if

ϕ∗ ◦ X = −X ◦ ϕ.

We fix a coordinate system in (R2, 0) such that the involution takes the
form ϕ0(x, y) = (−x, y). This is not a restriction, since our treatment is
local and it is very known that any involution ϕ with Detϕ′(0) = −1 can be
brought to this canonical form by a smooth change of coordinates.

We recall that any orbit of a (ϕ0−) reversible X is called symmetric
provided that it meets the set S = Fixϕ0; otherwise it is an asymmetric
orbit. Observe that asymmetric orbits appear in pairs and any symmetric,
periodic orbit or critical point, cannot be an attractor or a repeller. For
more on reversible systems see [L] and [T3].

In this paper we also want to study the following singularity.

Y0(x, y) = (y, 2x(x4 + αx2y)), α = ±1.

We observe that in the reversible context this non-hyperbolic saddle sin-
gularity has codimension 3, whereas in the world of smooth vector fields it
has codimension greater than 5.

A 3-parameter family of vector fields defined in R
2 expressed by

y
∂

∂x
+ 2x[(x4 + αx2y) + ax2 + by + c]

∂

∂y
. (3)

generically unfolds Y0; it will be called a reversible polynomial typical family.
In [T3] all the symmetric singularities of codimension 0, 1 and 2 are classi-

fied. It is presented a technique which enables to classify in a simple manner
those singularities and it consists to make a special change of coordinates
around the point and address the analysis to the study of the contact be-
tween a general system and ∂M.

Let us fix some notations:
Γ+(M) = smooth vector fields defined on the region M = {(x, y) ∈ R

2 :
x ≥ 0};

ΓR(R2) = smooth reversible vector fields defined on (R2, 0).
All the above sets are endowed with the C∞−topology, [ H].
First of all we recall the C0-equivalence in Γ+(M).
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We say that two vector fields X an Y in Γ+(M) are C0 -equivalent if there
is an ∂M−preserving homeomorphism h on M, which sends orbits of X in
orbits of Y.

Two families of vector fields Xλ and Yν defined in a domain M are fiber-
C0- equivalent if there exists a homeomorphism ν = φ(λ) between the pa-
rameter spaces and a family of homeomorphisms Hλ : M → M such that Hλ

is a C0- equivalence between Xλ and Yφ(λ).
We state now the main results of this work.

Theorem 1. The bifurcation diagram of the quadratic typical family given
by equation 2 with α = ±1 is as shown in Fig. 1 below. This diagram is a
topological cone with vertex at 0 and there are eleven distinct phase portraits
which are structurally stable (open regions of the diagram of bifurcation)
and thirteen points of codimension two. The lines in the diagram are the
bifurcations of codimension one. The phase portrait in each open connected
region of the diagram is as shown in Fig. 2, 3, 4, 5, 6, 7 and 9.

Remark 1. In Fig. 1 is represented the restriction of the bifurcation set
to a hemisphere of a2 + b2 + c2 = 1. Observe that outside a topological
disk the family has no singular point. In fact there exists a unique non
transverse contact between the vector field and the boundary which is an
internal quadratic tangency.

Theorem 2. Let X be a vector field in Γ+(M) such that j2X(0) = (y, x2 +
αxy). Then the universal unfolding of X is fiber-C0- equivalent to the qua-
dratic typical family given by equation 2.

Theorem 3. The bifurcation diagram of the reversible typical family given
by equation 3 in the parameter space (a, b, c) is homeomorphic to that of
Fig. 1.

The paper is organized as follows. In Section 2 are described the bifur-
cation diagram, in a general context, of codimension two singularities. In
Section 3 all bifurcations of codimension two that appear in the quadratic
typical family are analyzed. In Section 4 an outline of proof of theorem 2 is
presented. In Section 5 the proof of theorem 1 is presented. In Section 6 the
proof of theorem 3 is given. Section 7 is dedicated to concluding remarks.

2. Bifurcations of codimension two in generic families

In this section we describe some phenomena of codimension two in generic
families of vector fields defined in a boundary region in the plane.

Also the two parameter family of vector fields obtained from a translation
followed by a rotation will be analyzed.

2.1. Rotated and translated vector fields.

Let M = {(x, y) ∈ R
2 : x ≥ 0}.
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BT i - Bogdanov-Takens bifurcation
Hi- interior Hopf  point of cod. 1
Sni - interior saddle node of cod. 1
Sb - saddle in the boundary
Fb- focus in the boundary
Nb- node in the boundary
Hb- Hopf in the boundary
DN b- degenerate node in the boundary
Li - interior loop of cod. 1
Lp - loop tangent to the boundary
Op t - hyperbolic periodic orbit tangent to the boundary
St- separatrix of saddle tangent to the boundary
Snb- saddle node in the boundary
Nb_st - node in the boundary and connection of strong separatrix of
node and saddle separatrix
Hi_st - interior Hopf and separatrix tangent to the boundary
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Figure 1. Bifurcation diagram of the quadratic typical family

Consider a vector field X = (P, Q) ∈ Γ+(M) and the following two pa-
rameter family, [ D], [ S3],

Xω,ν = Rω(X + ν
∂

∂x
) (4)
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where ν ∈ and Rω stands for the rotation by an angle ω in the plane R
2

with the canonical orientation.
Therefore the rotated vector field Rω(X) = Pω∂/∂x + Qω∂/∂y is given

by

(

Pω

Qω

)

=

(

cos ω sinω
− sinω cos ω

) (

P
Q

)

2.2. Bifurcations of codimension 1 and 2 and auxiliary results.

As usual, we first detect the bifurcations that occur generically for families
of vector fields in Γ+(M). We distinguish some of them:

(1) The tangency points between X and ∂M and their contact order.
(2) The singular points, contained or not in ∂M.
(3) The relative position between the invariant manifolds and ∂M (the

contact order).
(4) The periodic orbits.
(5) Periodic orbits tangent to ∂M.
(6) Saddle separatrices tangent to ∂M.
(7) Homoclinic orbits tangent to ∂M.
(8) Orbits tangent to ∂M in more than one point.
(9) Heteroclinic orbits tangent to ∂M.

A crucial part of this work is an attempt to locate the above objects in
the bifurcation diagram of the quadratic typical family.

In this section we will describe various phenomena of codimension two
bifurcations necessary to obtain the bifurcation diagram of the quadratic
typical family.

The next proposition is proved in [T2] and [T3] and we include it here for
completeness.

Proposition 1. Consider a generic two parameter family of vector fields
Xǫ,δ in Γ+(M) such that X0 has a codimension two singularity, which is a
saddle-node contained in the boundary with transversal invariant manifolds
(center and stable), with one hyperbolic sector and two parallel regions in
M. Then the bifurcation diagram of the saddle node in the boundary is as
shown in Fig. 2.

Remark 2. A vector field X having a saddle node in the boundary as above
stated is C0−equivalent to X1(x, y) = (−(x − y)2 + y, y). The local central
manifold W c is contained in the line y = −x. The two-parameter family
Xε,δ(x, y) = X1(x, y) − (δ − εx) ∂

∂x is an universal unfolding of X1. A direct
analysis shows that the codimension one bifurcations are: hyperbolic node in
the boundary (for δ = 0) and a non-degenerate saddle-node in the interior
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Figure 2. Internal Saddle Node in the Boundary

of the region M expressed by the relations 4δ = ε2 and ε > 0. Observe that
all stable and unstable manifolds are transverse to the boundary.

Proposition 2. Consider a two parameter family of vector fields in Γ+(M)
having a (generic) Hopf singular point contained in the boundary. The bi-
furcation diagram of the Hopf singular point (codimension two) contained
in the boundary is as in the Fig. 3 and is diffeomorphic to the bifurcation
diagram of the geometric family Xω,ν given by equation 4.

Proof. Consider a two parameter family Xǫ,δ of smooth vector field on the
plane having a singular point of Hopf type in the boundary of the semi
plane {(x, y) ∈ R

2 : x ≥ 0}. The equations Xǫ,δ(0, y) = 0, divXǫ,δ(0, y) 6= 0
and Xǫ,δ(x, y) = 0, divXǫ,δ(x, y) = 0, x > 0 define two transversal
curves. The first one describes the location of the hyperbolic singularities
in the boundary and the other is formed by the Hopf singular points in the
interior of M. After a diffeomorphic change of coordinates we can consider
these curves given respectively by δ = 0 and ǫ = 0, δ > 0. Recall that
the hyperbolic periodic orbit that emerges from the Hopf singular point
has radius approximately equal to

√
ǫ from the singular point (δ, 0). So it

follows that the curve of periodic orbits tangent to the boundary is well
approximated by ǫ = δ2, δ > 0. See [T3] where this singularity was also
analyzed. ¤
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Figure 3. Hopf Singular Point in the Boundary

A boundary degenerate node is a hyperbolic node contained in the bound-
ary with first jet conjugated to x∂/∂x+(x+y)∂/∂y (repeller) or −x∂/∂x+
−(x + y)∂/∂y (attractor).

Proposition 3. Consider a two parameter family of vector fields Xǫ,δ in
Γ+(M) such that X0 has a degenerate attracting node in the boundary. Sup-
pose that this family is generic. Then the bifurcation diagram of the bound-
ary degenerate node is as in the Fig. 4 and it is diffeomorphic to the bifur-
cation diagram of the geometric family Xω,ν given by equation 4.

Proof. Consider a two parameter family of vector fields Xǫ,δ having a hy-
perbolic degenerate node in the boundary. The equations Xǫ,δ(0, y) =
0, divXǫ,δ(0, y) − 4(detDXǫ,δ(0, y))2 6= 0 define a regular curve in the
parameter space having hyperbolic singularities in the boundary of focus
and node (two different eigenvalues) types. We observe that the strong
separatrix of the node in the boundary is transversal to the boundary and
must be considered as a separatrix since it is a topological invariant for
C0−equivalence. Moreover, outside this curve each system has one or zero
singular point (focus or node) in the interior of M. See [T2] where this
situation was also analyzed. ¤

Proposition 4. Consider a two parameter family of vector fields Xǫ,δ in
Γ+(M) such that X0 has a nodal singularity in the boundary in such a way
that there exists a connection between its strong separatrix and a separatrix of
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Figure 4. Bifurcation diagram of a Degenerate Hyperbolic
Node in the Boundary

a hyperbolic saddle contained in the interior of M. Suppose that this family
is generic. Then the bifurcation diagram of this codimension two phenomena
is as in the Fig. 5 and is diffeomorphic to the bifurcation diagram of the
geometric family Xω,ν given by equation 4.

Proof. Let Xǫ,δ a two parameter family of vector fields having a hyperbolic
node in the boundary and a separatrix connection. We have two phenomena
of codimension one bifurcations, a hyperbolic node in the boundary and a
quadratic tangency of separatrix of saddle with the boundary. In this case
the family Xǫ,δ is equivalent to the family Rω(X0 + ν ∂

∂x). In the parameter
space (ω, ν) the lines of codimension one bifurcations are given by ν.ω = 0.
The parameter of translation ν has the effect to move the hyperbolic node
from the boundary and ω is appropriated to disconnect transversally the
separatrix connections, see [ S1] and [ S3]. ¤

Proposition 5. Consider a two parameter family of vector fields Xǫ,δ in
Γ+(M) such that X0 has a Hopf singular point (codimension one) in the
interior of M and a quadratic tangency with the boundary of an unstable
separatrix of a hyperbolic saddle contained in the interior of M. Suppose
that this family is generic, i.e, the two codimension one bifurcations un-
fold independently. Then the bifurcation diagram of this codimension two
phenomena is as shown the Fig. 6 and is diffeomorphic to the bifurcation
diagram of the geometric family Xω,ν given by equation 4.
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Figure 5. Bifurcation diagram of a node in the boundary
with a connection between the strong separatrix and a sepa-
ratrix of saddle

Figure 6. Bifurcation diagram of a Hopf Point and Tangent
Separatrix of Saddle
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Proof. Under the hypothesis of the proposition the bifurcations of codimen-
sion one present on a universal unfolding of X0 are: the Hopf point in the
interior, and so by the Implicit Function Theorem is a regular curve and
a quadratic tangency of separatrix of saddle which also is a regular curve
transversal to the first one.

For the geometric family Rω(X0 + ν ∂
∂x) in the curve ω = 0 we have the

codimension one Hopf bifurcation and the tangency of separatrix of saddle
with the boundary happens along a regular curve ν = ν(ω), ν ′(0) 6= 0. ¤

Proposition 6. Consider a two parameter family of vector fields Xǫ,δ in
Γ+(M)such that X0 has an attracting loop of a hyperbolic saddle p0 point
which is tangent quadratically to the boundary. Suppose also that the loop
unfolds generically. The bifurcation diagram of the tangent loop is as in the
Fig. 7.

Figure 7. Tangent Loop of a Hyperbolic Saddle Point

Proof. To fix thoughts, we point out that in the Fig. 8 below, the singular
point is a hyperbolic saddle contained in the region M with eigenvalues
λs < 0, λu > 0 and λ =| λu/λs |> 1.
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Figure 8. Unfold of an attractor tangent loop and the Re-
turn map

We begin by considering the transversal sections Σ1, Σ2 and Σ3 with
coordinates x, y and z respectively. Here (x, y) are the linearized coordinates
of the saddle.

The transition maps z1(x) = ax+h.o.t and z2(y) = y+h.o.t associated to
a 2-parameter family of vector fields Xǫ,δ have, in view of C∞−Preparation
Theorem, [ R], the following developments.

z1 = (ax + ǫ)ϕ(x, ǫ, δ)

z2 = (y + δ)ψ(y, ǫ, δ), ϕ(0) = ψ(0) = 1

Therefore a periodic orbit in the region M is defined by the equation

(ax + ǫ)ϕ(x, ǫ, δ) = (y + δ)ψ(y, ǫ, δ) > 0

y = xλ, λ > 1

A loop in the region M is defined by the equation

ǫϕ = δψ

A tangent periodic orbit is defined by

(ax + ǫ)ϕ(x, ǫ, δ) = (y + δ)ψ(y, ǫ, δ) = 0

y = xλ, λ > 1

A tangency point between an invariant separatrix and the boundary, (say
W s(p) ∩ ∂M) is defined by

(ax + ǫ)ϕ(x, ǫ, δ) = 0

x = 0

Analogously, a tangency point between W u(p) and the boundary ∂M, is
defined by

(y + δ)ψ(y, ǫ, δ) = 0

y = 0

Solving the equations above we get the desired proof and the bifurcation
diagram undergoes as sketched in Fig. 7. ¤
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The following result is classical, see for example [Ar], [B1], [B2], [CLW],
[DRS], [DRSZ], [ RW], [ R] and [ Ta].

Proposition 7. Consider a two parameter family of vector fields in Γ+(M)
having a Takens-Bogdanov singular point (codimension two) in the interior
of M. Suppose that this family is generic. Then the bifurcation diagram of
this codimension two singular point is as shown the Fig. 9.

Figure 9. Bogdanov-Takens bifurcation in the interior: α = −1

Remark 3. In the Fig. 9 we recall that when α = 1 the loop is a repeller,
while for α = −1 the loop is an attractor. But the bifurcation diagrams are
diffeomorphic.

3. Singularities of codimension one and two in the quadratic

typical family

In the quadratic typical family the following bifurcations occur:
(i) Codimension one bifurcations:

(1) tangency point ( internal and external) between a periodic hyper-
bolic orbit and the boundary;

(2) tangency point between a separatrix of a hyperbolic saddle and the
boundary;
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(3) tangency point between a strong separatrix of a hyperbolic node and
the boundary;

(4) a hyperbolic saddle or node contained in the boundary with trans-
verse separatrices (recall that the nodal strong invariant manifold is
also a separatrix and it must be distinguished);

(5) a saddle-node disjoint from the boundary;
(6) a Hopf singular point disjoint from the boundary;
(7) a simple loop of a hyperbolic singular point disjoint from the bound-

ary;

These kind of bifurcations are well known and we refer to the following
basic references [AL], [Ar], [DRS], [DRSZ], [ R], [ S1], [ S2], [ S3], [ T1],
[T3].

(ii) Codimension two bifurcations:

(1) Bogdanov-Takens cusp point disjoint from the boundary, [ Ta], [B1],
[B2], [ RW];

(2) saddle-node contained in the boundary with transverse invariant
manifolds ( center and stable or unstable), [T2];

(3) Hopf singular point contained in the boundary, [T3];
(4) quadratic tangency between a loop of a hyperbolic saddle point and

the boundary;
(5) Hopf singular point in the interior and a separatrix of saddle tangent

to the boundary;
(6) hyperbolic node in the boundary with connection of separatrices

(strong separatrix of the node with a separatrix of saddle);
(7) degenerate node in the boundary, [T2].

For sake of completeness and also to show that the quadratic typical family
satisfies the required properties in the sequel we state several propositions.
Their proofs follow from the propositions of section 2. In fact, we intend to
verify that in each case the quadratic typical family is generic as required in
section 2. They will be omitted.

Proposition 8. In the bifurcation diagram of the quadratic typical fam-
ily there are two points of codimension two (saddle-node contained in the
boundary with transversal invariant manifolds (center and stable or unsta-
ble)). The bifurcation diagram of these points are homeomorphic to that of
Fig. 2 of section 2.

Proposition 9. In the bifurcation diagram of the quadratic typical family
there is a point of codimension two (Hopf singularity in the boundary). The
bifurcation diagram of this point is homeomorphic to that of Fig. 3 of section
2.

Proposition 10. In the bifurcation diagram of the quadratic typical family
there are two points of codimension two (boundary degenerate node). The
bifurcation diagram of both points are homeomorphic to that of Fig. 4 of
section 2.
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Proposition 11. In the bifurcation diagram of the quadratic typical fam-
ily there are four points of codimension two (node in the boundary with a
connection between the strong separatrix and a separatrix of saddle). The bi-
furcation diagram of all points are homeomorphic to that of Fig. 5 of section
2.

Proposition 12. In the bifurcation diagram of the quadratic typical family
there are two points of codimension two (Hopf singularity in the interior and
separatrix of saddle tangent to the boundary). The bifurcation diagram of
both points are homeomorphic to that of Fig. 6 of section 2.

Proposition 13. Consider the quadratic typical family Xλ = Xa,b,c. Then
there exists a parameter λ0 = (a0, b0, c0) such that Xλ0

has a loop of a
hyperbolic saddle p0 point tangent quadratically to the boundary which un-
folds generically. Therefore bifurcation diagram of the tangent loop of the
quadratic typical family is homeomorphic to that of Fig. 7 of section 2.

Proposition 14. In the bifurcation diagram of the quadratic typical family
given by equation 2 there is a codimension two cusp singularity(Takens-
Bogdanov type) disjoint from the boundary. The bifurcation diagram of this
point is homeomorphic to that of Fig. 9 of section 2.

Proof. The quadratic typical family has, for a2−4c = 0, and a < 0, a cusp in
the interior of M which satisfy the hypothesis of Takens-Bogdanov Theorem
for the two parameter family Xa,b,a2/4. ¤

4. Proof of Theorem 2

It follows from [ RW] that the versal unfolding of the cusp (Bogdanov-
Takens) singularity of codimension two can be expressed by the following
polynomial normal form, up to C0 − fiber equivalence.

Xb,c = y
∂

∂x
+ (x2 + c + αy(x + b))

∂

∂y
. (5)

Next we consider the deformation Xa,b,c = Xb,c + ax ∂
∂x ; its main effect

consists to provide an universal unfolding of the singularities in the region
M.

Observing that Xa,b,c considered as a family of smooth vector fields on
the plane, Ξ∞(R2), is induced from Xb,c the result follows. It is enough to
observe that all new bifurcations arise when one fixes the vector field Xb,c

and one moves slightly the boundary.

5. Proof of Theorem 1

The bifurcation diagram given in Fig. 1 is the simplest diagram which
contains the thirteen codimension two phenomena of bifurcation that occur
in the quadratic typical family as formulated in propositions 8, 9, 10, 11, 12,
13 and 14.
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The main new ingredient here is the presence of the boundary. The tan-
gent loop, the two Hopf point in the interior with separatrix of saddle tan-
gent and the four node in the boundary with separatrix connections can
be determined by the Implicit Function Theorem. All the other points of
codimension two are determined by algebraic equations.

6. Proof of Theorem 3

A smooth reversible vector field X ∈ ΓR(R2) has the following form:

X(x, y) = (p(x2, y), xq(x2, y)),

with p, q being smooth real functions.
For a given reversible system, in [T3], the following technique was em-

ployed: to perform a special change of coordinates around the singularity
such that the analysis of the original system can be transferred to study
the generic contact between a general system and a smooth curve in (R2, 0).
Here we follow these ideas.

Consider now the planar fold mapping h(x, y) = (u, v) expressed by u =
x2 and v = y. We have then M = Im(h).

A simple calculation yields

Y (u, v) = (2
√

up(u, v),
√

uq(u, v))

where

Y (u, v) = Dh(h−1(u, v).X(h−1(u, v)

for u ≥ 0.
It follows that on the open semi plane x > 0 the vector field X is C0 −

equivalent to Z = Z(X), defined on u > 0 where Z(u, v) = (p(u, v), q(u, v)).
Observe that Z can be smoothly extended to a full neighborhood of 0 in R

2.
Due to the symmetric properties of X with respect the line x = 0 (the
symmetric axis of X) we deduce that the knowledge of the phase portrait
of X is directly achieved by the knowledge of the phase portrait of Z(X).

The tangency set TZ between Z and ∂M plays a important role in the
analysis of phase portrait of X and is represented by TZ = {(x, y); x =
0 and Zf = 0} where f(x, y) = x.

We say that p ∈ ∂M is a generic tangency (or a fold tangency) of Z if
Z(p) 6= 0, Zf(p) = 0 and Z2f(p) 6= 0. Any tangency point between Z(X)
and u = 0 corresponds to a singular point of X and vice-versa.

Applying this fold map to the equation below

y
∂

∂x
+ (x2 + ax + c + αy(x + b))

∂

∂y
, α = ±1 (6)

we obtain the three parameter family of reversible systems given by equation
3, called reversible polynomial typical family.
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In the Fig. 10 below we show a part of the bifurcation diagram of the
three family given by equation 3. All the other phase portrait are obtained
in the same way, i.e., by symmetry and time-reversibility.

Figure 10. Bifurcation diagram of a reversible vector field
with cusps of Bogdanov-Takens type

7. Final Comments

As said earlier our main goal was to present an analysis of the versal
unfolding of a degenerate saddle in the reversible context. This means that
one always wants to respect symmetries and reversibilities that are present
in the original system, which brings us, as shown in [T3], a strong link
between the theory of vector fields defined in manifolds with boundary and
singularity theory. Our main guide in conducting the work was [DRS].

In a forthcoming paper we intend to get similar results for the system
X(x, y) = (y,−2x(x4 + αx2y)) (degenerate reversible center).

It is worthwhile to mention that the results obtained here can have ap-
plications in the theory of stability of discontinuous differential equations,
[MS], [ ST] and in divergent-free systems in 3D as shown in [BTY].

There is evidence that the transference from the results obtained here in
systems defined in manifolds with boundary to reversible systems is straight-
forward. This analogy is in fact the fundamental point in our approach.
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