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Abstrat

In this work, we onsider an ellipti system of two equations in dimension one (with

Neumann boundary onditions) where the nonlinearities are asymptotially linear at �1

and superlinear at +1. We obtain that, under suitable hypotheses, a solution exists for any

ouple of foring terms in L

2

.

We also present a similar result in whih the superlinearity is in only one of the two

equations, and we disuss the resonant problem too.

1 Introdution

In this work we are mainly onerned with the problem

8

>

>

>

<

>

>

>

:

�u

00

= �v + g

1

(x; v) + h

1

(x) in (0; 1)

�v

00

= �u+ g

2

(x; u) + h

2

(x) in (0; 1)

u

0

(0) = u

0

(1) = v

0

(0) = v

0

(1) = 0

; (1.1)

where the prinipal hypothesis is

g

1;2

2 C

0

([0; 1℄ � R); lim

s!�1

g

1;2

(x; s)

s

= 0; lim

s!+1

g

1;2

(x; s)

s

= +1 (H1)

uniformly with respet to x 2 [0; 1℄, and h

1;2

2 L

2

(0; 1).
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Some hypotheses on the growth at in�nity in the seond variable of the nonlinearities g

1;2

will be needed to obtain the PS ondition for the funtional assoiated to problem (1.1): de�ning

G

1;2

(x; s) =

R

s

0

g

1;2

(x; �)d�, we ask

9� 2

�

0;

1

2

�

; s

0

> 0 s:t: 0 < G

1;2

(x; s) � �sg

1;2

(x; s) 8s > s

0

; (H2)

9s

1

> 0; C

0

> 0 s:t: G

1;2

(x; s) �

1

2

sg

1;2

(x; s) + C

0

8s < �s

1

: (H3)

Moreover, for ertain \resonant" values of �; �, also one of the following hypotheses will be

assumed:

lim

s!�1

g

i

(x; s) = 0 ; h

i

(x) < �d < 0 a:e: x 2 [0; 1℄ : i = 1 or 2 ; (HR0)

9�

0

> 0; M

0

2 R s:t:

G

1

(x; s) +G

2

(x; s) + h

1

(x)s+ h

2

(x)s �M

0

a:e: x 2 [0; 1℄; 8s < ��

0

: (HR1)

An example of nonlinearities whih satisfy the hypotheses above may be g

1;2

(x; s) = e

s

; in

this ase (HR0) and (HR1) beomes h

i

(x) < �d < 0 a.e. and h

1;2

(x) � 0 a.e, respetively.

We will denote in the following with 0 = �

1

< �

2

� �

3

� ::: � �

k

� ::: the eigenvalues of ��

in H

1

(0; 1) and with (�

k

; k = 1; 2; ::) the orresponding eigenfuntions, whih will be taken

orthogonal and normalized with k�

k

k

L

2

= 1.

The main result of this work is the following theorem:

Theorem 1.1. For �; � > 0,

p

�� 2 (0; �

2

=4), under hypotheses (H1), (H2) and (H3), there

exists a solution for problem (1.1) for any h

1

; h

2

2 L

2

(0; 1).

We will also onsider the two limiting (resonant) ases:

Theorem 1.2. Under hypotheses (H1), (H2), (H3) and with h

1

; h

2

2 L

2

(0; 1) we have:

(i) For �; � > 0,

p

�� = �

2

=4, if hypothesis (HR1) is satis�ed too, then there exists a solution

for problem (1.1).

(ii) If � = 0; � > 0 (or � > 0; � = 0, or � = � = 0), if hypothesis (HR0) is satis�ed for i = 1

(or i = 2, or i = 1; 2, respetively), then there exists a solution for problem (1.1).

We remark that problem (1.1) with �; � > 0,

p

�� > �

2

=4 seems muh more diÆult to work

with, due to the more ompliated interation of the nonlinearity with the spetrum.

In the ase � < 0 or � < 0 instead, it is simple to show that no result similar to theorem 1.1

may be ahieved, atually we will show in proposition 7.1 that one may always �nd funtions

h

1

; h

2

2 L

2

for whih no solution exists.

Observe that in problem (1.1), we are assuming a linear-superlinear nonlinearity in both

equations; however, we will show that few modi�ations in the proofs allow to treat also the

problem with the linear-superlinear term in one equation and a jumping nonlinearity in the

other: namely
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:

�u

00

= �v + g

1

(x; v) + h

1

(x) in (0; 1)

�v

00

= �

+

u

+

� �

�

u

�

+ g

2

(x; u) + h

2

(x) in (0; 1)

u

0

(0) = u

0

(1) = v

0

(0) = v

0

(1) = 0

; (1.2)

where u

�

(x) = maxf0;�u(x)g and now

g

1;2

2 C

0

([0; 1℄ � R); lim

s!�1

g

1

(x;s)

s

= 0; lim

s!+1

g

1

(x;s)

s

= +1 ;

lim

s!�1

g

2

(x;s)

s

= 0; lim

s!+1

g

2

(x;s)

s

= 0

(H1*)

uniformly with respet to x 2 [0; 1℄, and still h

1;2

2 L

2

(0; 1).

In this ase we will assume hypothesis (H2) only for g

1

, while for g

2

we will assume the

equivalent of (H3) also at +1 too, namely

G

2

(x; s) �

1

2

sg

2

(x; s) + C

0

8s > s

1

: (H3*)

The result is the following

Theorem 1.3. For � > 0, �

+

> �

�

> 0 and

p

�

�

� 2 (0; �

2

=4), under hypotheses (H1*), (H2)

only for g

1

, (H3) and (H3*), there exists a solution for problem (1.2) for any h

1

; h

2

2 L

2

(0; 1).

1.1 Some omments about the tehniques used and some related results

The main theorems will be proved by �nding a ritial point of the funtional assoiated to

problem (1.1):

F : E = H

1

�H

1

! R : u = (u; v) 7! F (u) =

=

Z

1

0

u

0

v

0

�

Z

1

0

�

�

2

v

2

+

�

2

u

2

�

�

Z

1

0

(G

1

(x; v) +G

2

(x; u))�

Z

1

0

(h

1

v + h

2

u) ; (1.3)

or to problem (1.2), whih is analogous to this exept for the term

R

1

0

�

�

2

v

2

+

�

2

u

2

�

being replaed

by

R

1

0

�

�

2

v

2

+

�

+

2

(u

+

)

2

+

�

�

2

(u

�

)

2

�

.

We observe that one important harateristi of this kind of system is that, in order to

treat it variationally, we are led to work with this funtional, whih is strongly inde�nite, in

the sense that there exist two in�nite dimensional subspaes of E suh that F is unbounded

from above in one and from below in the other (see lemma 2.1). This implies that the standard

linking theorems are no more available to �nd ritial points. Some of the tehniques used

in approahing this kind of problems may be seen in [BR79, dFF94, HvdV93, dFdOR04℄; in

partiular, we will use an approximation tehnique (Galerkin proedure), namely we will solve

�nite dimensional problems, then take limit on the dimension of suh problems and prove that

the result is atually the ritial point we were looking for (see for example [dFdOR04℄).

The salar ounterpart of problem (1.1) is

8

<

:

�u

00

= �u+ g(x; u) + h(x) in (0; 1)

u

0

(0) = u

0

(1) = 0

; (1.4)
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and it has been onsidered in many works.

For � < �

1

(no matter whether the boundary onditions are Neumann or Dirihlet) it is the

so alled Ambrosetti-Prodi problem (�rst onsidered in [AP72℄) and it has zero, at least one or

at least two solutions, depending on the foring term h 2 L

2

. The result in the propositions 7.1

and 7.2 suggests that a similar phenomenon may happen for our system too.

For � > �

1

, the behavior is quite di�erent for Neumann and Dirihlet onditions: in [Mas03℄

it is shown that, in the Dirihlet ase, for any � > �

1

, there exist examples in whih no solution

exists, while for the Neumann ase (in dimension one), it was obtained in [dFR91℄ and later in

[Vil98℄ that for � 2 (0; �

2

=4), a solution exists for any h 2 L

2

; this result was then extended to

� 2 (�

k

=4; �

k+1

=4), k � 2 in [Mas04a℄.

Our theorems 1.1 and 1.3 look to be the equivalent of the results in [dFR91, Vil98℄ for the

problems (1.1) and (1.2), while the result in [Mas04a℄ appears muh more diÆult to be extended

to these systems.

In [dFR91℄, also the resonant ase � = 0 is onsidered, with a nonresonane ondition

similar, but weaker, to our (HR0); the resonane for � = �

2

=4 was onsidered in [Per00℄ and in

[Mas04a℄; in this last one, the nonresonane ondition is quite similar to our (HR1), although it

is interesting to remark that in (HR1) we ould assume a joint ondition on the nonlinearities

in the two equations, whih is muh weaker than asking the ondition in [Mas04a℄ for both,

separately.

Finally, we remark that problem (1.2) with �

+

= �

�

= 1 and g

2

� 0, h

2

� 0, beomes a

fourth order salar problem, whih was onsidered in [Mas04b℄ and (for higher values of �) in

[Mas03℄: the result here may be seen as a generalization of that in [Mas04b℄; however, sine

here we are onsidering a more general nonlinearity, the result in [Mas04b℄ is stronger: it was

obtained up to dimension three and, for dimension one, the existene was proved for � 2 (0; ),

where  was approximatively 0:32�

4

: a value muh larger than �

2

2

=16 = �

4

=16 ' 0:0625�

4

,

whih results from theorem 1.3. This is due to the fat that, sine here we are onsidering a

more general nonlinearity, the sets hosen to estimate the funtional may not be adapted to the

problem as well as there.

The tehniques we will use in order to prove the main theorems will be inspired by those in

[dFR91, Vil98℄ (whih we will briey desribe in setion 3), but will need to be adapted to the

more omplex harateristis of the funtional (1.3) and of its variational setting, whih fores

us to use the Galerkin approximation tehnique desribed above.

2 De�nitions and notations

Consider the eigenvalue problem

8

>

>

>

<

>

>

>

:

�u

00

= �v in (0; 1)

�v

00

= �u in (0; 1)

u

0

(0) = u

0

(1) = v

0

(0) = v

0

(1) = 0

: (2.1)

it is known that the eigenvalues of problem (2.1) are:

� �

k

; k = 1; 2; :: (with orresponding eigenfuntions the ouples (�

k

; �

k

)),

� ��

k

; k = 1; 2; :: (with orresponding eigenfuntions the ouples (�

k

;��

k

)).
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In view of the above struture, let H = H

1

(0; 1), E = H � H (with norm k(u; v)k

2

E

=

kuk

2

H

+ kvk

2

H

) and de�ne

E

+

= f(u; v) 2 E : u = vg ; E

�

= f(u; v) 2 E : u = �vg ; (2.2)

E

+

n

= f(u; v) 2 E : u = v 2 spanf�

1

; ::; �

n

gg ; (2.3)

E

�

n

= f(u; v) 2 E : u = �v 2 spanf�

1

; ::; �

n

gg (2.4)

and �nally

E

n

= E

+

n

�E

�

n

; (2.5)

so that

S

h2N

E

h

= E.

Sine the funtional (1.3) has the term

R

1

0

u

0

v

0

as its prinipal part, the following estimates

will be useful:

Lemma 2.1.

Z

1

0

2u

0

v

0

� �

k+1

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 (E

�

�E

+

k

)

?

(2.6)

Z

1

0

2u

0

v

0

� ��

k+1

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 (E

�

k

�E

+

)

?

(2.7)

Z

1

0

2u

0

v

0

� �

k

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 E

�

�E

+

k

(2.8)

Z

1

0

2u

0

v

0

� ��

k

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 E

�

k

�E

+

(2.9)

Proof. In (E

�

�E

+

k

)

?

one has u = v and then

Z

1

0

2u

0

v

0

= 2

Z

1

0

ju

0

j

2

� 2�

k+1

Z

1

0

u

2

= �

k+1

Z

1

0

u

2

+ v

2

; (2.10)

proving (2.6).

Then observe that

R

1

0

2u

0

v

0

=

1

2

R

1

0

j(u+ v)

0

j

2

� j(u� v)

0

j

2

and that for u 2 E

�

�E

+

k

one has

(u+ v; u+ v) 2 E

+

k

, then

Z

1

0

2u

0

v

0

�

1

2

Z

1

0

j(u+ v)

0

j

2

� �

k

1

2

Z

1

0

(u

2

+ v

2

+ 2uv) � �

k

Z

1

0

u

2

+ v

2

; (2.11)

proving (2.8).

The same argument gives the other two estimates.

3 Proof of theorem 1.1

In [dFR91, Vil98℄, the solution of problem (1.4) is found as a mountain pass ritial point: the

funtional J assoiated to the problem is suh that:

� J is bounded from below in the set S = fu 2 H

1

(0; 1) suh that sup

x2[0;1℄

u(x) = 0g,

provided � <

�

2

4

,
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� lim

t!�1

J(t�

1

) = �1, provided � > 0;

sine H

1

(0; 1) � C([0; 1℄), the set S splits H

1

(0; 1) into two omponents and ��

1

lie on the

opposite sides of it, so one gets the linking struture whih provides (through the PS ondition) a

ritial point. Moreover, the value

�

2

4

=

�

2

4

was obtained through the variational haraterization

�

2

4

= inf

(

R

1

0

(u

0

)

2

R

1

0

u

2

with u 2 Snf0g

)

(3.1)

(this haraterization is the one used in [Vil98℄, the one used in [dFR91℄ it is slightly di�erent).

We will try to adapt this idea to our problem.

First of all, the following lemma will allow us to work with simpler hypotheses:

Lemma 3.1. In the hypotheses of theorem 1.1, problem (1.1) admits a solution with the param-

eters �; � if and only if it admits a solution with parameters

b

� = b� =

p

��:

Proof. If we hange the unknown funtions u; v with the new ones U = u and V = Æv, being

Æ =

q

�

�

, then we obtain a new system with parameters

b

� = b� =

p

��, and in whih the given

hypotheses are still satis�ed; then the two problems are equivalent.

Then, we make the following de�nitions: given u = (u; u) 2 E

+

, we de�ne:

�(u) = sup

x2[0;1℄

u(x) ; (3.2)

then we de�ne (for n > 1) the following sets and quantities:

T

n

=

�

u = (u; u) 2 E

+

n

:

Z

1

0

u�

1

= 0

�

; (3.3)

S

n

= fu = (u; u) 2 E

+

n

: �(u) = 0g ; (3.4)



n

= inf

(

R

1

0

(u

0

)

2

R

1

0

u

2

with u = (u; u) 2 S

n

nf0g

)

; (3.5)

L

n

=

�

u = (u; v) 2

�

E

�

n

�E

+

1

�

:

Z

1

0

u

2

+ v

2

= 1

�

; (3.6)

f

L

n

=

�

u = (u; v) 2

�

E

�

n

�E

+

1

�

:

Z

1

0

u

2

+ v

2

� 1

�

: (3.7)

First we will prove some properties of the above de�nitions:

Lemma 3.2. The funtion � : E

+

! R : u 7! �(u) is ontinuous.

Proof. We have, sine H

1

(0; 1) � C

0

[0; 1℄ with ontinuous inlusion,

j�(u; u) � �(v; v)j � ku� vk

L

1

� C ku� vk

H

1

� C k(u; u) � (v; v)k

E

: (3.8)



An existene result for a linear-superlinar ellipti system 7

Lemma 3.3. The set S

n

is homeomorphi to T

n

, moreover S

n

links in E

n

with RL

n

for any

R > 0.

Proof. Observe that E

n

= E

�

n

�E

+

1

�T

n

and denote by P

T

: E

n

! T

n

and P

L

: E

n

! E

�

n

�E

+

1

the two orthogonal projetions.

The map M : T

n

! S

n

: (u; u) 7! (u; u) � �(u)(1;1) is ontinuous by the previous lemma

and has the restrition of P

T

to S

n

as its inverse, so it is a homeomorphism.

Now observe that the ation of the mapM is a translation parallel to the subspae E

�

n

�E

+

1

(in whih lies

f

L

n

) and that T

n

is orthogonal to this subspae. Then we may extend the map M

to the map

f

M : E

n

! E

n

: (u:v) 7! (u; v) � �(P

T

(u; v))(1;1) (3.9)

whih is still an homeomorphism and whih translates eah plane parallel to

f

L

n

by the same

quantity. Sine the plane ontaining

f

L

n

intersets T

n

in the origine and �(0; 0) = 0, this plane

is not translated and then

f

M j

L

n

= Id.

Finally, onsider any map  :

f

L

n

! E

n

with  j

L

n

= Id and onsider the omposition

	 = P

L

Æ

f

M

�1

Æ  : 	 is the identity on L

n

and so the topologial degree deg(	;

f

L

n

; 0) =

deg(Id;

f

L

n

; 0) = 1, sine 0 2

f

L

n

. This implies that there exists p 2

f

L

n

suh that 	(p) = 0, that

is  (p) 2

f

M (Ker(P

L

)) = S

n

, giving the laimed linking property.

Lemma 3.4. Let 

n

be given by (3.5). Then 

n

� �

2

=4 (in fat, f

n

g is non inreasing and



n

! �

2

=4).

Proof. The de�nition in (3.5) is analogous to that in (3.1), exept for the fat that the inf is

taken on S

n

whih is an inreasing sequene of subsets of S whih �ll it.

Now we de�ne, for n > 1 and R

n

> 0,

e

n

= inf

2�

�

n;R

n

sup

u2(B

n+1

)

F (u) (3.10)

where now

�

�

n;R

n

= f 2 C

0

�

B

n+1

; E

n

�

s:t: j

�B

n+1
is an homeomorphism onto R

n

L

n

g : (3.11)

What we intend to prove is the following proposition, whih in fat implies theorem 1.1 by

virtue of lemma 3.1.

Proposition 3.5. Under hypothesis (H1), for � = � 2 (0; �

2

=4), h

1;2

2 L

2

(0; 1) and suitable

R

n

large enough, the values e

n

are ritial for the restrition to E

n

of the funtional F .

Moreover, under hypotheses (H2) and (H3), up to a subsequene, e

n

! e 2 R for n ! 1

and the ritial points orresponding to the values e

n

onverge to a nontrivial solution of problem

(1.1).

First, we need to estimate F on the sets de�ned above, in order to obtain the laimed ritial

points: observe that sine h

1;2

2 L

2

and using hypothesis (H1), we an �nd onstants C

1

, C

2

and C

3

as follows:
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� C

1

(Æ; h

1;2

) suh that

�

�

�

�

Z

1

0

h

1

v + h

2

u

�

�

�

�

�

Æ

4

�

kuk

2

L

2

+ kvk

2

L

2

�

+ C

1

(Æ; h

1;2

) ; (3.12)

� C

2

(Æ; g

1;2

) suh that

�

�

�

�

Z

1

0

G

1

(x;�v

�

) +G

2

(x;�u

�

)

�

�

�

�

�

Æ

4

�

kuk

2

L

2

+ kvk

2

L

2

�

+ C

2

(Æ; g

1;2

) ; (3.13)

� C

3

(g

1;2

) suh that

Z

1

0

G

1

(x; v

+

) +G

2

(x; u

+

) � �C

3

(g

1;2

) : (3.14)

Lemma 3.6. If � = � > �

1

= 0, then 8C 2 R there exists R > 0 suh that F j

(�B

n+1

)

� C for

any  2 �

�

n;R

, n > 1.

Proof. Let u = (u; v) 2 L

n

: then

R

1

0

�

u

2

+ v

2

�

= 1 and

R

1

0

u

0

v

0

�

�

1

2

R

1

0

�

u

2

+ v

2

�

(in fat, here

�

1

= 0).

By using the above estimates one gets (for � > 0)

F (�u)

�

2

=

Z

1

0

u

0

v

0

�

�

2

Z

1

0

�

v

2

+ u

2

�

�

Z

1

0

G

1

(x; �v) +G

2

(x; �u)

�

2

�

Z

1

0

h

1

�v + h

2

�u

�

2

�

�

1

� �

2

Z

1

0

�

v

2

+ u

2

�

+

Z

1

0

�

�

�

�

G

1

(x;��v

�

) +G

2

(x;��u

�

)

�

2

�

�

�

�

+ (3.15)

�

Z

1

0

G

1

(x; �v

+

) +G

2

(x; �u

+

)

�

2

+

Z

1

0

�

�

�

�

h

1

�v + h

2

�u

�

2

�

�

�

�

�

�

1

� �+ Æ

2

+

C

1

(Æ; h

1;2

) + C

2

(Æ; g

1;2

) + C

3

(g

1;2

)

�

2

:

Then by hoosing 0 < Æ < � � �

1

we have that the �rst part is negative and then for R

large enough (namely R

2

> 2

C�C

1

(Æ;h

1;2

)�C

2

(Æ;g

1;2

)�C

3

(g

1;2

)

�

1

��+Æ

) one gets the laim for u = (u; v) 2

RL

n

.

Lemma 3.7. For � = � < �

2

=4, there exists � suh that F j

S

n

� � for any n > 1.

Proof. For u = (u; u) 2 S

n

we have u(x) � 0 and

R

1

0

(u

0

)

2

� 

n

kuk

2

L

2

, then we may estimate:

F (u) =

Z

1

0

(u

0

)

2

� �

Z

1

0

u

2

�

Z

1

0

G

1

(x; u) +G

2

(x; u) �

Z

1

0

h

1

u+ h

2

u (3.16)

� (

n

� �) kuk

2

L

2

�

�

Æ

2

Z

1

0

u

2

+ C

2

(Æ; g

1;2

)

�

�

�

Æ

2

Z

1

0

u

2

+C

1

(Æ; h

1;2

)

�

� (

n

� �� Æ)

Z

1

0

u

2

� C

2

(Æ; g

1;2

)� C

1

(Æ; h

1;2

) :

Now, if � < �

2

=4, we may hoose Æ < �

2

=4 � � so that the �rst term is non negative for any

n > 1 by lemma 3.4 and so F (u) � �C

2

(Æ; g

1;2

)�C

1

(Æ; h

1;2

).
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Lemma 3.8. For � = � 2 (0; �

2

=4), there exist �; � 2 R suh that

� � e

n

� �, for any n > 1.

Proof. The bound from below is given by lemma 3.7 and the linking property in lemma 3.3.

For the bound from above one may simply build a map ~ 2 �

�

n;R

suh that ~(B

n+1

) = R

f

L

n

and then the same omputations in lemma 3.6 provide the estimate

sup

u2~(B

n+1

)

F (u) �

�

1

� �+

b

Æ

2

Z

1

0

(u

2

+ v

2

) + C

1

(

b

Æ; h

1;2

) +C

2

(

b

Æ; g

1;2

) + C

3

(g

1;2

) ; (3.17)

then again by hoosing 0 <

b

Æ < � � �

1

one gets the laimed estimate from above with � =

C

1

(

b

Æ; h

1;2

) + C

2

(

b

Æ; g

1;2

) + C

3

(g

1;2

).

Now we may onlude:

Proof of proposition 3.5 and theorem 1.1. By lemma 3.8 and lemma 3.6 with C < � we an

apply a linking theorem to obtain that the levels e

n

are ritial for the restrition of F at the

�nite dimensional subspae E

n

, that is there exists u

n

= (u

n

; v

n

) 2 E

n

suh that equation (4.2)

below holds.

Moreover, the estimates � � e

n

� � implies (4.1) below and then we have, by proposition

4.1, that (up to a subsequene) u

n

E

! u = (u; v) 2 E, whih is a solution of problem (1.1) (using

also lemma 3.1).

4 Proof of the PS* ondition

In this setion we prove that the sequene of points in E obtained in the �rst part of proposition

3.5, ontains a onvergent subsequene (this is known as PS* property) and that its limit is

atually a ritial point for F .

Proposition 4.1. Let the sequene fu

n

g = f(u

n

; v

n

)g � E with (u

n

; v

n

) 2 E

n

be suh that

jF (u

n

)j =

�

�

�

�

Z

1

0

u

0

n

v

0

n

�

Z

1

0

�

2

v

2

n

+

�

2

u

2

n

�

Z

1

0

G

1

(x; v

n

) +G

2

(x; u

n

)�

Z

1

0

h

1

v

n

+ h

2

u

n

�

�

�

�

� T ;

(4.1)

hF

0

(u

n

); (�;  )i =

Z

1

0

u

0

n

 

0

+ v

0

n

�

0

�

Z

1

0

�v

n

 + �u

n

�+

�

Z

1

0

g

1

(x; v

n

) + g

2

(x; u

n

)��

Z

1

0

h

1

 + h

2

� = 0 8(�;  ) 2 E

n

: (4.2)

Then, for �; � 6= 0 and under hypotheses (H1), (H2) and (H3), there exists u = (u; v) 2 E

suh that

Z

1

0

u

0

 

0

+v

0

�

0

�

Z

1

0

�v +�u��

Z

1

0

g

1

(x; v) +g

2

(x; u)��

Z

1

0

h

1

 +h

2

� = 0 8(�;  ) 2 E ; (4.3)

that is, (u; v) is a solution of problem (1.1).

In fat, up to a subsequene, u

n

! u in E.
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The proof will be in most parts very lose to that in [Mas04a℄, for the salar problem: we

sketh it here, underlining the di�ering parts:

1. First one estimates (from hypothesis (H1))

for any " > 0, �s 2 R and M 2 R, there exist C

M

, C

"

2 R (of ourse depending also on �s)

suh that

g

1;2

(x; s) �Ms� C

M

for s > �s ; (4.4)

jg

1;2

(x; s)j � "(�s) + C

"

for s � �s ; (4.5)

Then one supposes that the sequene u

n

is not bounded in E and so assumes ku

n

k

E

� 1,

ku

n

k

E

! +1, de�nes z

n

= (U

n

; V

n

) =

u

n

ku

n

k

E

, so that z

n

is a bounded sequene in E and

then we an selet a subsequene suh that z

n

! z

0

= (U

0

; V

0

) weakly in E and strongly

in [L

2

℄

2

and [C

0

[0; 1℄℄

2

.

2. Claim: U

0

; V

0

� 0.

Proof of the laim. From

hF

0

(u

n

;v

n

);(�

1

;�

1

)i

ku

n

k

E

= 0 one gets (remember that in this ase �

1

=

1)

Z

1

0

g

1

(x; v

n

)

ku

n

k

E

+

g

2

(x; u

n

)

ku

n

k

E

�

�

�

�

�

Z

1

0

�V

n

+ �U

n

�

�

�

�

+

�

�

�

�

Z

1

0

h

1

ku

n

k

E

+

h

2

ku

n

k

E

�

�

�

�

: (4.6)

Then we proeed as in [Mas04a℄ to obtain that, for any �x suh that V

0

(�x) > 0, we have

lim

n!+1

g

1

(�x; v

n

)

ku

n

k

E

= +1 ; (4.7)

and that (for any x 2 [0; 1℄)

g

1

(x; v

n

)

ku

n

k

E

� �"jV

n

j �

C

M;"

ku

n

k

E

; (4.8)

now taking lim inf we get

lim inf

n!+1

g

1

(x; v

n

)

ku

n

k

E

� �"jV

0

(x)j (4.9)

for any hoie of " and then

lim inf

n!+1

g

1

(x; v

n

)

ku

n

k

E

� 0 : (4.10)

The analogous to (4.7) and (4.10) hold replaing g

1

with g

2

and v with u.

Sine U

n

; V

n

are uniformly bounded (by their C

0

onvergene) and ku

n

k

E

� 1, (4.8) implies

that the funtions

g

1

(x;v

n

)

ku

n

k

E

and

g

2

(x;u

n

)

ku

n

k

E

are bounded below uniformly so that we an use

Fatou's Lemma and get from (4.6), (4.7) (supposing U

+

0

6� 0 or V

+

0

6� 0) and (4.10)

+1 =

Z

1

0

lim inf

n!+1

�

g

1

(x; v

n

)

ku

n

k

E

+

g

2

(x; u

n

)

ku

n

k

E

�

� lim inf

n!+1

Z

1

0

g

1

(x; v

n

)

ku

n

k

E

+

g

2

(x; u

n

)

ku

n

k

E

� lim inf

n!+1

�

�

�

�

�

Z

1

0

�V

n

+ �U

n

�

�

�

�

+

�

�

�

�

Z

1

0

h

1

ku

n

k

E

+

h

2

ku

n

k

E

�

�

�

�

�

: (4.11)
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The right hand side an be estimated sine the �rst term is bounded by (� kV

n

k

H

1

+

� kU

n

k

H

1

) � �+� and the last one learly goes to zero; then equation (4.11) gives rise to

a ontradition unless U

0

; V

0

� 0.

3. Claim: Using hypotheses (H2) and (H3) we obtain a onstant A suh that

Z

v

n

>s

0

g

1

(x; v

n

)v

n

� A ku

n

k

E

;

Z

u

n

>s

0

g

2

(x; u

n

)u

n

� A ku

n

k

E

; (4.12)

at least for n big enough.

Proof of the laim. From j2F (u

n

)� hF

0

(u

n

);u

n

ij � 2T one gets

Z

v

n

>s

0

g

1

(x; v

n

)u

n

� 2G

1

(x; v

n

) +

Z

u

n

>s

0

g

2

(x; u

n

)u

n

� 2G

2

(x; u

n

) �

Z

v

n

�s

0

2G

1

(x; v

n

)�g

1

(x; v

n

)v

n

+

Z

u

n

�s

0

2G

2

(x; u

n

)�g

2

(x; u

n

)u

n

+

�

�

�

�

Z

1

0

h

1

v

n

+ h

2

u

n

�

�

�

�

+2T ;

(4.13)

and proeed as in [Mas04a℄ to obtain (by using hypotheses (H2) and (H3))

Z

v

n

>s

0

g

1

(x; v

n

)v

n

+

Z

u

n

>s

0

g

2

(x; u

n

)u

n

�

A

2

ku

n

k

E

+

A

2

� A ku

n

k

E

(4.14)

for some onstant A; but by hypothesis (H2), both integral are nonnegative, and then we

obtain (4.12).

4. Claim:

Z

1

0

jg

1

(x; v

n

)j

ku

n

k

E

! 0 ;

Z

1

0

jg

2

(x; v

n

)j

ku

n

k

E

! 0 : (4.15)

Proof of the laim. As in [Mas04a℄.

5. Claim: �; � 6= 0 implies (U

0

; V

0

) = (0; 0).

Proof of the laim. For any given (�;  ) 2 E

h

we get, from

hF

0

(u

n

);(�; )i

ku

n

k

E

with n > h:

�

�

�

�

Z

1

0

U

0

n

 

0

+ V

0

n

�

0

�

Z

1

0

�V

n

 + �U

n

�

�

�

�

�

�

�

Z

1

0

jg

1

(x; v

n

)j

ku

n

k

E

j j+

jg

2

(x; u

n

)j

ku

n

k

E

j�j+

�

�

�

�

Z

1

0

h

1

 + h

2

�

ku

n

k

E

�

�

�

�

; (4.16)

but now the right hand side goes to zero by equation (4.15), and then we get, taking limit

and using weak onvergene of (U

n

; V

n

), that

Z

1

0

U

0

0

 

0

+ V

0

0

�

0

�

Z

1

0

�V

0

 + �U

0

� = 0 : (4.17)
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Sine

S

h2N

E

h

is dense in E, this remains true for arbitrary (�;  ) 2 E and then (U

0

; V

0

)

satisfy the system

8

>

>

>

<

>

>

>

:

�U

00

0

= �V

0

in (0; 1)

�V

00

0

= �U

0

in (0; 1)

U

0

0

(0) = V

0

0

(0) = U

0

0

(1) = V

0

0

(1) = 0

: (4.18)

Sine we know that all solutions of this system with �; � 6= 0 hange sign (while U

0

; V

0

� 0),

this implies (U

0

; V

0

) � (0; 0).

6. Claim: (u

n

; v

n

) is bounded.

Proof of the laim. From

hF

0

(u

n

);(v

n

;u

n

)i

ku

n

k

2

E

= 0 one gets

Z

1

0

(U

0

n

)

2

+ (V

0

n

)

2

�

�

Z

1

0

(�+ �)V

n

U

n

+

Z

1

0

jg

1

(x; v

n

)jjU

n

j+ jg

2

(x; u

n

)jjV

n

j

ku

n

k

E

+

Z

1

0

h

1

U

n

+ h

2

V

n

ku

n

k

E

: (4.19)

Using (4.15) and the fat that (U

n

; V

n

)! (0; 0) in [L

2

℄

2

and in [C

0

[0; 1℄℄

2

, (4.19) beomes

Z

1

0

(U

0

n

)

2

+ (V

0

n

)

2

! 0 ; (4.20)

whih gives ontradition sine one would get 1 = k(U

n

; V

n

)k

E

! 0.

7. Thus u

n

is bounded and so there exists a subsequene suh that u

n

! u = (u; v) weakly

in E and strongly in (L

2

)

2

and [C

0

[0; 1℄℄

2

.

By taking limit in (4.2) for a given (�;  ) 2 E

h

and using the weak onvergene of u

n

one

obtains (the nonlinear terms are ontinuous: if v

n

! v in C

0

then g

1

(x; v

n

) ! g

1

(x; v) in

L

2

)

Z

1

0

u

0

 

0

+ v

0

�

0

�

Z

1

0

�v + �u��

Z

1

0

g

1

(x; v) + g

2

(x; u)��

Z

1

0

h

1

 + h

2

� = 0 (4.21)

and, again, this remains true by a density argument for arbitrary (�;  ) 2 E.

8. Finally, we prove that in fat u

n

! u strongly too.

Let P

n

: H ! H

n

= span f�

1

; ::; �

n

g be the orthogonal projetion map, then P

n

u ! u

and P

n

v ! v in H and so P

n

u� u

n

! 0 and P

n

v � v

n

! 0 in L

2

.

Consider equation (4.2) with  = u

n

� P

n

u and � = 0:

Z

1

0

u

0

n

(u

n

� P

n

u)

0

�

Z

1

0

�v

n

(u

n

� P

n

u)�

Z

1

0

g

1

(x; v

n

)(u

n

� P

n

u)�

Z

1

0

h

1

(u

n

� P

n

u) = 0 ;

(4.22)
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g

1

(x; v

n

) is bounded in L

2

, (u

n

� P

n

u)! 0 in L

2

and then

Z

1

0

u

0

n

(u

n

� u+ u� P

n

u)

0

! 0 ; (4.23)

whih implies u

n

! u strongly in H.

The same argument gives v

n

! v strongly in H.

5 Proof of theorem 1.2: the resonant ases

5.1 The resonane in �

2

=4

Sine we may make a hange of unknowns as in lemma 3.1, assume � = � = �

2

=4 and (HR1).

Sine lemma 3.6 and proposition 4.1 still hold in this ase, the only di�erene arises in lemma

3.7, where one has to exploit (HR1) to obtain

F (u) =

Z

1

0

(u

0

)

2

�

�

2

4

Z

1

0

u

2

�

Z

1

0

G

1

(x; u) +G

2

(x; u)�

Z

1

0

h

1

u+ h

2

u (5.1)

�

�



n

�

�

2

4

�

kuk

2

L

2

�M

0

;

atually, we assumed without loss of generality that �

0

= 0, sine

R

u2[��

0

;0℄

G

1

(x; u)+G

2

(x; u)+

h

1

u+ h

2

u is bounded.

5.2 The resonane in zero

We observe that the resonane in zero is more ompliated: we may no longer proeed as in

lemma 3.1, that is suppose � = �; however, we may exploit the same kind of hange of unknowns

to assume, without loss of generality, �; � < �

2

=4. This implies that the onlusions of lemma

3.7 still hold, by simply replaing the term �

R

1

0

u

2

with

�+�

2

R

1

0

u

2

in (3.16).

So onsider �rst the ase � = � = 0 and assume (HR0) holds for i = 1; 2.

Modi�ations in the proof of lemma 3.6. We will estimate (for Æ;M > 0)

�

Z

1

0

h

1

v �

�

�

�

�

Z

1

0

h

1

v

+

j

�

�

�

�

+

Z

1

0

h

1

v

�

� Æ

Z

1

0

(v

+

)

2

+ C

Æ

� d

Z

1

0

v

�

; (5.2)

Z

1

0

jG

1

(x; v

�

) +G

2

(x; u

�

)j � Æ

Z

1

0

�

v

�

+ u

�

�

+ C

Æ

; (5.3)

Z

1

0

G

1

(x; v

+

) +G

2

(x; u

+

) � M

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

� C

3

(g

1;2

;M) ; (5.4)

(5.5)

where we used (HR0) in the �rst two lines (and the same holds with h

2

and u in plae of h

1

and

v).
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Then we may join the above estimates to obtain, in plae of (3.15) (reall that � = � = �

1

=

0):

F (�u) � K

M;Æ

�

�

M�

2

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

�

+

�

Æ�

Z

1

0

v

�

+ u

�

�

+ (5.6)

+

�

�d�

Z

1

0

�

v

�

+ u

�

�

+ Æ�

2

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

�

� K

M;Æ

+ (�M + Æ)�

2

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

+ (�d+ Æ)�

Z

1

0

�

v

�

+ u

�

�

;

where we olleted all the onstants in K

M;Æ

.

Now, by hoosing Æ < d < M , we obtain a negative ontribution from both the positive and

the negative part of the funtions; however,

R

1

0

�

(v

+

)

2

+ (u

+

)

2

�

+

R

1

0

(v

�

+ u

�

) is bounded away

from zero in L

n

but not uniformly with respet to n: this implies that we may �nd the laimed

R but depending on n; however this is not a problem sine in the proof of proposition 3.5 R

may depend on n.

Modi�ations in the proof of proposition 4.1. From equation (4.18) we now obtain that U

0

and

V

0

are two independent nonpositive onstants.

However, by using equation (4.2), with test funtions the ouples (�

1

; 0) and (0; �

1

) we get,

respetively

Z

1

0

g

1

(x; v

n

) +

Z

1

0

h

1

= 0 ;

Z

1

0

g

2

(x; u

n

) +

Z

1

0

h

2

= 0 (5.7)

where (if U

0

; V

0

6� 0), u

n

; v

n

! �1 uniformly and so we get, by (HR0), the ontradition

R

1

0

h

1;2

! 0; then as before U

0

� V

0

� 0.

Finally, the ase in whih only one of the parameters is zero is similar: let � = 0, � > 0 (and,

without loss of generality as observed above, � < �

2

=4) and assume (HR0) only for i = 1: then

in (5.6) one has also a term ��

R

1

0

u

2

whih may be exploited as in equation (3.15), so that it is

no more neessary to assume (HR0) for i = 2, while from system (4.18) one obtains U

0

� 0 and

V

0

� 0 onstant, and proeeds as above to show that in fat V

0

� 0 too by (HR0).

Remark 5.1. By omparing hypothesis (HR0) and proposition 7.1 below, one sees that if in

addition to (HR0) we have also g

i

> 0, then the suÆient ondition h

i

< �d < 0 and the

neessary one

R

1

0

h

1

� � inf

x2[0;1℄; s2R

(g

i

(x; s)) = 0, beome similar enough.

6 Proof of theorem 1.3

To deal with this problem, we may exploit a hange of unknown as done in lemma 3.1; in this

ase we will assume � = �

�

2 (0; �

2

=4) and �

+

> 0.

Observe that the right hand side of the seond equation may be rewritten as �

�

u+ (�

+

�

�

�

)u

+

+ g

2

(x; u) and that the term ~g

2

(x; u) = (�

+

� �

�

)u

+

+ g

2

(x; u) satis�es the estimates

(3.13) and (3.14) sine �

+

> �

�

. Then lemmas 3.6 and 3.7 still hold.
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Modi�ations in the proof of proposition 4.1. Estimate (4.4) now holds only for g

1

, while g

2

sat-

is�es an estimate as (4.5) also for s > �s; then (4.11) beomes

Z

1

0

lim inf

n!+1

g

1

(x; v

n

)

ku

n

k

E

� lim inf

n!+1

�

�

�

�

�

Z

1

0

�V

n

+ �

+

U

+

n

� �

�

U

�

n

�

�

�

�

+

�

�

�

�

Z

1

0

h

1

+ h

2

+ g

2

(x; u

n

)

ku

n

k

E

�

�

�

�

�

(6.1)

and implies V

+

0

� 0.

Later, in (4.13), one passes the whole term ontaining g

2

and G

2

to the right hand side and

estimates it with (H3) and (H3*), and so obtains (4.12) (and (4.15) later) for g

1

only.

Finally, in plae of (4.18) one gets

8

>

>

>

<

>

>

>

:

�U

00

0

= �V

0

in (0; 1)

�V

00

0

= �

+

U

+

0

� �

�

U

�

0

in (0; 1)

U

0

0

(0) = V

0

0

(0) = U

0

0

(1) = V

0

0

(1) = 0

; (6.2)

and again dedues (U

0

; V

0

) � (0; 0), atually sine � 6= 0 and V

0

does not hande sign, U

0

may

only be a onstant and so V

0

� 0, but then the seond equation implies that U

0

� 0 too sine

�

�

6= 0.

The rest of the proof follows straightforward.

7 The ase �; � < 0 and an analogous result for the Dirihlet

problem

As antiipated in the introdution, we will show here (proposition 7.1) that when � or � is below

the �rst eigenvalue �

1

= 0, no result like theorem 1.1 may hold, sine it is always possible to

�nd foring terms h

1

or h

2

for whih no solution exists.

This result has an analogue for the Dirihlet problem, whih will be given in proposition 7.2.

Proposition 7.1. For � < 0 (resp. � < 0), under hypotheses (H1), the problem (1.1) has no

solution if:

R

1

0

h

1

�

1

> �min

x2[0;1℄; s2R

[�s+ g

1

(x; s)℄ (resp.

R

1

0

h

2

�

1

> �min

x2[0;1℄; s2R

[�s+ g

2

(x; s)℄).

Proof. Consider the ase � < 0: by testing the �rst equation against �

1

= 1 one gets

0 =

Z

1

0

�v + g

1

(x; v) +

Z

1

0

h

1

(7.1)

� min

x2[0;1℄; s2R

[�s+ g

1

(x; s)℄ +

Z

1

0

h

1

; (7.2)

where the minimum above is well de�ned by the ontinuity of g

1

and the hypotheses (H1) and

� < 0. Then we obtain the neessary ondition

R

1

0

h

1

� �min

x2[0;1℄; s2R

[�s+ g

1

(x; s)℄.

Analogous omputations give the result for � < 0.

The same kind of nonexistene result may be proved for the Dirihlet problem, with some

more ompliated omputation: in the following �

1

and '

1

will denote the �rst eigenvalue and

eigenfuntion of the Dirihlet problem.
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Proposition 7.2. For � < 0, or � < 0, or

p

�� < �

1

, under hypotheses (H1), there exists two

onstants C 2 R and m > 0, suh that if m

R

1

0

h

1

�

1

+

R

1

0

h

2

�

1

> C, then problem (1.1) has no

solution.

Proof. Let � > 0, test the equations against '

1

, multiply the �rst by �, integrate by parts and

sum them: this gives

0 =

Z

1

0

(��� �

1

)v'

1

+ �g

1

(x; v)'

1

+

Z

1

0

(�� ��

1

)u'

1

+ g

2

(x; v)'

1

+

Z

1

0

�h

1

'

1

+ h

2

'

1

: (7.3)

Now, if (��� �

1

) and (�� ��

1

) were both negative, then as in the proof of proposition 7.1

one ould get the minimum obtaining the neessary ondition

�

Z

1

0

h

1

'

1

+

Z

1

0

h

2

'

1

�

�

�

min

x2[0;1℄; s2R

[(��� �

1

)s+ �g

1

(x; s)℄ + min

x2[0;1℄; s2R

[(�� ��

1

)s+ g

2

(x; s)℄

�

Z

1

0

'

1

: (7.4)

But this may always be obtained: for �; � > 0,

p

�� < �

1

one may hoose � =

q

�

�

, while if

� < 0 (resp. � < 0), then a good hoie is � suÆiently large (resp. suÆiently small).

Remark 7.3. Observe that these nonexistene results may be extended straightforward to any

spatial dimension, whenever the usual onditions (on the superlinearities g

1;2

) whih allow to

use variational tehniques are satis�ed.

Moreover, the hypothesis (H1) was used just in order to guarantee that the funtions �s +

g

1

(x; s) et. were bounded from below; then superlinearity is not neessary, one ould simply ask

lim inf

s!+1

�+

g

1

(x;s)

s

> 0 and an analogous ondition for g

2

, in the Neumann ase, and a some

more ompliated ondition (sine the two equations remain oupled) for the Dirihlet ase.
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