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Abstra
t

In this work, we 
onsider an ellipti
 system of two equations in dimension one (with

Neumann boundary 
onditions) where the nonlinearities are asymptoti
ally linear at �1

and superlinear at +1. We obtain that, under suitable hypotheses, a solution exists for any


ouple of for
ing terms in L

2

.

We also present a similar result in whi
h the superlinearity is in only one of the two

equations, and we dis
uss the resonant problem too.

1 Introdu
tion

In this work we are mainly 
on
erned with the problem
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>

:

�u

00

= �v + g

1

(x; v) + h

1

(x) in (0; 1)

�v

00

= �u+ g

2

(x; u) + h

2

(x) in (0; 1)

u

0

(0) = u

0

(1) = v

0

(0) = v

0

(1) = 0

; (1.1)

where the prin
ipal hypothesis is

g

1;2

2 C

0

([0; 1℄ � R); lim

s!�1

g

1;2

(x; s)

s

= 0; lim

s!+1

g

1;2

(x; s)

s

= +1 (H1)

uniformly with respe
t to x 2 [0; 1℄, and h

1;2

2 L

2

(0; 1).
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2 E. Massa

Some hypotheses on the growth at in�nity in the se
ond variable of the nonlinearities g

1;2

will be needed to obtain the PS 
ondition for the fun
tional asso
iated to problem (1.1): de�ning

G

1;2

(x; s) =

R

s

0

g

1;2

(x; �)d�, we ask

9� 2

�

0;

1

2

�

; s

0

> 0 s:t: 0 < G

1;2

(x; s) � �sg

1;2

(x; s) 8s > s

0

; (H2)

9s

1

> 0; C

0

> 0 s:t: G

1;2

(x; s) �

1

2

sg

1;2

(x; s) + C

0

8s < �s

1

: (H3)

Moreover, for 
ertain \resonant" values of �; �, also one of the following hypotheses will be

assumed:

lim

s!�1

g

i

(x; s) = 0 ; h

i

(x) < �d < 0 a:e: x 2 [0; 1℄ : i = 1 or 2 ; (HR0)

9�

0

> 0; M

0

2 R s:t:

G

1

(x; s) +G

2

(x; s) + h

1

(x)s+ h

2

(x)s �M

0

a:e: x 2 [0; 1℄; 8s < ��

0

: (HR1)

An example of nonlinearities whi
h satisfy the hypotheses above may be g

1;2

(x; s) = e

s

; in

this 
ase (HR0) and (HR1) be
omes h

i

(x) < �d < 0 a.e. and h

1;2

(x) � 0 a.e, respe
tively.

We will denote in the following with 0 = �

1

< �

2

� �

3

� ::: � �

k

� ::: the eigenvalues of ��

in H

1

(0; 1) and with (�

k

; k = 1; 2; ::) the 
orresponding eigenfun
tions, whi
h will be taken

orthogonal and normalized with k�

k

k

L

2

= 1.

The main result of this work is the following theorem:

Theorem 1.1. For �; � > 0,

p

�� 2 (0; �

2

=4), under hypotheses (H1), (H2) and (H3), there

exists a solution for problem (1.1) for any h

1

; h

2

2 L

2

(0; 1).

We will also 
onsider the two limiting (resonant) 
ases:

Theorem 1.2. Under hypotheses (H1), (H2), (H3) and with h

1

; h

2

2 L

2

(0; 1) we have:

(i) For �; � > 0,

p

�� = �

2

=4, if hypothesis (HR1) is satis�ed too, then there exists a solution

for problem (1.1).

(ii) If � = 0; � > 0 (or � > 0; � = 0, or � = � = 0), if hypothesis (HR0) is satis�ed for i = 1

(or i = 2, or i = 1; 2, respe
tively), then there exists a solution for problem (1.1).

We remark that problem (1.1) with �; � > 0,

p

�� > �

2

=4 seems mu
h more diÆ
ult to work

with, due to the more 
ompli
ated intera
tion of the nonlinearity with the spe
trum.

In the 
ase � < 0 or � < 0 instead, it is simple to show that no result similar to theorem 1.1

may be a
hieved, a
tually we will show in proposition 7.1 that one may always �nd fun
tions

h

1

; h

2

2 L

2

for whi
h no solution exists.

Observe that in problem (1.1), we are assuming a linear-superlinear nonlinearity in both

equations; however, we will show that few modi�
ations in the proofs allow to treat also the

problem with the linear-superlinear term in one equation and a jumping nonlinearity in the

other: namely
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:

�u

00

= �v + g

1

(x; v) + h

1

(x) in (0; 1)

�v

00

= �

+

u

+

� �

�

u

�

+ g

2

(x; u) + h

2

(x) in (0; 1)

u

0

(0) = u

0

(1) = v

0

(0) = v

0

(1) = 0

; (1.2)

where u

�

(x) = maxf0;�u(x)g and now

g

1;2

2 C

0

([0; 1℄ � R); lim

s!�1

g

1

(x;s)

s

= 0; lim

s!+1

g

1

(x;s)

s

= +1 ;

lim

s!�1

g

2

(x;s)

s

= 0; lim

s!+1

g

2

(x;s)

s

= 0

(H1*)

uniformly with respe
t to x 2 [0; 1℄, and still h

1;2

2 L

2

(0; 1).

In this 
ase we will assume hypothesis (H2) only for g

1

, while for g

2

we will assume the

equivalent of (H3) also at +1 too, namely

G

2

(x; s) �

1

2

sg

2

(x; s) + C

0

8s > s

1

: (H3*)

The result is the following

Theorem 1.3. For � > 0, �

+

> �

�

> 0 and

p

�

�

� 2 (0; �

2

=4), under hypotheses (H1*), (H2)

only for g

1

, (H3) and (H3*), there exists a solution for problem (1.2) for any h

1

; h

2

2 L

2

(0; 1).

1.1 Some 
omments about the te
hniques used and some related results

The main theorems will be proved by �nding a 
riti
al point of the fun
tional asso
iated to

problem (1.1):

F : E = H

1

�H

1

! R : u = (u; v) 7! F (u) =

=

Z

1

0

u

0

v

0

�

Z

1

0

�

�

2

v

2

+

�

2

u

2

�

�

Z

1

0

(G

1

(x; v) +G

2

(x; u))�

Z

1

0

(h

1

v + h

2

u) ; (1.3)

or to problem (1.2), whi
h is analogous to this ex
ept for the term

R

1

0

�

�

2

v

2

+

�

2

u

2

�

being repla
ed

by

R

1

0

�

�

2

v

2

+

�

+

2

(u

+

)

2

+

�

�

2

(u

�

)

2

�

.

We observe that one important 
hara
teristi
 of this kind of system is that, in order to

treat it variationally, we are led to work with this fun
tional, whi
h is strongly inde�nite, in

the sense that there exist two in�nite dimensional subspa
es of E su
h that F is unbounded

from above in one and from below in the other (see lemma 2.1). This implies that the standard

linking theorems are no more available to �nd 
riti
al points. Some of the te
hniques used

in approa
hing this kind of problems may be seen in [BR79, dFF94, HvdV93, dFdOR04℄; in

parti
ular, we will use an approximation te
hnique (Galerkin pro
edure), namely we will solve

�nite dimensional problems, then take limit on the dimension of su
h problems and prove that

the result is a
tually the 
riti
al point we were looking for (see for example [dFdOR04℄).

The s
alar 
ounterpart of problem (1.1) is

8

<

:

�u

00

= �u+ g(x; u) + h(x) in (0; 1)

u

0

(0) = u

0

(1) = 0

; (1.4)
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and it has been 
onsidered in many works.

For � < �

1

(no matter whether the boundary 
onditions are Neumann or Diri
hlet) it is the

so 
alled Ambrosetti-Prodi problem (�rst 
onsidered in [AP72℄) and it has zero, at least one or

at least two solutions, depending on the for
ing term h 2 L

2

. The result in the propositions 7.1

and 7.2 suggests that a similar phenomenon may happen for our system too.

For � > �

1

, the behavior is quite di�erent for Neumann and Diri
hlet 
onditions: in [Mas03℄

it is shown that, in the Diri
hlet 
ase, for any � > �

1

, there exist examples in whi
h no solution

exists, while for the Neumann 
ase (in dimension one), it was obtained in [dFR91℄ and later in

[Vil98℄ that for � 2 (0; �

2

=4), a solution exists for any h 2 L

2

; this result was then extended to

� 2 (�

k

=4; �

k+1

=4), k � 2 in [Mas04a℄.

Our theorems 1.1 and 1.3 look to be the equivalent of the results in [dFR91, Vil98℄ for the

problems (1.1) and (1.2), while the result in [Mas04a℄ appears mu
h more diÆ
ult to be extended

to these systems.

In [dFR91℄, also the resonant 
ase � = 0 is 
onsidered, with a nonresonan
e 
ondition

similar, but weaker, to our (HR0); the resonan
e for � = �

2

=4 was 
onsidered in [Per00℄ and in

[Mas04a℄; in this last one, the nonresonan
e 
ondition is quite similar to our (HR1), although it

is interesting to remark that in (HR1) we 
ould assume a joint 
ondition on the nonlinearities

in the two equations, whi
h is mu
h weaker than asking the 
ondition in [Mas04a℄ for both,

separately.

Finally, we remark that problem (1.2) with �

+

= �

�

= 1 and g

2

� 0, h

2

� 0, be
omes a

fourth order s
alar problem, whi
h was 
onsidered in [Mas04b℄ and (for higher values of �) in

[Mas03℄: the result here may be seen as a generalization of that in [Mas04b℄; however, sin
e

here we are 
onsidering a more general nonlinearity, the result in [Mas04b℄ is stronger: it was

obtained up to dimension three and, for dimension one, the existen
e was proved for � 2 (0; 
),

where 
 was approximatively 0:32�

4

: a value mu
h larger than �

2

2

=16 = �

4

=16 ' 0:0625�

4

,

whi
h results from theorem 1.3. This is due to the fa
t that, sin
e here we are 
onsidering a

more general nonlinearity, the sets 
hosen to estimate the fun
tional may not be adapted to the

problem as well as there.

The te
hniques we will use in order to prove the main theorems will be inspired by those in

[dFR91, Vil98℄ (whi
h we will brie
y des
ribe in se
tion 3), but will need to be adapted to the

more 
omplex 
hara
teristi
s of the fun
tional (1.3) and of its variational setting, whi
h for
es

us to use the Galerkin approximation te
hnique des
ribed above.

2 De�nitions and notations

Consider the eigenvalue problem

8

>

>

>

<

>

>

>

:

�u

00

= �v in (0; 1)

�v

00

= �u in (0; 1)

u

0

(0) = u

0

(1) = v

0

(0) = v

0

(1) = 0

: (2.1)

it is known that the eigenvalues of problem (2.1) are:

� �

k

; k = 1; 2; :: (with 
orresponding eigenfun
tions the 
ouples (�

k

; �

k

)),

� ��

k

; k = 1; 2; :: (with 
orresponding eigenfun
tions the 
ouples (�

k

;��

k

)).
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In view of the above stru
ture, let H = H

1

(0; 1), E = H � H (with norm k(u; v)k

2

E

=

kuk

2

H

+ kvk

2

H

) and de�ne

E

+

= f(u; v) 2 E : u = vg ; E

�

= f(u; v) 2 E : u = �vg ; (2.2)

E

+

n

= f(u; v) 2 E : u = v 2 spanf�

1

; ::; �

n

gg ; (2.3)

E

�

n

= f(u; v) 2 E : u = �v 2 spanf�

1

; ::; �

n

gg (2.4)

and �nally

E

n

= E

+

n

�E

�

n

; (2.5)

so that

S

h2N

E

h

= E.

Sin
e the fun
tional (1.3) has the term

R

1

0

u

0

v

0

as its prin
ipal part, the following estimates

will be useful:

Lemma 2.1.

Z

1

0

2u

0

v

0

� �

k+1

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 (E

�

�E

+

k

)

?

(2.6)

Z

1

0

2u

0

v

0

� ��

k+1

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 (E

�

k

�E

+

)

?

(2.7)

Z

1

0

2u

0

v

0

� �

k

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 E

�

�E

+

k

(2.8)

Z

1

0

2u

0

v

0

� ��

k

Z

1

0

�

u

2

+ v

2

�

for u = (u; v) 2 E

�

k

�E

+

(2.9)

Proof. In (E

�

�E

+

k

)

?

one has u = v and then

Z

1

0

2u

0

v

0

= 2

Z

1

0

ju

0

j

2

� 2�

k+1

Z

1

0

u

2

= �

k+1

Z

1

0

u

2

+ v

2

; (2.10)

proving (2.6).

Then observe that

R

1

0

2u

0

v

0

=

1

2

R

1

0

j(u+ v)

0

j

2

� j(u� v)

0

j

2

and that for u 2 E

�

�E

+

k

one has

(u+ v; u+ v) 2 E

+

k

, then

Z

1

0

2u

0

v

0

�

1

2

Z

1

0

j(u+ v)

0

j

2

� �

k

1

2

Z

1

0

(u

2

+ v

2

+ 2uv) � �

k

Z

1

0

u

2

+ v

2

; (2.11)

proving (2.8).

The same argument gives the other two estimates.

3 Proof of theorem 1.1

In [dFR91, Vil98℄, the solution of problem (1.4) is found as a mountain pass 
riti
al point: the

fun
tional J asso
iated to the problem is su
h that:

� J is bounded from below in the set S = fu 2 H

1

(0; 1) su
h that sup

x2[0;1℄

u(x) = 0g,

provided � <

�

2

4

,



6 E. Massa

� lim

t!�1

J(t�

1

) = �1, provided � > 0;

sin
e H

1

(0; 1) � C([0; 1℄), the set S splits H

1

(0; 1) into two 
omponents and ��

1

lie on the

opposite sides of it, so one gets the linking stru
ture whi
h provides (through the PS 
ondition) a


riti
al point. Moreover, the value

�

2

4

=

�

2

4

was obtained through the variational 
hara
terization

�

2

4

= inf

(

R

1

0

(u

0

)

2

R

1

0

u

2

with u 2 Snf0g

)

(3.1)

(this 
hara
terization is the one used in [Vil98℄, the one used in [dFR91℄ it is slightly di�erent).

We will try to adapt this idea to our problem.

First of all, the following lemma will allow us to work with simpler hypotheses:

Lemma 3.1. In the hypotheses of theorem 1.1, problem (1.1) admits a solution with the param-

eters �; � if and only if it admits a solution with parameters

b

� = b� =

p

��:

Proof. If we 
hange the unknown fun
tions u; v with the new ones U = u and V = Æv, being

Æ =

q

�

�

, then we obtain a new system with parameters

b

� = b� =

p

��, and in whi
h the given

hypotheses are still satis�ed; then the two problems are equivalent.

Then, we make the following de�nitions: given u = (u; u) 2 E

+

, we de�ne:

�(u) = sup

x2[0;1℄

u(x) ; (3.2)

then we de�ne (for n > 1) the following sets and quantities:

T

n

=

�

u = (u; u) 2 E

+

n

:

Z

1

0

u�

1

= 0

�

; (3.3)

S

n

= fu = (u; u) 2 E

+

n

: �(u) = 0g ; (3.4)




n

= inf

(

R

1

0

(u

0

)

2

R

1

0

u

2

with u = (u; u) 2 S

n

nf0g

)

; (3.5)

L

n

=

�

u = (u; v) 2

�

E

�

n

�E

+

1

�

:

Z

1

0

u

2

+ v

2

= 1

�

; (3.6)

f

L

n

=

�

u = (u; v) 2

�

E

�

n

�E

+

1

�

:

Z

1

0

u

2

+ v

2

� 1

�

: (3.7)

First we will prove some properties of the above de�nitions:

Lemma 3.2. The fun
tion � : E

+

! R : u 7! �(u) is 
ontinuous.

Proof. We have, sin
e H

1

(0; 1) � C

0

[0; 1℄ with 
ontinuous in
lusion,

j�(u; u) � �(v; v)j � ku� vk

L

1

� C ku� vk

H

1

� C k(u; u) � (v; v)k

E

: (3.8)
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Lemma 3.3. The set S

n

is homeomorphi
 to T

n

, moreover S

n

links in E

n

with RL

n

for any

R > 0.

Proof. Observe that E

n

= E

�

n

�E

+

1

�T

n

and denote by P

T

: E

n

! T

n

and P

L

: E

n

! E

�

n

�E

+

1

the two orthogonal proje
tions.

The map M : T

n

! S

n

: (u; u) 7! (u; u) � �(u)(1;1) is 
ontinuous by the previous lemma

and has the restri
tion of P

T

to S

n

as its inverse, so it is a homeomorphism.

Now observe that the a
tion of the mapM is a translation parallel to the subspa
e E

�

n

�E

+

1

(in whi
h lies

f

L

n

) and that T

n

is orthogonal to this subspa
e. Then we may extend the map M

to the map

f

M : E

n

! E

n

: (u:v) 7! (u; v) � �(P

T

(u; v))(1;1) (3.9)

whi
h is still an homeomorphism and whi
h translates ea
h plane parallel to

f

L

n

by the same

quantity. Sin
e the plane 
ontaining

f

L

n

interse
ts T

n

in the origine and �(0; 0) = 0, this plane

is not translated and then

f

M j

L

n

= Id.

Finally, 
onsider any map  :

f

L

n

! E

n

with  j

L

n

= Id and 
onsider the 
omposition

	 = P

L

Æ

f

M

�1

Æ  : 	 is the identity on L

n

and so the topologi
al degree deg(	;

f

L

n

; 0) =

deg(Id;

f

L

n

; 0) = 1, sin
e 0 2

f

L

n

. This implies that there exists p 2

f

L

n

su
h that 	(p) = 0, that

is  (p) 2

f

M (Ker(P

L

)) = S

n

, giving the 
laimed linking property.

Lemma 3.4. Let 


n

be given by (3.5). Then 


n

� �

2

=4 (in fa
t, f


n

g is non in
reasing and




n

! �

2

=4).

Proof. The de�nition in (3.5) is analogous to that in (3.1), ex
ept for the fa
t that the inf is

taken on S

n

whi
h is an in
reasing sequen
e of subsets of S whi
h �ll it.

Now we de�ne, for n > 1 and R

n

> 0,

e

n

= inf


2�

�

n;R

n

sup

u2
(B

n+1

)

F (u) (3.10)

where now

�

�

n;R

n

= f
 2 C

0

�

B

n+1

; E

n

�

s:t: 
j

�B

n+1
is an homeomorphism onto R

n

L

n

g : (3.11)

What we intend to prove is the following proposition, whi
h in fa
t implies theorem 1.1 by

virtue of lemma 3.1.

Proposition 3.5. Under hypothesis (H1), for � = � 2 (0; �

2

=4), h

1;2

2 L

2

(0; 1) and suitable

R

n

large enough, the values e

n

are 
riti
al for the restri
tion to E

n

of the fun
tional F .

Moreover, under hypotheses (H2) and (H3), up to a subsequen
e, e

n

! e 2 R for n ! 1

and the 
riti
al points 
orresponding to the values e

n


onverge to a nontrivial solution of problem

(1.1).

First, we need to estimate F on the sets de�ned above, in order to obtain the 
laimed 
riti
al

points: observe that sin
e h

1;2

2 L

2

and using hypothesis (H1), we 
an �nd 
onstants C

1

, C

2

and C

3

as follows:
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� C

1

(Æ; h

1;2

) su
h that

�

�

�

�

Z

1

0

h

1

v + h

2

u

�

�

�

�

�

Æ

4

�

kuk

2

L

2

+ kvk

2

L

2

�

+ C

1

(Æ; h

1;2

) ; (3.12)

� C

2

(Æ; g

1;2

) su
h that

�

�

�

�

Z

1

0

G

1

(x;�v

�

) +G

2

(x;�u

�

)

�

�

�

�

�

Æ

4

�

kuk

2

L

2

+ kvk

2

L

2

�

+ C

2

(Æ; g

1;2

) ; (3.13)

� C

3

(g

1;2

) su
h that

Z

1

0

G

1

(x; v

+

) +G

2

(x; u

+

) � �C

3

(g

1;2

) : (3.14)

Lemma 3.6. If � = � > �

1

= 0, then 8C 2 R there exists R > 0 su
h that F j


(�B

n+1

)

� C for

any 
 2 �

�

n;R

, n > 1.

Proof. Let u = (u; v) 2 L

n

: then

R

1

0

�

u

2

+ v

2

�

= 1 and

R

1

0

u

0

v

0

�

�

1

2

R

1

0

�

u

2

+ v

2

�

(in fa
t, here

�

1

= 0).

By using the above estimates one gets (for � > 0)

F (�u)

�

2

=

Z

1

0

u

0

v

0

�

�

2

Z

1

0

�

v

2

+ u

2

�

�

Z

1

0

G

1

(x; �v) +G

2

(x; �u)

�

2

�

Z

1

0

h

1

�v + h

2

�u

�

2

�

�

1

� �

2

Z

1

0

�

v

2

+ u

2

�

+

Z

1

0

�

�

�

�

G

1

(x;��v

�

) +G

2

(x;��u

�

)

�

2

�

�

�

�

+ (3.15)

�

Z

1

0

G

1

(x; �v

+

) +G

2

(x; �u

+

)

�

2

+

Z

1

0

�

�

�

�

h

1

�v + h

2

�u

�

2

�

�

�

�

�

�

1

� �+ Æ

2

+

C

1

(Æ; h

1;2

) + C

2

(Æ; g

1;2

) + C

3

(g

1;2

)

�

2

:

Then by 
hoosing 0 < Æ < � � �

1

we have that the �rst part is negative and then for R

large enough (namely R

2

> 2

C�C

1

(Æ;h

1;2

)�C

2

(Æ;g

1;2

)�C

3

(g

1;2

)

�

1

��+Æ

) one gets the 
laim for u = (u; v) 2

RL

n

.

Lemma 3.7. For � = � < �

2

=4, there exists � su
h that F j

S

n

� � for any n > 1.

Proof. For u = (u; u) 2 S

n

we have u(x) � 0 and

R

1

0

(u

0

)

2

� 


n

kuk

2

L

2

, then we may estimate:

F (u) =

Z

1

0

(u

0

)

2

� �

Z

1

0

u

2

�

Z

1

0

G

1

(x; u) +G

2

(x; u) �

Z

1

0

h

1

u+ h

2

u (3.16)

� (


n

� �) kuk

2

L

2

�

�

Æ

2

Z

1

0

u

2

+ C

2

(Æ; g

1;2

)

�

�

�

Æ

2

Z

1

0

u

2

+C

1

(Æ; h

1;2

)

�

� (


n

� �� Æ)

Z

1

0

u

2

� C

2

(Æ; g

1;2

)� C

1

(Æ; h

1;2

) :

Now, if � < �

2

=4, we may 
hoose Æ < �

2

=4 � � so that the �rst term is non negative for any

n > 1 by lemma 3.4 and so F (u) � �C

2

(Æ; g

1;2

)�C

1

(Æ; h

1;2

).
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Lemma 3.8. For � = � 2 (0; �

2

=4), there exist �; � 2 R su
h that

� � e

n

� �, for any n > 1.

Proof. The bound from below is given by lemma 3.7 and the linking property in lemma 3.3.

For the bound from above one may simply build a map ~
 2 �

�

n;R

su
h that ~
(B

n+1

) = R

f

L

n

and then the same 
omputations in lemma 3.6 provide the estimate

sup

u2~
(B

n+1

)

F (u) �

�

1

� �+

b

Æ

2

Z

1

0

(u

2

+ v

2

) + C

1

(

b

Æ; h

1;2

) +C

2

(

b

Æ; g

1;2

) + C

3

(g

1;2

) ; (3.17)

then again by 
hoosing 0 <

b

Æ < � � �

1

one gets the 
laimed estimate from above with � =

C

1

(

b

Æ; h

1;2

) + C

2

(

b

Æ; g

1;2

) + C

3

(g

1;2

).

Now we may 
on
lude:

Proof of proposition 3.5 and theorem 1.1. By lemma 3.8 and lemma 3.6 with C < � we 
an

apply a linking theorem to obtain that the levels e

n

are 
riti
al for the restri
tion of F at the

�nite dimensional subspa
e E

n

, that is there exists u

n

= (u

n

; v

n

) 2 E

n

su
h that equation (4.2)

below holds.

Moreover, the estimates � � e

n

� � implies (4.1) below and then we have, by proposition

4.1, that (up to a subsequen
e) u

n

E

! u = (u; v) 2 E, whi
h is a solution of problem (1.1) (using

also lemma 3.1).

4 Proof of the PS* 
ondition

In this se
tion we prove that the sequen
e of points in E obtained in the �rst part of proposition

3.5, 
ontains a 
onvergent subsequen
e (this is known as PS* property) and that its limit is

a
tually a 
riti
al point for F .

Proposition 4.1. Let the sequen
e fu

n

g = f(u

n

; v

n

)g � E with (u

n

; v

n

) 2 E

n

be su
h that

jF (u

n

)j =

�

�

�

�

Z

1

0

u

0

n

v

0

n

�

Z

1

0

�

2

v

2

n

+

�

2

u

2

n

�

Z

1

0

G

1

(x; v

n

) +G

2

(x; u

n

)�

Z

1

0

h

1

v

n

+ h

2

u

n

�

�

�

�

� T ;

(4.1)

hF

0

(u

n

); (�;  )i =

Z

1

0

u

0

n

 

0

+ v

0

n

�

0

�

Z

1

0

�v

n

 + �u

n

�+

�

Z

1

0

g

1

(x; v

n

) + g

2

(x; u

n

)��

Z

1

0

h

1

 + h

2

� = 0 8(�;  ) 2 E

n

: (4.2)

Then, for �; � 6= 0 and under hypotheses (H1), (H2) and (H3), there exists u = (u; v) 2 E

su
h that

Z

1

0

u

0

 

0

+v

0

�

0

�

Z

1

0

�v +�u��

Z

1

0

g

1

(x; v) +g

2

(x; u)��

Z

1

0

h

1

 +h

2

� = 0 8(�;  ) 2 E ; (4.3)

that is, (u; v) is a solution of problem (1.1).

In fa
t, up to a subsequen
e, u

n

! u in E.
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The proof will be in most parts very 
lose to that in [Mas04a℄, for the s
alar problem: we

sket
h it here, underlining the di�ering parts:

1. First one estimates (from hypothesis (H1))

for any " > 0, �s 2 R and M 2 R, there exist C

M

, C

"

2 R (of 
ourse depending also on �s)

su
h that

g

1;2

(x; s) �Ms� C

M

for s > �s ; (4.4)

jg

1;2

(x; s)j � "(�s) + C

"

for s � �s ; (4.5)

Then one supposes that the sequen
e u

n

is not bounded in E and so assumes ku

n

k

E

� 1,

ku

n

k

E

! +1, de�nes z

n

= (U

n

; V

n

) =

u

n

ku

n

k

E

, so that z

n

is a bounded sequen
e in E and

then we 
an sele
t a subsequen
e su
h that z

n

! z

0

= (U

0

; V

0

) weakly in E and strongly

in [L

2

℄

2

and [C

0

[0; 1℄℄

2

.

2. Claim: U

0

; V

0

� 0.

Proof of the 
laim. From

hF

0

(u

n

;v

n

);(�

1

;�

1

)i

ku

n

k

E

= 0 one gets (remember that in this 
ase �

1

=

1)

Z

1

0

g

1

(x; v

n

)

ku

n

k

E

+

g

2

(x; u

n

)

ku

n

k

E

�

�

�

�

�

Z

1

0

�V

n

+ �U

n

�

�

�

�

+

�

�

�

�

Z

1

0

h

1

ku

n

k

E

+

h

2

ku

n

k

E

�

�

�

�

: (4.6)

Then we pro
eed as in [Mas04a℄ to obtain that, for any �x su
h that V

0

(�x) > 0, we have

lim

n!+1

g

1

(�x; v

n

)

ku

n

k

E

= +1 ; (4.7)

and that (for any x 2 [0; 1℄)

g

1

(x; v

n

)

ku

n

k

E

� �"jV

n

j �

C

M;"

ku

n

k

E

; (4.8)

now taking lim inf we get

lim inf

n!+1

g

1

(x; v

n

)

ku

n

k

E

� �"jV

0

(x)j (4.9)

for any 
hoi
e of " and then

lim inf

n!+1

g

1

(x; v

n

)

ku

n

k

E

� 0 : (4.10)

The analogous to (4.7) and (4.10) hold repla
ing g

1

with g

2

and v with u.

Sin
e U

n

; V

n

are uniformly bounded (by their C

0


onvergen
e) and ku

n

k

E

� 1, (4.8) implies

that the fun
tions

g

1

(x;v

n

)

ku

n

k

E

and

g

2

(x;u

n

)

ku

n

k

E

are bounded below uniformly so that we 
an use

Fatou's Lemma and get from (4.6), (4.7) (supposing U

+

0

6� 0 or V

+

0

6� 0) and (4.10)

+1 =

Z

1

0

lim inf

n!+1

�

g

1

(x; v

n

)

ku

n

k

E

+

g

2

(x; u

n

)

ku

n

k

E

�

� lim inf

n!+1

Z

1

0

g

1

(x; v

n

)

ku

n

k

E

+

g

2

(x; u

n

)

ku

n

k

E

� lim inf

n!+1

�

�

�

�

�

Z

1

0

�V

n

+ �U

n

�

�

�

�

+

�

�

�

�

Z

1

0

h

1

ku

n

k

E

+

h

2

ku

n

k

E

�

�

�

�

�

: (4.11)
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The right hand side 
an be estimated sin
e the �rst term is bounded by (� kV

n

k

H

1

+

� kU

n

k

H

1

) � �+� and the last one 
learly goes to zero; then equation (4.11) gives rise to

a 
ontradi
tion unless U

0

; V

0

� 0.

3. Claim: Using hypotheses (H2) and (H3) we obtain a 
onstant A su
h that

Z

v

n

>s

0

g

1

(x; v

n

)v

n

� A ku

n

k

E

;

Z

u

n

>s

0

g

2

(x; u

n

)u

n

� A ku

n

k

E

; (4.12)

at least for n big enough.

Proof of the 
laim. From j2F (u

n

)� hF

0

(u

n

);u

n

ij � 2T one gets

Z

v

n

>s

0

g

1

(x; v

n

)u

n

� 2G

1

(x; v

n

) +

Z

u

n

>s

0

g

2

(x; u

n

)u

n

� 2G

2

(x; u

n

) �

Z

v

n

�s

0

2G

1

(x; v

n

)�g

1

(x; v

n

)v

n

+

Z

u

n

�s

0

2G

2

(x; u

n

)�g

2

(x; u

n

)u

n

+

�

�

�

�

Z

1

0

h

1

v

n

+ h

2

u

n

�

�

�

�

+2T ;

(4.13)

and pro
eed as in [Mas04a℄ to obtain (by using hypotheses (H2) and (H3))

Z

v

n

>s

0

g

1

(x; v

n

)v

n

+

Z

u

n

>s

0

g

2

(x; u

n

)u

n

�

A

2

ku

n

k

E

+

A

2

� A ku

n

k

E

(4.14)

for some 
onstant A; but by hypothesis (H2), both integral are nonnegative, and then we

obtain (4.12).

4. Claim:

Z

1

0

jg

1

(x; v

n

)j

ku

n

k

E

! 0 ;

Z

1

0

jg

2

(x; v

n

)j

ku

n

k

E

! 0 : (4.15)

Proof of the 
laim. As in [Mas04a℄.

5. Claim: �; � 6= 0 implies (U

0

; V

0

) = (0; 0).

Proof of the 
laim. For any given (�;  ) 2 E

h

we get, from

hF

0

(u

n

);(�; )i

ku

n

k

E

with n > h:

�

�

�

�

Z

1

0

U

0

n

 

0

+ V

0

n

�

0

�

Z

1

0

�V

n

 + �U

n

�

�

�

�

�

�

�

Z

1

0

jg

1

(x; v

n

)j

ku

n

k

E

j j+

jg

2

(x; u

n

)j

ku

n

k

E

j�j+

�

�

�

�

Z

1

0

h

1

 + h

2

�

ku

n

k

E

�

�

�

�

; (4.16)

but now the right hand side goes to zero by equation (4.15), and then we get, taking limit

and using weak 
onvergen
e of (U

n

; V

n

), that

Z

1

0

U

0

0

 

0

+ V

0

0

�

0

�

Z

1

0

�V

0

 + �U

0

� = 0 : (4.17)
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Sin
e

S

h2N

E

h

is dense in E, this remains true for arbitrary (�;  ) 2 E and then (U

0

; V

0

)

satisfy the system

8

>

>

>

<

>

>

>

:

�U

00

0

= �V

0

in (0; 1)

�V

00

0

= �U

0

in (0; 1)

U

0

0

(0) = V

0

0

(0) = U

0

0

(1) = V

0

0

(1) = 0

: (4.18)

Sin
e we know that all solutions of this system with �; � 6= 0 
hange sign (while U

0

; V

0

� 0),

this implies (U

0

; V

0

) � (0; 0).

6. Claim: (u

n

; v

n

) is bounded.

Proof of the 
laim. From

hF

0

(u

n

);(v

n

;u

n

)i

ku

n

k

2

E

= 0 one gets

Z

1

0

(U

0

n

)

2

+ (V

0

n

)

2

�

�

Z

1

0

(�+ �)V

n

U

n

+

Z

1

0

jg

1

(x; v

n

)jjU

n

j+ jg

2

(x; u

n

)jjV

n

j

ku

n

k

E

+

Z

1

0

h

1

U

n

+ h

2

V

n

ku

n

k

E

: (4.19)

Using (4.15) and the fa
t that (U

n

; V

n

)! (0; 0) in [L

2

℄

2

and in [C

0

[0; 1℄℄

2

, (4.19) be
omes

Z

1

0

(U

0

n

)

2

+ (V

0

n

)

2

! 0 ; (4.20)

whi
h gives 
ontradi
tion sin
e one would get 1 = k(U

n

; V

n

)k

E

! 0.

7. Thus u

n

is bounded and so there exists a subsequen
e su
h that u

n

! u = (u; v) weakly

in E and strongly in (L

2

)

2

and [C

0

[0; 1℄℄

2

.

By taking limit in (4.2) for a given (�;  ) 2 E

h

and using the weak 
onvergen
e of u

n

one

obtains (the nonlinear terms are 
ontinuous: if v

n

! v in C

0

then g

1

(x; v

n

) ! g

1

(x; v) in

L

2

)

Z

1

0

u

0

 

0

+ v

0

�

0

�

Z

1

0

�v + �u��

Z

1

0

g

1

(x; v) + g

2

(x; u)��

Z

1

0

h

1

 + h

2

� = 0 (4.21)

and, again, this remains true by a density argument for arbitrary (�;  ) 2 E.

8. Finally, we prove that in fa
t u

n

! u strongly too.

Let P

n

: H ! H

n

= span f�

1

; ::; �

n

g be the orthogonal proje
tion map, then P

n

u ! u

and P

n

v ! v in H and so P

n

u� u

n

! 0 and P

n

v � v

n

! 0 in L

2

.

Consider equation (4.2) with  = u

n

� P

n

u and � = 0:

Z

1

0

u

0

n

(u

n

� P

n

u)

0

�

Z

1

0

�v

n

(u

n

� P

n

u)�

Z

1

0

g

1

(x; v

n

)(u

n

� P

n

u)�

Z

1

0

h

1

(u

n

� P

n

u) = 0 ;

(4.22)
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g

1

(x; v

n

) is bounded in L

2

, (u

n

� P

n

u)! 0 in L

2

and then

Z

1

0

u

0

n

(u

n

� u+ u� P

n

u)

0

! 0 ; (4.23)

whi
h implies u

n

! u strongly in H.

The same argument gives v

n

! v strongly in H.

5 Proof of theorem 1.2: the resonant 
ases

5.1 The resonan
e in �

2

=4

Sin
e we may make a 
hange of unknowns as in lemma 3.1, assume � = � = �

2

=4 and (HR1).

Sin
e lemma 3.6 and proposition 4.1 still hold in this 
ase, the only di�eren
e arises in lemma

3.7, where one has to exploit (HR1) to obtain

F (u) =

Z

1

0

(u

0

)

2

�

�

2

4

Z

1

0

u

2

�

Z

1

0

G

1

(x; u) +G

2

(x; u)�

Z

1

0

h

1

u+ h

2

u (5.1)

�

�




n

�

�

2

4

�

kuk

2

L

2

�M

0

;

a
tually, we assumed without loss of generality that �

0

= 0, sin
e

R

u2[��

0

;0℄

G

1

(x; u)+G

2

(x; u)+

h

1

u+ h

2

u is bounded.

5.2 The resonan
e in zero

We observe that the resonan
e in zero is more 
ompli
ated: we may no longer pro
eed as in

lemma 3.1, that is suppose � = �; however, we may exploit the same kind of 
hange of unknowns

to assume, without loss of generality, �; � < �

2

=4. This implies that the 
on
lusions of lemma

3.7 still hold, by simply repla
ing the term �

R

1

0

u

2

with

�+�

2

R

1

0

u

2

in (3.16).

So 
onsider �rst the 
ase � = � = 0 and assume (HR0) holds for i = 1; 2.

Modi�
ations in the proof of lemma 3.6. We will estimate (for Æ;M > 0)

�

Z

1

0

h

1

v �

�

�

�

�

Z

1

0

h

1

v

+

j

�

�

�

�

+

Z

1

0

h

1

v

�

� Æ

Z

1

0

(v

+

)

2

+ C

Æ

� d

Z

1

0

v

�

; (5.2)

Z

1

0

jG

1

(x; v

�

) +G

2

(x; u

�

)j � Æ

Z

1

0

�

v

�

+ u

�

�

+ C

Æ

; (5.3)

Z

1

0

G

1

(x; v

+

) +G

2

(x; u

+

) � M

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

� C

3

(g

1;2

;M) ; (5.4)

(5.5)

where we used (HR0) in the �rst two lines (and the same holds with h

2

and u in pla
e of h

1

and

v).
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Then we may join the above estimates to obtain, in pla
e of (3.15) (re
all that � = � = �

1

=

0):

F (�u) � K

M;Æ

�

�

M�

2

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

�

+

�

Æ�

Z

1

0

v

�

+ u

�

�

+ (5.6)

+

�

�d�

Z

1

0

�

v

�

+ u

�

�

+ Æ�

2

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

�

� K

M;Æ

+ (�M + Æ)�

2

Z

1

0

�

(v

+

)

2

+ (u

+

)

2

�

+ (�d+ Æ)�

Z

1

0

�

v

�

+ u

�

�

;

where we 
olle
ted all the 
onstants in K

M;Æ

.

Now, by 
hoosing Æ < d < M , we obtain a negative 
ontribution from both the positive and

the negative part of the fun
tions; however,

R

1

0

�

(v

+

)

2

+ (u

+

)

2

�

+

R

1

0

(v

�

+ u

�

) is bounded away

from zero in L

n

but not uniformly with respe
t to n: this implies that we may �nd the 
laimed

R but depending on n; however this is not a problem sin
e in the proof of proposition 3.5 R

may depend on n.

Modi�
ations in the proof of proposition 4.1. From equation (4.18) we now obtain that U

0

and

V

0

are two independent nonpositive 
onstants.

However, by using equation (4.2), with test fun
tions the 
ouples (�

1

; 0) and (0; �

1

) we get,

respe
tively

Z

1

0

g

1

(x; v

n

) +

Z

1

0

h

1

= 0 ;

Z

1

0

g

2

(x; u

n

) +

Z

1

0

h

2

= 0 (5.7)

where (if U

0

; V

0

6� 0), u

n

; v

n

! �1 uniformly and so we get, by (HR0), the 
ontradi
tion

R

1

0

h

1;2

! 0; then as before U

0

� V

0

� 0.

Finally, the 
ase in whi
h only one of the parameters is zero is similar: let � = 0, � > 0 (and,

without loss of generality as observed above, � < �

2

=4) and assume (HR0) only for i = 1: then

in (5.6) one has also a term ��

R

1

0

u

2

whi
h may be exploited as in equation (3.15), so that it is

no more ne
essary to assume (HR0) for i = 2, while from system (4.18) one obtains U

0

� 0 and

V

0

� 0 
onstant, and pro
eeds as above to show that in fa
t V

0

� 0 too by (HR0).

Remark 5.1. By 
omparing hypothesis (HR0) and proposition 7.1 below, one sees that if in

addition to (HR0) we have also g

i

> 0, then the suÆ
ient 
ondition h

i

< �d < 0 and the

ne
essary one

R

1

0

h

1

� � inf

x2[0;1℄; s2R

(g

i

(x; s)) = 0, be
ome similar enough.

6 Proof of theorem 1.3

To deal with this problem, we may exploit a 
hange of unknown as done in lemma 3.1; in this


ase we will assume � = �

�

2 (0; �

2

=4) and �

+

> 0.

Observe that the right hand side of the se
ond equation may be rewritten as �

�

u+ (�

+

�

�

�

)u

+

+ g

2

(x; u) and that the term ~g

2

(x; u) = (�

+

� �

�

)u

+

+ g

2

(x; u) satis�es the estimates

(3.13) and (3.14) sin
e �

+

> �

�

. Then lemmas 3.6 and 3.7 still hold.
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Modi�
ations in the proof of proposition 4.1. Estimate (4.4) now holds only for g

1

, while g

2

sat-

is�es an estimate as (4.5) also for s > �s; then (4.11) be
omes

Z

1

0

lim inf

n!+1

g

1

(x; v

n

)

ku

n

k

E

� lim inf

n!+1

�

�

�

�

�

Z

1

0

�V

n

+ �

+

U

+

n

� �

�

U

�

n

�

�

�

�

+

�

�

�

�

Z

1

0

h

1

+ h

2

+ g

2

(x; u

n

)

ku

n

k

E

�

�

�

�

�

(6.1)

and implies V

+

0

� 0.

Later, in (4.13), one passes the whole term 
ontaining g

2

and G

2

to the right hand side and

estimates it with (H3) and (H3*), and so obtains (4.12) (and (4.15) later) for g

1

only.

Finally, in pla
e of (4.18) one gets

8

>

>

>

<

>

>

>

:

�U

00

0

= �V

0

in (0; 1)

�V

00

0

= �

+

U

+

0

� �

�

U

�

0

in (0; 1)

U

0

0

(0) = V

0

0

(0) = U

0

0

(1) = V

0

0

(1) = 0

; (6.2)

and again dedu
es (U

0

; V

0

) � (0; 0), a
tually sin
e � 6= 0 and V

0

does not 
hande sign, U

0

may

only be a 
onstant and so V

0

� 0, but then the se
ond equation implies that U

0

� 0 too sin
e

�

�

6= 0.

The rest of the proof follows straightforward.

7 The 
ase �; � < 0 and an analogous result for the Diri
hlet

problem

As anti
ipated in the introdu
tion, we will show here (proposition 7.1) that when � or � is below

the �rst eigenvalue �

1

= 0, no result like theorem 1.1 may hold, sin
e it is always possible to

�nd for
ing terms h

1

or h

2

for whi
h no solution exists.

This result has an analogue for the Diri
hlet problem, whi
h will be given in proposition 7.2.

Proposition 7.1. For � < 0 (resp. � < 0), under hypotheses (H1), the problem (1.1) has no

solution if:

R

1

0

h

1

�

1

> �min

x2[0;1℄; s2R

[�s+ g

1

(x; s)℄ (resp.

R

1

0

h

2

�

1

> �min

x2[0;1℄; s2R

[�s+ g

2

(x; s)℄).

Proof. Consider the 
ase � < 0: by testing the �rst equation against �

1

= 1 one gets

0 =

Z

1

0

�v + g

1

(x; v) +

Z

1

0

h

1

(7.1)

� min

x2[0;1℄; s2R

[�s+ g

1

(x; s)℄ +

Z

1

0

h

1

; (7.2)

where the minimum above is well de�ned by the 
ontinuity of g

1

and the hypotheses (H1) and

� < 0. Then we obtain the ne
essary 
ondition

R

1

0

h

1

� �min

x2[0;1℄; s2R

[�s+ g

1

(x; s)℄.

Analogous 
omputations give the result for � < 0.

The same kind of nonexisten
e result may be proved for the Diri
hlet problem, with some

more 
ompli
ated 
omputation: in the following �

1

and '

1

will denote the �rst eigenvalue and

eigenfun
tion of the Diri
hlet problem.
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Proposition 7.2. For � < 0, or � < 0, or

p

�� < �

1

, under hypotheses (H1), there exists two


onstants C 2 R and m > 0, su
h that if m

R

1

0

h

1

�

1

+

R

1

0

h

2

�

1

> C, then problem (1.1) has no

solution.

Proof. Let � > 0, test the equations against '

1

, multiply the �rst by �, integrate by parts and

sum them: this gives

0 =

Z

1

0

(��� �

1

)v'

1

+ �g

1

(x; v)'

1

+

Z

1

0

(�� ��

1

)u'

1

+ g

2

(x; v)'

1

+

Z

1

0

�h

1

'

1

+ h

2

'

1

: (7.3)

Now, if (��� �

1

) and (�� ��

1

) were both negative, then as in the proof of proposition 7.1

one 
ould get the minimum obtaining the ne
essary 
ondition

�

Z

1

0

h

1

'

1

+

Z

1

0

h

2

'

1

�

�

�

min

x2[0;1℄; s2R

[(��� �

1

)s+ �g

1

(x; s)℄ + min

x2[0;1℄; s2R

[(�� ��

1

)s+ g

2

(x; s)℄

�

Z

1

0

'

1

: (7.4)

But this may always be obtained: for �; � > 0,

p

�� < �

1

one may 
hoose � =

q

�

�

, while if

� < 0 (resp. � < 0), then a good 
hoi
e is � suÆ
iently large (resp. suÆ
iently small).

Remark 7.3. Observe that these nonexisten
e results may be extended straightforward to any

spatial dimension, whenever the usual 
onditions (on the superlinearities g

1;2

) whi
h allow to

use variational te
hniques are satis�ed.

Moreover, the hypothesis (H1) was used just in order to guarantee that the fun
tions �s +

g

1

(x; s) et
. were bounded from below; then superlinearity is not ne
essary, one 
ould simply ask

lim inf

s!+1

�+

g

1

(x;s)

s

> 0 and an analogous 
ondition for g

2

, in the Neumann 
ase, and a some

more 
ompli
ated 
ondition (sin
e the two equations remain 
oupled) for the Diri
hlet 
ase.
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