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Abstract

Given a random sample from a continuous and positive density f, the lo-
gistic transformation is applied and a log density estimate is provided by using
basis functions approach. The number of basis functions acts as the smoothing
parameter and it is estimated by minimizing a penalized proxy of the Kullback-
Leibler distance which includes as particular cases AIC and BIC criteria. We

prove that this estimator is consistent.
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1 Introduction

Suppose we have a sample X = (X, Xy,...,X,,) from a cumulative distribution

F' which is absolutely continuous with respect to a dominant Lebesgue measure .
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Moreover, assume that the density of F', f = %, has compact support X'. Define F,
be the class of density functions such that,
eS(@)

Sy 5@ dp()

where the function S is of the class C%(R). It is easy to see that the elements in

Fu={h:R—[0,00): h(x) = and / e*@dp(x) < 0o},

F, are not identifiable since for any function S; such that S; = S + ¢, we have
e51/([e5) = e/([ e®). We are going to require, as Dias (1998), that [, .S = 0, to
ensure uniqueness of the elements in F,,.

Consider the problem of finding the maximum likelihood estimator of f. It is
well known (see for example, Silverman (1986); Pagan and Ullah (1999) and Dias
(1994)) that such optimization problem is unbounded over the class of all smooth
functions. In fact, the optimizer is a sum of delta functions. To avoid the Dirac’s
disaster one might want to apply penalized likelihood procedure or one may assume
that f can be well approximated by a function belonging to a finite dimensional
space Hx which is spanned by K (fixed) basis functions, such as Fourier expansion,
wavelets, B-splines, natural splines. See, for example, Silverman (1986), Kooperberg
and Stone (1991), Vidakovic (1999), Dias (1998) and Dias (2000). Although this
fact might lead one to think that the nonparametric problem becomes a parametric
problem, one notices that the number of coefficients can be as large as the number
of observations, and there may be difficulties in estimating the density. Moreover, if
the number of observations is large, the system of equations for exact solution is too

expensive to solve. This is an inheritance from the approximation theory of functions.

In fact, an element of Hx can be written as

eSt

=7

where

K
Sf = ZHij with /esf < X0
j=1
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and M, ..., My are normalized basis functions that span Hx such that [ M; = 1. As

pointed before, in order to enforce one-to-one correspondence we need the restriction
J S§ =0 and then ZJK:1 0; =0, since [ M; =1. For any K > 0, let ©g = {§ € R* :
K
Zj 9]' = 0}-
Assuming that the density f belongs to F,, we have that there exists K such

that f is well approximated by functions in Hg. Consequently, there exists vector

6 = (01, ...,0k) such that the log-likelihood of X is given by

x(0]X) = Z(e M(X K—log/e(a’M>K. (1.1)

The vector of coefficients # are unknown and need to be determined. One of the most
common standard statistical procedure in nonparametric estimation, is to determine
f using maximum likelihood method. For fixed K, the asymptotics of the density
estimator were studied by Dias (2000) and are presented in Lemma 1.1, Theorem 1.1,

Lemma 1.2 and Proposition 1.4.

Lemma 1.1 For a fized K, Lg(0|X) is concave in 0. Moreover, Ly (0|X) is strictly

concave for 0 € ©y. Hence there exists at most one mazrimizer on ©y.

It is not difficult to show that Ly (6|X) is continuous and at least twice differentiable
in @ for a fixed K. Thus, restrict to ©y one may guarantee a unique density estimate.

The next theorem shows the relationship between the maximizers 6 in © and 6"

in @0.

Proposition 1.1 If the vector 0 mazimizes Ly (0]X) then 6* = 6 — = S K 6; maz-

imizes Lg(0|X) subject to ZJK:1 ; = 0. Moreover, 0% is unique.
For fixed K, let 05) be defined as
J(E) _
S arg gég)ocLK(&\X). (1.2)
Notice that, in fact,
Lic(0/X) = (6. 31)1c ~log [ 40,
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then 0% is the unique solution of the equation
h(8, M (X)) =0, (1.3)

where M (X) is a K-dimensional vector with j-th components given by
1< _ ,
EZMj(Xi) =M;, je{l,....K}. (1.4)
i=1

Since Ly (A|X) is at least twice differentiable we have 5 as the unique solution of

the equation,

0Lk (01X) _ ——
g = h(8, M (X)) =0, (1.5)

where, M* = (1/K) ZJKZI M; and h : O x [0,00)% — RX with j-th entry,

_ Jexp({0, M(2)) k) M;(2)dz

h;(0,u) = u; , 1.6
) = = (0, M)z (19
for j € {1,..., K}. Therefore, 0% is an M-estimator and since 6 — hg is continuous

we have the following result.

Proposition 1.2 Let 0, be the unique solution of
b6, [ £ M @)dn(w) = 0 (1.7
i Oy, then for fived K, 9A7(1K) — 0y almost surely as n — oco.
Thus, the density estimate is, for fixed K
Fre = 5708 [ef ,
where S = (6, M)k with § = 0.

Proposition 1.3 For fized K, the density estimates fx(-) = fx(-|0,) converge point-

wise almost surely (a.s.) to f as n goes to infinity.



However, the density estimate fK strongly depends on the number of basis func-
tions K which regularizes the optimization problem (1.1). In fact, in the context
of nonparametric density estimation using basis functions approach one of the most
challenging problem is how to select the number of basis functions. A similar problem
is encountered in the field of image processing where the level of resolution needs to be
determined appropriately. Several authors suggested algorithms in order to provide a
good choice of the dimension of the approximant space, see for example Kooperberg
and Stone (1991), Gu (1993), Antoniadis (1994) De Vore, Petrova and Temlyakov
(2003), Bodin, Villemoes and Wahlberg (2000), Kohn, Marron and Yau (2000). Dias
(2000) and Dias and Garcia (2003) suggested to use a proxy of the Kullback-Leibler
distance in order to select the number of basis functions. The goal of this work is to
prove that this selection criterion provides a consistent estimator of the dimension of

the approximant space.

In order to provide an appropriate K, one might want to choose K that mini-

mizes the Kullback-Leibler distance between the true f and the random function fK,

d(f, fK) = [(log f —log fK)f or equivalently
Dy (K) = /flogfk- (1.8)

Of course, we cannot compute D, (K) from the data, since it requires the knowledge

of f. Defining a proxy of this distance by
1 < .
Zn(K) = — 1 X;), 1.9
(K) = - D log (X)) (19)
it is easy to prove their equivalence.

Proposition 1.4 For any fized K,

DolK) = Zu(1) = 385 ( [ @My (a)duta) = 3 Y- w506)) — 0 (110)

n — oo almost surely.



Since Z,(K) is strongly related to the likelihood, it increases as K increases. No-
tice that K acts as the control parameter (smoothing parameter) between adaptive-
ness (large values of K') and smoothness (small values of K'). Therefore, a reasonable
way of defining the best K is to penalize Z,(K) for large values of K. In fact, define
K =K, as

A~

K:argmlgnLP(n,K), (1.11)

where LP(n,K) = nZ,(K) — ¢, K and ¢, > 0. This includes the most common
information criteria for model selection such as AIC estimator (¢, = 2) and BIC
estimator (¢, = logn).

We have the following main results:

Theorem 1.1 If lim, ,, ¢,/n = 0 and liminf, ,. ¢,/+/n = 0 then K is a strongly

consistent estimator for K.

Theorem 1.2 Iflim, ,, ¢,/n = 0 andlim,_, ¢, = oo then Kisa weakly consistent

estimator for K.

Remark: From the proofs of the theorems presented in the next section, we can see
that the conditions above are sharp, that is, if ¢, /4 oo, then the estimator K is not
consistent (e.g. AIC estimator). On the other hand, if ¢,/y/n — 0 and ¢, — oo the

estimator is weakly but not strongly consistent (e.g. BIC estimator).

2 Proof of the main results

Proof of Theorem 1.1. Suppose that K is the true dimension of the approximant

space to be determined, that is f € H.

(a) Assume that [ < K, we are going to prove that, with probability 1, for large
values of n

LP(n,l) < LP(n, K).
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By Proposition 1.3 we have that
1< .
Zn(K) = EZlog fx(X;) = Ellog f(X)] := mg as. (2.1)
=1

where X is a random variable with density f.

On the other hand,

n

Z) = 3 logi(x)

=1

n l
1 A R
- 3300 g [ o0 22)
L j=1
l
= S 0VEM, (X)) - log / cOOMY g (2.3)

where ) and #®) are the solutions of (1.2) and (1.7) respectively, replacing K by 1.

Therefore, by Jensen’s inequality

mp—myg = /flog?:]E[log?]
fil _ fi _
< logE[f] = log/ff 0. (2.4)

where log f; = Z;:l 9](-1)M]- —log [ e(0V:M) Moreover, equality holds only if f; = f

and this mean that [ is the true dimension of the approximant space contradicting

our hypothesis. It follows that for [ < K

lim ~ (Z,(K) = Zo(1)) = mx — mu > 0 a5.. (2.5)

n—oo N
By (2.5) as n — o0

Cn

%(LP(n,K)—LP(n,l)) = —(Zu(K) = Zy(1) — (K —1)

1
n n
Cn
= (mxg—my)(1+o0(1)) — E(K —1)as. (2.6)
Since ¢,/n — 0 as n — oo, we have with probability 1, for large values of n

LP(n,1) < LP(n, K).
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(b) Assume that [ > K, we are going to prove that, with probability 1, for large

values of n
LP(n,l) < LP(n, K).
Similarly to the arguments used by Dias and Garcia (2003) we can prove that,
Zn(l)-Zy(K) — 0 a.s. and /n[Z,(l)— Z,(K)] converges in distribution to a normally

distributed random variable. Therefore,

Jim %(Zn(K) — Z,(1) =0 (%) as.. (2.7)
By (2.7) as n — o0
LP(n,K) —LP(n,l) = O (vn) + co(K —1) as.. (2.8)

Since ¢, //n — 00 as n — oo, we have with probability 1, for large values of n
LP(n,l) < LP(n, K).

Proof of Theorem 1.2 For | > K, we can interpret 2n(Z,(l) — Z,(K)) as the likelihood
ratio test statistic. It is well known (see for example, Ferguson (1996)) that 2n(Z,(1)—
Z,(K)) has a limiting chi-square distribution. Therefore,

2n(Zn(l) — Zn(K)) = Op(1)
where Op means bounded in probability. Since, ¢, — oo, we have
LP(l) —= LP(K) = —n(Z,(l) — Zu(K)) + cn(l — K) = Op(1) 4+ ¢, (I — K) 5~

5 P
as n — oo and we conclude that K — K as n — oo.
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