The Cauchy Problem and Decay Rates for Strong Solutions of a Boussinesq System

FRANCISCO GUILLÉN GONZÁLEZ, MÁRCIO SANTOS DA ROCHA AND MARKO ROJAS MEDAR

The Boussinesq equations describe the motion of an incompressible viscous fluid subject to convective heat transfer. Decay Rates of derivatives of solutions of the three-dimensional Cauchy problem for a Boussinesq system are studied in this work.

1 Introduction

In this work we show some theoretical results about decay rates of strong solutions of the three-dimensional Cauchy problem for Boussinesq equations, described by the following partial differential equation problem (see [6]):

$$\frac{\partial \mathbf{u}}{\partial t} - \nu \triangle \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla \pi = \theta \mathbf{f} \text{ in } (0, T) \times \mathbb{R}^3, \tag{1}$$

$$\operatorname{div} \mathbf{u} = 0 \text{ in } (0, T) \times \mathbb{R}^3, \tag{2}$$

$$\frac{\partial \theta}{\partial t} - \chi \triangle \theta + \mathbf{u} \cdot \nabla \theta = 0 \text{ in } (0, T) \times \mathbb{R}^3, \tag{3}$$

$$\mathbf{u}(0,x) = \mathbf{a}(x) \text{ in } \mathbb{R}^3, \tag{4}$$

$$\theta(0,x) = b(x) \text{ in } \mathbb{R}^3, \tag{5}$$

where the unknown are \mathbf{u} , θ , π which denote, respectively, the velocity field, the scalar temperature and the scalar pressure. Data are the positive constants ν , χ , respectively, the viscosity and the thermal conductivity coefficients and the function \mathbf{f} the external force field, and $\mathbf{a}(x)$, b(x), respectively, represent the initial velocity and initial temperature.

The main objective of this work is obtain decay rate of derivatives for the strong solutions to the Cauchy problem (1)-(5). For this, we will consider

²⁰⁰⁰ Mathematics Subject Classification: 35Q30

the usual Lebesgue spaces $L^p(\mathbb{R}^3)$ with the usual norms $|\cdot|_p$. We will denote $L^p_{\sigma}(\mathbb{R}^3)$ the closure of $C^{\infty}_{0,\sigma}(\mathbb{R}^3) = \{\mathbf{v} \in C^{\infty}_0; \text{ div } \mathbf{v} = 0\}$ in $L^p(\mathbb{R}^3)$. We will denote too by $L^p(0,T;L^q(\mathbb{R}^3))$ the Banach space, classes of functions defined a.e. in [0,T] on $L^q(\mathbb{R}^3)$, that are L^p -integrable in the sense of Bochner. For more details see [1], [3].

We observe that this model of fluids includes as a particular case the classical Navier-Stokes equations, which has been thoroughly studied (see for instance [7], [8]). Rojas Medar and Lorca obtained results of uniqueness and existence of the local solutions and regularity of solutions for Boussinesq equations [9],[10].

Results of Decay Rates of strong solution were obtained by Cheng He and Ling Hsião [4]. In this paper, we will are interested to get similar results for Boussinesq Equations.

2 Results of Decay Rates

The main objective of this work is to establish the decay rates of derivatives about time variable and spaces variables for the strong solutions to the Cauchy problem of the Boussinesq equations (1)-(5). For this, we will consider a sequence of Cauchy problems for the linearized Boussinesq equations

$$\frac{\partial \mathbf{u}^k}{\partial t} - \nu \triangle \mathbf{u}^k + (\mathbf{u}^{k-1} \cdot \nabla) \mathbf{u}^{k-1} + \nabla \pi^k = \theta^{k-1} \mathbf{f} \text{ on } (0, T) \times \mathbb{R}^3, \tag{6}$$

$$\operatorname{div} \mathbf{u}^k = 0 \text{ on } (0, T) \times \mathbb{R}^3, \tag{7}$$

$$\frac{\partial \theta^k}{\partial t} - \chi \triangle \theta^k + \mathbf{u}^{k-1} \cdot \nabla \theta^{k-1} = 0 \text{ on } (0, T) \times \mathbb{R}^3, \tag{8}$$

$$\mathbf{u}^k(0,x) = \mathbf{a}^k(x) \text{ on } \mathbb{R}^3, \tag{9}$$

$$\theta^k(0,x) = b^k(x) \text{ on } \mathbb{R}^3, \tag{10}$$

for $k \geq 1$, where $\mathbf{a}^k \in C^{\infty}_{0,\sigma}(\mathbb{R}^3)$ and $b^k \in C^{\infty}_0(\mathbb{R}^3)$ such that

$$\mathbf{a}^k \to \mathbf{a} \text{ in } L^3_{\sigma}(\mathbb{R}^3) \text{ strongly,}$$

 $b^k \to b \text{ in } L^3(\mathbb{R}^3) \text{ strongly,}$

with $|\mathbf{a}^k|_3 \leq |\mathbf{a}|_3$ and $|b^k|_3 \leq |b|_3$. The first term, $(\mathbf{u}^0, \pi^0, \theta^0)$, of this sequence is solution of the trivial Cauchy problem:

$$\frac{\partial \mathbf{u}^0}{\partial t} - \nu \Delta \mathbf{u}^0 + \nabla \pi^0 = \mathbf{0} \text{ on } (0, T) \times \mathbb{R}^3, \tag{11}$$

$$\operatorname{div} \mathbf{u}^{0} = 0 \text{ on } (0, T) \times \mathbb{R}^{3}, \tag{12}$$

$$\frac{\partial \theta^0}{\partial t} - \chi \triangle \theta^0 = 0 \text{ on } (0, T) \times \mathbb{R}^3, \tag{13}$$

$$\mathbf{u}^0(0,x) = \mathbf{a}^0(x) \text{ on } \mathbb{R}^3, \tag{14}$$

$$\theta^{0}(0,x) = b^{0}(x) \text{ on } \mathbb{R}^{3}.$$
 (15)

Let $\Gamma_{\nu}(t, x; s, y) = (4\nu\pi t)^{-3/2} \exp(\frac{-|x|^2}{4\nu t})$ be a fundamental solution of the heat equation in \mathbb{R}^3 (with viscosity coefficient ν). Then, the solution of the linearized Boussinesq system (6)-(10) can be write as follows:

$$u_{i}^{k}(t,x) = \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;0,y) a_{i}^{k}(y) dy$$

$$- \int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;s,y) \sum_{j=1}^{3} u_{j}^{k-1}(s,y) \frac{\partial u_{i}^{k-1}}{\partial x_{j}}(s,y) dy ds$$

$$- \int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;s,y) \frac{\partial \pi^{k}}{\partial x_{i}}(s,y) dy ds +$$

$$\int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;s,y) \theta^{k-1}(s,y) f_{i}(s,y) dy ds$$

$$(16)$$

and

$$\theta^{k}(t,x) = \int_{\mathbb{R}^{3}} \Gamma_{\chi}(t,x;0,y)b^{k}(y)dy$$

$$-\int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\chi}(t,x;s,y) \sum_{j=1}^{3} u_{j}^{k-1}(s,y) \frac{\partial \theta^{k-1}}{\partial x_{j}}(s,y)dyds \tag{17}$$

The convergence for above method can be seen in [2], [7].

Definition 2.1 A couple (\mathbf{u}, θ) is called strong solution for the system (1)-(5), if $\mathbf{u} \in L^p(0, \infty; L^q_\sigma(\mathbb{R}^3)) \cap L^\infty(0, \infty; L^3_\sigma(\mathbb{R}^3))$, $\theta \in L^p(0, \infty; L^q(\mathbb{R}^3)) \cap L^\infty(0, \infty; L^3(\mathbb{R}^3))$ for some p > 2 and q > 3, and satisfying

$$\int_{0}^{\infty} \int_{\mathbb{R}^{3}} (\mathbf{u} \cdot \frac{d\varphi}{dt} + \mathbf{u} \cdot \triangle \varphi + (\mathbf{u} \cdot \nabla \varphi)\mathbf{u}) dx dt = -\int_{\mathbb{R}^{3}} \mathbf{a} \cdot \varphi(0, x) dx + \int_{0}^{\infty} \int_{\mathbb{R}^{3}} \theta \mathbf{f} \cdot \varphi dx dt$$

for all $\varphi \in C_0^{\infty}(0,\infty; C_{0,\sigma}^{\infty}(\mathbb{R}^3))$ and

$$\int_{0}^{\infty} \int_{\mathbb{R}^3} (\theta \frac{d\psi}{dt} + \theta \triangle \psi + (\mathbf{u} \cdot \nabla \psi)\theta) dx dt = -\int_{\mathbb{R}^3} b\psi(0, x) dx$$

for all $\psi \in C_0^{\infty}(0, \infty; C_0^{\infty}(\mathbb{R}^3))$.

Lemma 2.2 For the pressure π^k the following estimate holds

$$\left| \nabla \pi^k \right|_r \le C \left| (\mathbf{u}^{k-1} \cdot \nabla) \mathbf{u}^{k-1} + \theta^{k-1} \mathbf{f} \right|_r \tag{18}$$

for $1 < r < \infty, k > 0$.

Lemma 2.3 Let $\mathbf{a} \in L^3_{\sigma}(\mathbb{R}^3)$, $b \in L^3(\mathbb{R}^3)$, $|\mathbf{f}(\mathbf{t})|_q \leq C_0 t^{-1 + \frac{3}{2q}} (|\mathbf{a}|_3 + |\mathbf{b}|_3)$, $|\nabla \mathbf{f}(t)|_q \leq C_0 t^{-\frac{3}{2} + \frac{3}{2q}} (|\mathbf{a}|_3 + |\mathbf{b}|_3)$, where the constant C_0 is independent of t and q. If $C^*C_0(|\mathbf{a}|_3 + |\mathbf{b}|_3) \leq 1$ for some constant C^* , then

$$t^{\frac{1}{2} - \frac{3}{2q}}(|\mathbf{u}^{k}(t)|_{q} + |\theta^{k}(t)|_{q}) \le CC_{0}(|\mathbf{a}|_{3} + |b|_{3}), \tag{19}$$

$$t^{1-\frac{3}{2q}}(|\nabla \mathbf{u}^{k}(t)|_{q} + |\nabla \theta^{k}(t)|_{q}) \le CC_{0}(|\mathbf{a}|_{3} + |b|_{3})$$
(20)

for $3 \le q \le \infty$, $t \ge 0$ and $k \ge 0$.

PROOF. We put

$$I_q^k = t^{\frac{1}{2} - \frac{3}{2q}} (||\mathbf{u}^k(t)||_q + ||\theta^k(t)||_q)$$
$$J_q^k = t^{1 - \frac{3}{2q}} (||\nabla \mathbf{u}^k(t)||_q + ||\nabla \theta^k(t)||_q).$$

We will assume by inductive hypotheses that the estimates (19)-(20) are true for k-1. By the Young inequality for convolution, we can estimate the terms of (16) as follows

$$\left| \int_{\mathbb{R}^3} \Gamma_{\nu}(t, x; 0, y) a_i^k(y) dy \right|_q \le (4\nu\pi t)^{\frac{-3}{2}} \left(\int_{\mathbb{R}^3} e^{\frac{-|x-y|^2}{4\nu t}} dy \right)^{\frac{1}{p}} \left| a_i^k \right|_3 \le C t^{\frac{-1}{2} + \frac{3}{2q}} \left| a_i^k \right|_3$$

where $\frac{1}{p} + \frac{1}{3} = 1 + \frac{1}{q}$. Again, by the Young inequality we obtain

$$\left| \int\limits_0^t \int\limits_{\mathbb{R}^3} \Gamma_{\nu}(t,x;s,y) \sum\limits_{j=1}^3 u_j^{k-1}(s,y) \frac{\partial u_i^{k-1}}{\partial x_j}(s,y) dy ds \right|_q$$

$$\leq C \int_{0}^{t} (t-s)^{\frac{-3}{2}(\frac{1}{2}-\frac{1}{q})} \left| \mathbf{u}^{k-1} \right|_{4} \left| \nabla \mathbf{u}^{k-1} \right|_{4} ds
\leq C C_{0}^{2} (\left| \mathbf{a} \right|_{3} + \left| b \right|_{3})^{2} t^{-\frac{1}{2} + \frac{3}{2q}}$$

where $\frac{1}{p} + \frac{1}{2} = 1 + \frac{1}{q}$. Now, using (18) we have

$$\left| \int\limits_0^t \int\limits_{\mathbb{R}^3} \Gamma_{\nu}(t,x;s,y) \frac{\partial \pi^k}{\partial x_i}(s,y) dy ds \right|_q \leq C C_0^2 (|\mathbf{a}|_3 + |b|_3)^2 t^{-\frac{1}{2} + \frac{3}{2q}}$$

and

$$\left| \int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t, x; s, y) \theta^{k-1}(s, y) f_{i}(s, y) dy ds \right|_{q} \leq C C_{0}^{2} t^{-1 + \frac{3}{2q}} (|\mathbf{a}|_{3} + |b|_{3})^{2}.$$

Moreover

$$|\mathbf{u}^{k}(t)|_{q} \le Ct^{-\frac{1}{2} + \frac{3}{2q}} (C_{0}(|\mathbf{a}|_{3} + |b|_{3}) + C_{0}^{2}(|\mathbf{a}|_{3} + |b|_{3})^{2}).$$

Analogously, we can obtain the estimate for $|\theta^k(t)|_q$. Now, differentiating (16) and using the fact

$$\left| \frac{\partial}{\partial x_l} \Gamma_{\nu}(t, x; s, y) \right| \le C(t - s)^{-2} e^{\frac{-\lambda |x - y|^2}{4\nu(t - s)}}$$

for i = 1, 2, 3 and some constant $\lambda > 0$, follows

$$\left| \frac{\partial}{\partial x_l} \int_{\mathbb{R}^3} \Gamma_{\nu}(t, x; 0, y) a_i^k(y) dy \right|_q \le C t^{-1 + \frac{3}{2q}} |\mathbf{a}|_3.$$

Analogously, we obtain

$$\left| \frac{\partial}{\partial x_l} \int_{0}^{t} \int_{\mathbb{R}^3} \Gamma_{\nu}(t, x; s, y) \sum_{j=1}^{3} u_j^{k-1}(s, y) \frac{\partial u_i^{k-1}}{\partial x_j}(s, y) dy ds \right|_{q} \leq C C_0^2 (|\mathbf{a}|_3 + |b|_3)^2 t^{-1 + \frac{3}{2q}}$$

and

$$\left| \frac{\partial}{\partial x_{i}} \int_{0}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t, x; s, y) \frac{\partial \pi^{k}}{\partial x_{i}}(s, y) dy ds \right|_{q}$$

$$\leq C C_{0}^{2} (|\mathbf{a}|_{3} + |b|_{3})^{2} t^{-1 + \frac{3}{2q}} \int_{0}^{1} (1 - w)^{-\frac{1}{2} - \frac{3}{2r}} w^{\frac{-3}{2} + \frac{3}{2}(\frac{1}{r} + \frac{1}{q})} dw \tag{21}$$

where r > 3 and $\frac{1}{r} + \frac{1}{q} > \frac{1}{3}$, to obtain the convergence of the last integral in (21). Finally, we obtain

$$\left| \frac{\partial}{\partial x_i} \int_0^t \int_{\mathbb{R}^3} \Gamma_{\nu}(t, x; s, y) \theta^{k-1} f_i dy ds \right|_q \le C \int_0^t (t - s)^{-\frac{1}{2} + \frac{3}{2}(\frac{1}{q} - \frac{1}{l})} \left| \theta^{k-1} f_i \right|_l ds.$$

Without difficult we can obtain for the equation of the temperature

$$J_q^k \le C_0(|\mathbf{a}|_3 + |b|_3) + CC_0^2(|\mathbf{a}|_3 + |b|_3)^2 \le 2C_0(|\mathbf{a}|_3 + |b|_3).$$

For $q = \infty$ we can obtain analogously as before

$$\begin{split} I_{\infty}^{k} &\leq C(\mid \mathbf{a}\mid_{3} + \mid b\mid_{3}) + Ct^{\frac{1}{2}} \int\limits_{0}^{t} (t-s)^{\frac{-3}{4}} \mid \mathbf{u}^{k-1}\mid_{4} (\mid \nabla \mathbf{u}^{k-1}\mid_{4} + \mid \nabla \theta^{k-1}\mid_{4}) ds \\ &+ Ct^{\frac{1}{2}} \int\limits_{0}^{t} (t-s)^{\frac{-3}{4}} \mid \theta^{k-1}\mid_{4} \mid \mathbf{f}\mid_{4} ds \leq C(\mid \mathbf{a}\mid_{3} + \mid b\mid_{3}) + CC_{0}^{2}(\mid \mathbf{a}\mid_{3} + \mid b\mid_{3})^{2}. \end{split}$$

Similary, we obtain the estimative for J_{∞}^k .

Lemma 2.4 Let $\mathbf{a} \in L^3_{\sigma}(\mathbb{R}^3)$, $b \in L^3(\mathbb{R}^3)$ and $|\mathbf{f}|_q \leq C_0 t^{-1 + \frac{3}{2q}} (|\mathbf{a}|_3 + |\mathbf{b}|_3)$, $|\nabla \mathbf{f}|_q \leq C_0 t^{-\frac{3}{2} + \frac{3}{2q}} (|\mathbf{a}|_3 + |\mathbf{b}|_3)$. If $C^*C_0(|\mathbf{a}|_3 + |\mathbf{b}|_3) \leq 1$ for some constant C^* , then for $3 \leq q \leq \infty$, the following estimate is true uniformly in k

$$t^{\frac{3}{2} - \frac{3}{2q}} \sum_{l,j=1}^{3} \left(\left| \frac{\partial^2 \mathbf{u}^k}{\partial x_l \partial x_j} \right|_q + \left| \frac{\partial^2 \theta^k}{\partial x_l \partial x_j} \right|_q \right) \le 2C_0(\left| \mathbf{a} \right|_3 + \left| b \right|_3).$$

PROOF. The identity (16) can be write as follows:

$$u_{i}^{k}(t,x) = \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;0,y) a_{i}^{k}(y) dy - \int_{0}^{\frac{t}{2}} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;s,y) (\sum_{j=1}^{3} u_{j}^{k-1}(s,y) \frac{\partial u_{i}^{k-1}}{\partial x_{j}}(s,y) \frac{\partial u_{i}^{k-1}}{\partial x_{j}}(s,y) dy$$

$$+\frac{\partial \pi^{k}}{\partial x_{i}}(s,y) - \theta^{k-1}(s,y)f_{i}(s,y))dyds$$

$$-\int_{\frac{t}{2}}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t,x;s,y)(\sum_{j=1}^{3} u_{j}^{k-1}(s,y)\frac{\partial u_{i}^{k-1}}{\partial x_{j}}(s,y))dyds$$

$$+\frac{\partial \pi^{k}}{\partial x_{i}}(s,y) - \theta^{k-1}(s,y)f_{i}(s,y))dyds$$

analogously for temperature.

We will make the case l=j (for the case $l\neq j$ the argument is analogous). By the Young inequality we obtain

$$\left| \frac{\partial^{2}}{\partial x_{l}^{2}} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t, x; 0, y) a_{i}^{k}(y) dy \right|_{q} \leq C \frac{1}{t} \left| \int_{\mathbb{R}^{3}} (\Gamma_{\nu}(t, x; 0, y) a_{i}^{k}(y) + \frac{(x_{l} - y_{l})^{2}}{t^{2}} \Gamma_{\nu}(t, x; 0, y) a_{i}^{k}(y)) dy \right|_{q} \leq C t^{-\frac{3}{2} + \frac{3}{2q}} |\mathbf{a}|_{3}.$$

By analogous computations, we have

$$\left| \frac{\partial^2}{\partial x_l^2} \int_0^{\frac{t}{2}} \int_{\mathbb{R}^3} \Gamma_{\nu}(t, x; s, y) \sum_{j=1}^3 u_j^{k-1}(s, y) \frac{\partial u_i^{k-1}}{\partial x_j}(s, y) dy \right|_q$$

$$\leq C C_0^2 (|\mathbf{a}|_3 + |b|_3)^2 t^{-\frac{3}{2} + \frac{3}{2q}} \int_0^{\frac{t}{2}} (1 - w)^{\frac{-7}{4} + \frac{3}{2q}} w^{\frac{-3}{4}} dw.$$

The estimation for the terms that involve $\int_0^{\frac{t}{2}}$ are obtained analogously. By other side

$$\begin{split} & \left| \frac{\partial^2}{\partial x_l^2} \int\limits_{\frac{t}{2}}^t \int\limits_{\mathbb{R}^3} \Gamma_{\nu}(t,x;s,y) \sum_{j=1}^3 u_j^{k-1}(s,y) \frac{\partial u_i^{k-1}}{\partial x_j}(s,y) dy ds \right|_q \\ & \leq C C_0^2 (|\mathbf{a}|_3 + |b|_3)^2 t^{-\frac{3}{2} + \frac{3}{2q}} \int\limits_{\frac{t}{2}}^1 (1-w)^{\frac{-1}{2}} w^{-2 + \frac{3}{2q}} dw \\ & + C C_0 (|\mathbf{a}|_3 + |b|_3) \int\limits_{\frac{t}{2}}^1 (1-w)^{\frac{-1}{2}} w^{-2 + \frac{3}{2q}} dw \sup_{s \in [\frac{t}{2},t]} \left| s^{-\frac{3}{2} + \frac{3}{2q}} \frac{\partial^2 \mathbf{u}^{k-1}}{\partial x_l^2}(s) \right|_q. \end{split}$$

Analogously

$$\left| \frac{\partial^{2}}{\partial x_{l}^{2}} \int_{\frac{t}{2}}^{t} \int_{\mathbb{R}^{3}} \Gamma_{\nu}(t, x; s, y) \frac{\partial \pi}{\partial x_{i}} dy ds \right|_{q}$$

$$\leq C \int_{\frac{t}{2}}^{t} (t - s)^{-2} \left(\left| \frac{\partial}{\partial x_{l}} ((\mathbf{u}^{k-1} \cdot \nabla) \mathbf{u}^{k-1}) \right|_{q} + \left| \frac{\partial \theta^{k-1} \mathbf{f}}{\partial x_{l}} \right|_{q} \right) ds$$

and, finally,

$$\left| \frac{\partial^2}{\partial x_l^2} \int_{\frac{t}{2}}^t \int_{\mathbb{R}^3} \Gamma_{\nu}(t, x; s, y) \theta^{k-1} f_i dy ds \right|_q$$

$$\leq C C_0^2 (|\mathbf{a}|_3 + |b|_3)^2 t^{-\frac{3}{2} + \frac{3}{2q}} \int_{\frac{1}{2}}^1 (1 - w)^{-\frac{1}{2}} w^{-2 + \frac{3}{2q}} dw,$$

The proof of the Lemma is consequence from the above estimative.

Lemma 2.5 Let $\mathbf{a} \in L^3_{\sigma}(\mathbb{R}^3)$, $b \in L^3(\mathbb{R}^3)$ and $|\mathbf{f}|_q \leq C_0 t^{-1 + \frac{3}{2q}} (|\mathbf{a}|_3 + |b|_3)$, $|\nabla \mathbf{f}|_q \leq C_0 t^{-\frac{3}{2} + \frac{3}{2q}} (|\mathbf{a}|_3 + |b|_3)$. If $M(|\mathbf{a}|_3 + |b|_3) \leq 1$ for some constant M, then for $3 \leq q \leq \infty$, the following estimative are verified uniformly in k

$$t^{\frac{3}{2} - \frac{3}{2q}} \left| \nabla \pi^k \right|_q \le C(|\mathbf{a}|_3 + |b|_3)^2 \tag{22}$$

and

$$t^{\frac{3}{2} - \frac{3}{2q}} \left(\left| \frac{\partial \mathbf{u}^k}{\partial t} \right|_q + \left| \frac{\partial \theta^k}{\partial t} \right|_q \right) \le C(|\mathbf{a}|_3 + |b|_3) + C(|\mathbf{a}|_3 + |b|_3)^2. \tag{23}$$

PROOF. The proof is consequence of the Lemmas, and the following facts

$$\frac{\partial \mathbf{u}^k}{\partial t} = \nu \triangle \mathbf{u}^k - (\mathbf{u}^{k-1} \cdot \nabla) \mathbf{u}^{k-1} - \nabla \pi^k + \theta^{k-1} \mathbf{f}$$

and

$$\frac{\partial \theta^k}{\partial t} = \chi \triangle \theta^k - \mathbf{u}^{k-1} \cdot \nabla \theta^{k-1}.$$

The main result in this paper is the following:

Theorem 2.6 Let $\mathbf{a} \in L^3_{\sigma}(\mathbb{R}^3)$, $b \in L^3(\mathbb{R}^3)$ and $|\mathbf{f}|_q \leq C_0 t^{-1 + \frac{3}{2q}} (|\mathbf{a}|_3 + |\mathbf{b}|_3)$, $|\nabla \mathbf{f}|_q \leq C_0 t^{-\frac{3}{2} + \frac{3}{2q}} (|\mathbf{a}|_3 + |\mathbf{b}|_3)$. Then, there exists a positive constant ε such that, if $(|\mathbf{a}|_3 + |\mathbf{b}|_3) \leq \varepsilon$, there exists a unique solution (\mathbf{u}, θ) for (1)-(5), which satisfy:

$$t^{\frac{1}{2} - \frac{3}{2q}} \mathbf{u} \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

$$t^{\frac{1}{2} - \frac{3}{2q}} \theta \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

$$t^{1 - \frac{3}{2q}} \mid \nabla \mathbf{u} \mid \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

$$t^{\frac{1}{2} - \frac{3}{2q}} \mid \nabla \theta \mid \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

for $3 \le q \le \infty$ and moreover

$$t^{\frac{3}{2} - \frac{3}{2q}} \sum_{i,j=1}^{3} \left| \frac{\partial^{2} \mathbf{u}}{\partial x_{j} \partial x_{i}} \right| \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

$$t^{\frac{3}{2} - \frac{3}{2q}} \sum_{i,j=1}^{3} \left| \frac{\partial^{2} \theta}{\partial x_{j} \partial x_{i}} \right| \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

$$t^{\frac{3}{2} - \frac{3}{2q}} \left| \nabla \pi \right| \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

$$t^{\frac{3}{2} - \frac{3}{2q}} \frac{\partial \mathbf{u}}{\partial t} \in BC([0, \infty); L^{q}(\mathbb{R}^{3})),$$

for $3 \le q \le \infty$.

PROOF. Using Lemma with q = 3, we obtain

$$\left|\mathbf{u}^{k}\right|_{3}+\left|\theta^{k}\right|_{3}\leq C(\left|\mathbf{a}\right|_{3}+\left|b\right|_{3})$$

and

$$\left|\nabla \mathbf{u}^k\right|_3 + \left|\nabla \theta^k\right|_3 \leq C t^{-\frac{1}{2}} (|\mathbf{a}|_3 + |b|_3)$$

then, for 1 it is easy to show

$$\mathbf{u}^{k} \in L^{\infty}(0, \infty; L^{3}(\mathbb{R}^{3})),$$

$$\theta^{k} \in L^{\infty}(0, \infty; L^{3}(\mathbb{R}^{3})),$$

$$\nabla \mathbf{u}^{k} \in L^{p}_{loc}(0, \infty; L^{3}(\mathbb{R}^{3})),$$

$$\nabla \theta^{k} \in L^{p}_{loc}(0, \infty; L^{3}(\mathbb{R}^{3})).$$

Let q and q^* such that $\frac{1}{q} + \frac{1}{q^*} = 1$ and we consider the following estimative

$$\sup_{\left|\mathbf{v}\right|_{W_{0}^{1,q^{*}}}=1}\left|<\Delta\mathbf{u}^{k},\mathbf{v}>\right|\leq\sup_{\left|\mathbf{v}\right|_{W_{0}^{1,q^{*}}}=1}\left|\nabla\mathbf{u}^{k}\right|_{q}\left|\nabla\mathbf{v}\right|_{q^{*}}\leq\left|\nabla\mathbf{u}^{k}\right|_{q},$$

$$\sup_{\left\|\mathbf{v}\right\|_{W_{0}^{1,q^{*}}}=1}\left|<(\mathbf{u}^{k-1}\cdot\nabla)\mathbf{u}^{k-1},\mathbf{v}>\right|\leq\left|\left\|\mathbf{u}^{k-1}\right\|^{2}\right|_{q}$$

and

$$\sup_{\left|\mathbf{v}\right|_{W_{0}^{1,q^{*}}=1}}\left|<\nabla\pi^{k},\mathbf{v}>\right|\leq\left|\pi^{k}\right|_{q}.$$

Now, using Hölder and Sobolev inequalities, we have

$$\sup_{\left|\mathbf{v}\right|_{W_{0}^{1,q^{*}}}=1}\left|<\theta^{k-1}\mathbf{f},\mathbf{v}>\right|\leq C\sup_{\left|\mathbf{v}\right|_{W_{0}^{1,q^{*}}}=1}\left|\theta^{k-1}\mathbf{f}\right|_{\frac{3q}{q+3}}\left|\nabla\mathbf{v}\right|_{q^{*}}=C\left|\theta^{k-1}\mathbf{f}\right|_{\frac{3q}{q+3}},$$

Thus, by using (16) together with Sobolev and Hölder inequalities, we obtain

$$\left| \frac{\partial \mathbf{u}^{k}}{\partial t} \right|_{W^{-1,q}} \leq \left| \nabla \mathbf{u}^{k} \right|_{q} + C \left| \mathbf{u}^{k-1} \right|_{3} \left| \nabla \mathbf{u}^{k-1} \right|_{q} + C \left| \theta^{k-1} \right|_{3} \left| \mathbf{f} \right|_{q}.$$

Analogously the following inequality can be proved for the temperature θ^k

$$\left| \frac{\partial \mathbf{u}^k}{\partial t} \right|_{W^{-1,q}(\mathbb{R}^3)} + \left| \frac{\partial \theta^k}{\partial t} \right|_{W^{-1,q}(\mathbb{R}^3)} \le C t^{-1 + \frac{3}{2q}}.$$

Therefore, for $1 < r < \frac{2q}{2q-3}$, we have

$$\frac{\partial \mathbf{u}^k}{\partial t} \in L^r_{loc}(0, \infty; W^{-1,q}(\mathbb{R}^3)),$$
$$\frac{\partial \theta^k}{\partial t} \in L^r_{loc}(0, \infty; W^{-1,q}(\mathbb{R}^3))$$

By using the compact embedding of $W^{1,3}(\mathbb{R}^3)$ on $L^3_{loc}(\mathbb{R}^3)$ and the Compactness Theorem in ([11], Cap. 3), we obtain that there exists (\mathbf{u},θ) such that

$$\mathbf{u}^k \to \mathbf{u}$$
 in $L^2_{loc}(0, \infty; L^3_{loc}(\mathbb{R}^3))$ strongly, $\theta^k \to \theta$ in $L^2_{loc}(0, \infty; L^3_{loc}(\mathbb{R}^3))$ strongly.

Now, using the standard arguments, it is easily to show that (\mathbf{u},θ) is a unique solution of (1)-(5) (see [5]).

Acknowledgment

The authors has been partially supported by D.G.E.S. and M.C. y T. (Spain), Projet BFM2003-06446.

M.A. Rojas-Medar is partially supported by CNPq-Brazil, grant 301354/03-0.

References

- [1] Adams, R., Sobolev Spaces, Academic Press, New York, 1975.
- [2] Cannon, J. R., DiBenedetto, E., The initial value problem for the Boussinesq equations with data in L^p , Lect. Notes in Math., vol 771, (1980), 129-144.
- [3] Giga, Y., Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations 62 (1986), no. 2, 186–212.
- [4] Cheng He, Ling Hsiao, The Decay of Strong Solutions for Navier-Stokes Equations, J. Math. Anal. Appl., **268** (2002), 417-425.
- [5] Hishida, T., Existence and regularizing properties of solutions for the nonstationary convection problem, Funkcialy Ekvaciy, **34** (1991), 449-474.
- [6] Joseph, D.D., Stability of Fluid Motion, Springer-Verlag, Berlin, 1976.
- [7] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow. Second edition. Gordon and Breach, New York, 1969.
- [8] Lions, J. L., Quelques Méthods de Résolution des Problémes aux Limits Non Linéares, Dunod, Paris, 1969.
- [9] Rojas-Medar, M.A., Lorca, S.A., The equation of a viscous incompressible chemical active fluid I: uniqueness and existence of the local solutions, Rev. Mat. Apl., 16 (1995), 57-80.
- [10] Rojas-Medar, M.A., Lorca, S.A., The equation of a viscous incompressible chemical active fluid II: regularity of solutions, Rev. Mat. Apl., **16** (1995), 81-95.
- [11] Temam, R., Navier-Stokes Equations, North-Holland, Amsterdam, Rev. Edit., 1979.

F. Guillén-González: Universidad de Sevilla, Facultad de Matemáticas, 41012 Sevilla, Spain.

E-mail:guillen@us.es,

M. Santos da Rocha: DM-CCE-UEL, Londrina-PR, Brazil. E-mail:marcio@uel.br

 ${\rm M.A.}$ Rojas-Medar: DMA-IMECC-UNICAMP, CP 6065, 13083-970, Campinas-SP, Brazil.

 $\hbox{E-mail:} marko@ime.unicamp.br$