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The Boussinesq equations describe the motion of an incompressible viscous
fluid subject to convective heat transfer. Decay Rates of derivatives of solutions
of the three-dimensional Cauchy problem for a Boussinesq system are studied
in this work.

1 Introduction

In this work we show some theoretical results about decay rates of strong
solutions of the three-dimensional Cauchy problem for Boussinesq equations,
described by the following partial differential equation problem (see [6]):

g‘:_mu+u-w+wz9ﬁn(o,:ﬁ)xR?’, (1)
divu=0in (0,T) x R?, (2)
gf—XA0+u-V«9:01n(O,T)><R3, (3)
u(0,z) =a(r) in R?, (4)

6(0,2) =b(z) in R, (5)

where the unknown are u, 6, m which denote, respectively, the velocity field,
the scalar temperature and the scalar pressure. Data are the positive constants
v, X, respectively, the viscosity and the thermal conductivity coefficients and
the function f the external force field, and a(x), b(z), respectively, represent
the initial velocity and initial temperature.

The main objective of this work is obtain decay rate of derivatives for
the strong solutions to the Cauchy problem (1)-(5). For this, we will consider
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the usual Lebesgue spaces LP(R?) with the usual norms | - |,. We will denote
L2 (R?) the closure of C§%,(R?) = {v € C§°; divv = 0} in LP(R?). We will
denote too by L7 (0,T; L4(R?)) the Banach space, classes of functions defined
a.e. in [0,7] on L(R?), that are LP-integrable in the sense of Bochner. For
more details see [1], [3].

We observe that this model of fluids includes as a particular case the
classical Navier-Stokes equations, which has been thoroughly studied (see for
instance [7], [8]). Rojas Medar and Lorca obtained results of uniqueness and
existence of the local solutions and regularity of solutions for Boussinesq equa-
tions [9],[10].

Results of Decay Rates of strong solution were obtained by Cheng He and
Ling Hsido [4]. In this paper, we will are interested to get similar results for
Boussinesq Equations.

2 Results of Decay Rates

The main objective of this work is to establish the decay rates of deriva-
tives about time variable and spaces variables for the strong solutions to the
Cauchy problem of the Boussinesq equations (1)-(5). For this, we will consider
a sequence of Cauchy problems for the linearized Boussinesq equations

8811: —vAuF + (0" V)ut - VR =057 on (0,T) x R, (6)
div u* =0 on (0,T) x R?, (7)

6299: — XA+ VR =0 on (0,7) x R, (®)

u®(0,z) =a"(z) on R?, (9)

0%(0,z) =b"(x) on R?, (10)

for k > 1, where a* € Cg%,(R?) and 0* € C§°(R?) such that

a"® —ain L?(R?) strongly,
b¥ — b in L*(R?) strongly,

with ’ak’3 < |al; and ‘bk‘s < |b|,. The first term, (u® 7°,0"), of this sequence

is solution of the trivial Cauchy problem:

ou’ 0 0 3
—— —vAu +Vr =0on (0,7) x R, (11)

ot
divu’=0on (0,7) x R?, (12)



00"

i xA0° =0 on (0,7) x R, (13)
u’(0,z) =a’(z) on R? (14)
6°(0,z) =b°(x) on R®. (15)

Let [, (t,x;8,y) = (dvmt) /% exp(52- |x| ) be a fundamental solution of the
heat equation in R3 (with viscosity coefﬁment v). Then, the solution of the
linearized Boussinesq system (6)-(10) can be write as follows:

uf(t,x):/FV(t,x;O,y)af(y)dy
3

k-1

¢ 3
_ ou;
—//Fy(t,x;s,y)Zlﬁ Y(s,y) g, (5 Y)dyds
=1 i

0R3

—//F t,x;s y (s y)dyds + (16)

0 R3

t
//Fl,(t,x; s,y)@k_l(s,y)fi(s,y)dyds

0 R3

and

¢ 3 Hok—1
= [ [ Tattass ) Sl s, p) S (s, y)dyds ity
J
The convergence for above method can be seen in [2], [7].
Definition 2.1 A couple (u,0) is called strong solution for the system (1)-

(5), if u € LP(0,00; L4(R3)) N L>=(0,00; L3(R3)), # € LP(0,00; L4(R?)) N
L>(0, 00; L3(R?)) for some p > 2 and q > 3, and satisfying

//u —+u Ap+ (u-Ve)u )dazdt:—/a~g0(0,:1:)dx



for all ¢ € C§°(0, 00; C5%(R?)) and

// —+0A¢+(u Vb)) drdt — /wax

0 R3

for all ¢ € C§°(0, 00; C3°(R?)).

Lemma 2.2 For the pressure % the following estimate holds

’(uk—l . V)uk—l

(18)
forl<r<oo, k>0.

Lemma 2.3 Let a € L3(R?), b € L3(R?), | £(t) [,< Cot 3 (| als + | bs)

| VE(t) |,< Cot_%+%(| als+ | bls), where the constant Cy is independent of
t and q. If C*Co(| als + | bs) <1 for some constant C*, then

1_3
272 (| ut() |y + [ 0°(t) 1) <CCollals + [ b ]s),
t5 (| Vub(t) |, + | VO (t) [) <CCo(l als + | b ]s)

for3<qg<oo,t>0andk >0.

(19)
(20)

PROOF. We put
15 = 5 () |, + 650 |

_ 3
JE =75 (| V() |, + | V() |,)-

We will assume by inductive hypotheses that the estimates (19)-(20) are

true for £ — 1. By the Young inequality for convolution, we can estimate the
terms of (16) as follows

k
a;

L T, (t,2;0,y)ak(y)dy
3

< (omt) 7 ([ 5" ay)?

q R3

—1
< S EREAl

k
%

where % + % =1+ %. Again, by the Young inequality we obtain

auk:—l
Ly (t,x;8,y) Y ui " (s,9) (s, y)dyds
// Oz,

0 R3 31

q



t
/ *3<2 Dlu

smﬁmg+w£f%%

| 7

where % +1i=1+ %. Now, using (18) we have

//F (t,z;s y (5 y)dyds| < CC3(|al,+ |bl)*t 3ta

0 R3 .
and
¢
3

//Fy(t,x; s,9)05 (s, 9) fi(s, y)dyds| < CC3"F2a(|al, + |bl,)>

0 R3 ‘
Moreover

1.3

[uf(t) ;< Ct 72 (Co(lals + [ 0]s) + Ci(l als + | 0 ]5)*).

Analogously, we can obtain the estimate for | 6%(t) |,. Now, differentiating

(16) and using the fact

0 Mo—y|?
‘(%lf‘y(t,a:; s, y)| <C(t— 3)—26 (=)

for + = 1,2, 3 and some constant A > 0, follows

<Ot |al, .

8M¥R@LQW%@@

q

Analogously, we obtain

0 N duf ™! 2 2,-1+%
N : < 2q
o O//F v(t, 35, y) E ui (s, ) o, (s,y)dyds| < CC3(|al, + |b];)*t

q

and



0 /t/F(t:c's )@(3 )dyds
aIZ’OR3 vA\Yy 73/ axz 7y y

q
1

< CC3(Jaly + oly)? 5 [(1—w)
0

[NIE

“aw? FEGET gy (21)

where r > 3 and % + % > %, to obtain the convergence of the last integral in
(21). Finally, we obtain

0
8ZL'Z‘

ek_lfi

ds.
!

t
//Fu(t7x;87y)(9k_1fidyds
0 R3

¢
< C/(t — S)—%JF%(%—%)
; 0

Without difficult we can obtain for the equation of the temperature

JE < Collaly + bly) + CC3(Jaly + [bl)* < 2Ca(Jal; + [bl,).

For ¢ = oo we can obtain analogously as before

t
L<C(lals+ bl + O [T [0 |y (| Vu |+ | 965 [y)ds

0
t

+Ct5 [(t=9)F [0 i Elads < Clals+]bls) + CC(lals+ bl
0

Similary, we obtain the estimative for J% .

Lemma 2.4 Leta € L3 (R?), b e L*(R3) and | £ |,< C’OFH%(] als+|bls),
| VE |, < Cot 22 (lals + | bls). IFCCollals + | bls) <1 for some
constant C*, then for 3 < q < oo, the following estimate is true uniformly in
k

5.3 O o*u” %0k
b Z ( O0x;0z lo + | 0,0,

l,j=1

o) <2Co([als +1bs).

PROOF. The identity (16) can be write as follows:

b (t,0) = [Toltas 0@y = [ [Tt ) ™ 5,0) 5L~ (500)



LT ) — 05 (5, ) (s, )y

8
> ouf=!
—//F (t,2;5,9) (D uf (s, y) e (8:y))dyds
LR j=1 L
or* k—1
+%(Svy> -0 <S7y)fi(87y>>dyd8

analogously for temperature.
We will make the case [ = j (for the case [ # j the argument is analogous).

By the Young inequality we obtain

1 o 2
<C; L/(R(zf, 2:0,y)af (y) + WFM 7;0,9)

51’1/F (t,2;0,9)ak (y)dy

q

<Ct 3 |al,

By analogous computations, we have

%
< CC2(Jal; + |bl;)% %/(1—w)%7+%w%3dw.
0

The estimation for the terms that involve f05 are obtained analogously. By
other side

<CCH(Jaly + b, 575 [(1—w)F 0> fdw
%
S 2+3£1 82 e
oz}

(s)

1
+CC(|al; + [b]3) /1— T w dw sup
Se[t t] q

2

Analogously

a; (y))dy

q



&
— r
ax,?// RGN ~dyds
§R3
q
t
0 00kt
< b a2 (bt k-1 d
e T

and, finally,

0
@//Fu(t,w;s,y)m‘lfidyds
e
’ q

1

< CC3(laly + ol 45 [ (1) % w i,

N

The proof of the Lemma is consequence from the above estimative.

Lemma 2.5 Let a € L}(R?), b € L*(R?) and |f| < C’OtfH‘;Tz(|a|3 + 1b]5),

Ve[, < Cot7%+237(|a|3+ |bl5). If M(|al;+ |bl;) < 1 for some constant M, then
for 3 < q < oo, the following estimative are verified uniformly in k

£ |Vt < C(laly + [bl,)? (22)
and

3 3 |ou” 06"

R+ e S Ol + ) + Cllaly + ) (23)

PROOF. The proof is consequence of the Lemmas, and the following facts

ouk K -1 k-1 k| k-1
and
aek k k—1 k—1

The main result in this paper is the following:



Theorem 2.6 Let a € L3(R?), b € LYR®) and | £ |,< Cot V(| a|s + |

bls), | VI |[,< C’Ot_%+2%(| als+|bls). Then, there exists a positive constant
e such that, if (| a |3 + | b |3) < €, there exists a unique solution (u,d) for
(1)-(5), which satisfy:

t772u e BC([0, 00); LY(R?)),
t7720 € BC([0, 00); LY(R?)),
t'7% | Vu | € BC([0,00); LY(R?)),
t37% | VO | € BO([0, 00); LY(RY)),

for 3 < q < oo and moreover

€ BC([0, 00); L*(R?)),

6’x j 8:(:1

020

3
3_3
s z
ij=1 8%8%

t27% |Vx| € BO([0, 00); L1(R?)),

3 2q(21tl€BO([ 00); LY(R?)),

€ BO([0, 00); LY(RY)),

for 3 < q < o0.

PROOQOF. Using Lemma with ¢ = 3, we obtain

M+ 0], <l + s

and

’Vuk‘s + ‘Vek‘?) < C’t*%(\a|3 + [b]3)

then, for 1 < p < 2 it is easy to show



Let ¢ and ¢* such thaté + q% = 1 and we consider the following estimative

k
» <|Vu

Y

sup  |< Auf,v>| < sup ‘Vuk‘ Vv
«=1 q q
q

\V|Wé,q*:1 |V\W1

2
sup ‘< (w1t V)iu v >‘ < “ukl‘
‘Vlwl,q* =1

0

q

and

sup ‘< vk v >‘ < ‘Wk’ .
* = q
‘Vlwol,q 1

Now, using Holder and Sobolev inequalities, we have

sup ‘< 68 1f v >’ <C sup ‘Qk_lf
e=1

‘vlwl,q*zl ‘vlwl q
0

L VY. = (J}ek—lf s

q+3 q+3

Thus, by using (16) together with Sobolev and Holder inequalities, we obtain

ou”

ot

< |[Vut| | [vattt oot e,
Wl q 3 q 3

Analogously the following inequality can be proved for the temperature 6*

o0
ot

ou*

- < ot Mo,
ot -

W—1.4(R3)

+
WLa(R3)

Therefore, for 1 < r < %, we have

k
o € L (0. 00 W (B,

9k
€ L0, 00 W ()

By using the compact embedding of W13(R?) on L} .(R?) and the Com-

loc

pactness Theorem in ([11], Cap. 3), we obtain that there exists (u,f) such
that

10



u* —uin L} (0,00; L} (R?)) strongly,

loc

0¥ — 0 in L} (0, 00; L} (R?)) strongly.

loc loc

Now, using the standard arguments, it is easily to show that (u,d) is a

unique solution of (1)-(5) (see [5]).
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