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Departamento de Matemática, Universidade Estadual de Campinas,
13.081-970 - Campinas - SP, Brazil.

Abstract

Let φj : Mj → G, j = 1, 2, . . . , n, be harmonic mappings from Rie-
mannian manifolds Mj to a Lie group G. Then the product φ1φ2 . . . φn

is a harmonic mapping between M1 ×M2 × . . . Mn and G. The proof
is a combination of properties of Brownian motion in manifolds and
Itô formulae for stochastic exponential and logarithm of product of
semimartingales in Lie groups.
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1 Introduction

Let (M, g) and (N, h) be two compact Riemannian manifolds and consider
φ : M → N a C∞-differentiable map. The energy functional (or action inte-
gral) of φ is defined as the integral of the density energy function e(φ)(x):

E(φ) =
∫

M
e(φ)(x)dvg,

where e(φ)(x) = 1/2 trg(φ∗h)(x) and vg is the Riemannian volume on M . A
physical interpretation of the energy functional E could be the accumulated
elastic energy on M , when this space is stretched on N .
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We say that φ is a harmonic mapping if φ is a critical point of the
functional E. The Euler-Lagrange formula in this case can be written in
terms of the connections∇M and∇N on M and N , respectively: namely φ is
harmonic if and only if the tension field τ(φ)(x) = tr(∇̃φ∗−φ∗∇M ) vanishes
everywhere in M , where ∇̃ is the induced connection on the induced bundle
φ−1TN , (see e.g., Urakawa [11]). The definition of harmonic mappings
extends naturally to non-compact manifolds just considering the critical
property of the energy functional locally on M . In particular, we recall
that geodesics are harmonic mappings from the real line to a Riemannian
manifold.

Variational problems has been, historically, a non-trivial area of interest
both for mathematicians and physicists. In the last couple of decades many
important contributions on harmonic mappings were done, see e.g., in one
of the seminal papers, Calabi construction of harmonic mappings from 2-
spheres into symmetric spaces [1]. For a classical text we refer to Eells and
Lemaire [3]. For an approach of harmonic mappings into Lie groups see, e.g.
Uhlenbeck [10]. This article is a contribution in the topic which comes as
an application of stochastic tools in geometry.

Here we consider harmonic mappings with image in a Lie group G with
a bi-invariant Riemannian metric. In this case the associated (Levi-Civita)
left invariant connections on G, denoted by ∇L, satisfies ∇L

XY = 1
2 [X,Y ]

for all X, Y left invariant vector fields in the Lie algebra G, see e.g. Cheeger
and Ebin [2].

The aim of this paper is to present a direct stochastic proof that prod-
uct of harmonic mappings is a harmonic mapping. More precisely: given
φj : Mj → G, j = 1, 2, . . . , n, harmonic mappings between Riemannian
manifolds Mj and a Lie group G with bi-invariant Riemannian metric, then
the product φ1φ2 . . . φn is a harmonic mapping between M1 ×M2 × . . . Mn

and G. The proof is a combination of properties of Brownian motion in man-
ifolds and Itô formulae for stochastic exponential and logarithm of product
of semimartingales in Lie groups. Although we assume that the group has a
bi-invariant metric, one can easily verifies that our argument also holds for
any Lie group considering the left connection ∇L

XY = 1
2 [X, Y ] if X, Y ∈ G.

We recall that product of harmonic mappings appears also in other con-
texts, we mention here harmonic functions on Lie groups with respect to
a Radon probability measure µ on G, see e.g. Furstenberg [5]. A function
f : G → R is called µ-harmonic if

f(g) =
∫

G
f(gh) dµ(h),
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for every g in G. If f1 : (G1, µ1) → R, and f2 : (G2, µ2) → R are harmonic
functions, then Fubini theorem implies that f1f2 : G1×G2 → R is a µ1×µ2-
harmonic function.

In Section 2 we recall some basic facts and formulae on stochastic cal-
culus in Lie groups. We refer mainly to Hakim-Dowek and Lépingle [6],
nevertheless, it may happen that someone finds the proofs presented here
simpler than in [6]. We shall use these formulae in Section 3, where we prove
the main results.

2 Preliminary results

Let M be a Riemannian manifold and consider θXt ∈ T ∗Xt
M an adapted

stochastic 1-form along Xt, an M -valued semimartingale. The integral of
the form θ along X was proposed by Ikeda and Manabe [7] (see also, among
others, Emery [4] or Meyer [9]). This integral is geometrically intrinsic, and
it has a natural description in local charts: let (U, x1, . . . , xn) be a local
system of coordinates in M , then θ can be written as θx = θ1(x) dx1 +
. . . θn(x) dxn, where θi(x), i = 1, 2, . . . n, are (C∞, say) functions in M .
The Stratonovich integral of θ along Xt is given by:

∫
θ ◦ dXt =

n∑

i=1

∫
θi(Xt) ◦ dXi

t .

Let G be a Lie group with the corresponding Lie algebra G. We denote by
ω the (left) Maurer-Cartan form in G, i.e. if v ∈ TgG, then ωg(v) = Lg−1∗(v).
It corresponds to the unique G-valued left invariant 1–form in G.

The logarithm of a process Xt on G (with X0 = e) is the integral of the
Maurer-Cartan form along Xt, namely, it is the following semimartingale in
the Lie algebra:

(log X)t =
∫ t

0
ω ◦ dXs.

Conversely, consider a semimartingale Mt in the Lie algebra G. We recall
that the (left) stochastic exponential ε(M) of Mt is the stochastic process
Xt which is solution of the Stratonovich left invariant equation on G:

{
dXt = LXt∗ ◦ dMt,
X0 = e.

An interesting geometric characterization of the exponential ε(M) is the fact
that it corresponds to the stochastic development of Mt ∈ TeG to the group
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G with respect to the left invariant connection ∇L. One easily checks that
the logarithm is the inverse of the stochastic exponential ε.

Martingales in G (with respect to ∇L-connection) and local martingales
in the Lie algebra G are related by the following characterization, see Hakim-
Dowek and Lépingle [6]:

Theorem 2.1 A process Xt on G is a ∇L–martingale if and only if Xt =
X0 · ε(M) for some local martingale M in G.

The pull-back of Maurer-Cartan forms by homomorphisms of Lie groups
is easily described by:

Lemma 2.1 Let ϕ : G → H be a homomorphism of Lie groups. Then the
pull-back ϕ∗ωH satisfies, for v ∈ TgG:

(ϕ∗ωH)v = ϕ∗(ωG(v)).

In particular, if X is a semimartingale in G, then ϕ∗(log X) = log(ϕ(X)).

Proof:
Once ϕ(Lg−1(h)) = Lϕ(g)−1(ϕ(h)), chain rule implies that

Lϕ(g)−1∗(ϕ∗(v)) = ϕ∗(Lg−1∗(v)).

For the last formula, by definition: log ϕ(X) =
∫

ϕ∗ωH ◦ dX. The result
follows directly by the first part of the Lemma and the very definition of
ϕ∗ log X.

¤
Denote by Ig : G → G the adjoint in the group G given by h 7→ ghg−1.

The map Ig is an automorphism of G and its derivative corresponds to the
isomorphism of the Lie algebra called adjoint in G denoted by Ad(g) = Ig∗ :
G → G. We have that R∗

g ω = Ad(g−1)ω (see e.g. Kobayashi and Nomizu
[8]). The pull-back of the canonical form by multiplication and inverse is
given by:

Proposition 2.2 Let m : G×G → G be the multiplication and i : G → G
be the inverse in the group. Then the pull-backs satisfy:

a) m∗ω = Ad−1(π2)(π∗1ω) + π∗2ω;

b) i∗ω = −Ad ω.
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Proof:
Let w = (u, v) ∈ T(g,h)G×G ' TgG× ThG. Then

m∗ω(w) = ω(m∗w) = ω(Rh∗u + Lg∗v)
= L(gh)−1∗(Rh∗u + Lg∗v)
= Lh−1∗Rh∗Lg−1∗u + Lh−1∗Lg−1∗Lg∗v

= Ad(h−1)ω(u) + ω(v).

For the inverse function, consider the diagonal map ∆ : G → G × G given
by ∆(g) = (g, g). We have that m ◦ (Id × i) ◦ ∆ = e, then the pull-back
(m ◦ (Id× i) ◦∆)∗ω = 0 which implies, using the formula of item (a), that

Adω + i∗ω = 0

¤

Lemma 2.2 Given semimartingales X and Y in G, we have the following
Itô formulas:

a) log(XY ) =
∫

Ad(Y −1) ◦ d(log X) + log Y ;

b) log(X−1) = − ∫
Ad(X) ◦ d(log X).

Proof:
The first formula follows from the calculation:

log(XY ) =
∫

ω ◦ dm(X, Y )

=
∫

m∗ω ◦ d(X,Y )

=
∫ (

Ad−1(π2)π∗1ω + π∗2ω
) ◦ d(X,Y )

=
∫

Ad(Y −1) ◦ d(
∫

ω ◦ dX) +
∫

ω ◦ dY

=
∫

Ad(Y −1) ◦ d log X + log Y.

For the second formula, apply the identity (a) with Y = X−1.
¤

We have now a direct way to prove the stochastic Campbell-Hausdorff
formula (cf. Hakim-Dowek and Lépingle [6]).

5



Theorem 2.3 We have that:

a) ε(M + N) = ε
(∫

Ad(ε(N)) ◦ dM
)
ε(N);

b) ε(M)−1 = ε
(− ∫

Ad(ε(M)) ◦ dM
)
.

3 Harmonic mappings

Consider M and N two Riemannian manifolds and let f : M → N be a C∞-
differentiable map. The key point in stochastic geometry which matters in
the question addressed in this article is the following result, due originally
to Bismut:

Theorem 3.1 Let Bt be a Brownian motion in M . Then f : M → N is a
harmonic mapping if and only if its image f(Bt) is a ∇N -martingale in N .

See, e.g. Emery [4].

Theorem 3.2 (Main result) Let φj : Mj → G, j = 1, 2, . . . , n, be har-
monic mappings from Riemannian manifolds Mj to a Lie group G (with
respect to connection ∇L). Then the product φ1φ2 . . . φn is a harmonic map-
ping between M1 ×M2 × . . .Mn and G

Proof:
It is enough to proof for n = 2. Consider f1 : M1 → G and f2 : M2 →

G be two harmonic mappings. Let B1 and B2 be independent Brownian
motions in M1 and M2 respectively. Then (B1, B2) is a Brownian motion in
the product space M1×M2. We have to prove that the product f(B1)g(B2)
is a martingale in the group G. By Theorem 2.1 this product is a martingale
if and only if its logarithm is a local martingale.

By the Itô formula (a) of Lemma 2.2 we have that:

log(f(B1)g(B2)) =
∫

Ad(g(B2)−1) ◦ d(log f(B1)) + log g(B2). (1)

By hypothesis, the integrand log f(B1) and the last term log g(B2) are mar-
tingales. Moreover, the Stratonovich integral reduces to an Itô integral,
since the correction term vanishes by independence of the Brownian mo-
tions. Hence log(f(B1)g(B2)) is a martingale in the Lie algebra G, hence
the product f · g is harmonic.

¤
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Example 1: (Product of geodesics is harmonic) Let G be a Lie group with
a bi-invariant metric. Consider X1, . . . , Xn elements of the Lie algebra G.
Then the map f : (Rn, <, >) → G defined by

f(t1, . . . , tn) = exp(t1X1) · . . . · exp(tnXn)

is harmonic. Again, with n = 2, given (B1
t , B2

t ) a Brownian motion on the
plane R2, then:

log(exp(B1
t X1) exp(B2

t X2)) =

∫ 1

0
Ad((exp(B1

sX1))−1) ◦ d(B2
sX2) + B2

t X2

where a direct calculation shows that the correction term of the Stratonovich
integral is [X2, X1] d[B1

t , B2
t ] = 0.

¤
A corollary of the proof of the theorem shows a partial converse of the

theorem:

Corollary 3.3 Let f : M → G and g : N → G be two C∞-differentiable
map. If the product f · g is harmonic and one of the two mappings, f or g
is harmonic, then the other map is also harmonic.

Proof: The proof follows from equation (1), where the Stratonovich integral
reduces to an Itô integral. The left hand side is a martingale by hypothesis
and Theorem 2.1. If f is harmonic then the integrand is a martingale, hence
log g(B2) is also a martingale and g is harmonic.

On the other hand, if g is harmonic, then the (Itô) integral is a martin-
gale. By Doob-Meyer decomposition, it follows that log(f(B1)) is a martin-
gale and f is harmonic. ¤

The factorization result of the corollary can not be improved: a harmonic
product may not be product of harmonic components. Consider for example
the harmonic function f(x, y) = sinh(x) sin(y).

Example 2: (Invariance by geodesic translations) Let f : M → G be a C∞-
differentiable map, and let X1, . . . , Xn be elements of the Lie algebra G. The
map f is harmonic if and only if exp(t1X1) · . . . ·exp(tnXn) ·f : Rn×M → G
is harmonic. Yet, f is harmonic if and only if f · exp(t1X1) · . . . · exp(tnXn) :
M × Rn → G is harmonic.

In particular, consider the torus T k = S1× . . . S1, k-times. If X1, . . . , Xn

are infinitesimal rotations in the respective coordinates of Tn, then a map
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f : Tm → Tn is harmonic if and only if f · exp(t1X1) · . . . · exp(tnXn) is
harmonic.

¤
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